
Natural Image Statistics:
Foundations and Applications

Tania Pouli
Douglas Cunningham

Erik Reinhard

Eurographics 2013 Tutorial

Friday, 8 February 13
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Introduction - Tania (5 mins)

Foundations - Tania (25 mins)

Fourier statistics - Douglas (30 mins)

Wavelets - Erik (10 mins)

Color statistics - Erik (15 mins)

Discussion - All (5 mins)
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Statistics in Graphics
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Types of Statistics

First order

Each pixel viewed independently

Second Order

Relations between pairs of pixels

Higher Order

How does a pixel relate to more than one other 
pixel in the image?
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Foundations

Tania Pouli
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First Order

Each pixel considered 
independently

Location invariant

Easy to compute & 
interpret

First order statistics: 

histogram moments

contrast*
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Intensity Histograms

How often does each intensity value occur?

Histograms can be very important in data 
analysis, image analysis, and visualization

Individual frequency 
of occurrence

Cumulative frequency 
of occurrence
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Histogram Moments

They give information about the shape of the 
distribution

A measure of Gaussianity

mk =
NX

p=1

(I(p)� c)k

N
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Histogram Moments

1st moment: mean

2nd moment: variance

3rd moment: relates to skewness

4th moment: relates to kurtosis

S =
m3

�3

 =
m4

�4
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Intensity Histograms

Local contrast in natural images: normalization 
and coding efficiency - Brady & Field (2000)
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Intensity Histograms
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LDR vs HDR histograms for the same scenes - 
Pouli et al. (2010)

Friday, 8 February 13



Histograms relate to 
surface properties:
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Image statistics and the perception of 
surface qualities - Motoyoshi et al. (2007)
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Histogram Equalization

Images do not 
use intensity 
values evenly

Equalizing the 
values in the 
cumulative 
histogram can 
improve contrast
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Histogram Matching

Source Target Result

a
b
L

Source Target Result
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Is 1st Order Enough?

Simple to compute and interpret BUT...

No spatial information

No information on relations between pixels

We need 2nd/higher order statistics for that!
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Fourier Statistics

Douglas Cunningham
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x

Real Space Fourier Space

ν

⇔

x

⇔

νx

⇔

Spectral Slope
Fourier Transform Basics

Real Space Fourier Space
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xx

Real Space

⇔

Spectral Slope
Fourier Transform Basics
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Edge Effects

Cosine Two spikes
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Sum of Sines...

I(x,y) = sin (2/ (nx/2 - x) 1 sine

2 sines

3 sinesI(x,y) = sin (2/ (nx/2 - x) + sin (/ (nx/2 - x) + sin (/� (nx/2 - x)

I(x,y) = sin (2/ (nx/2 - x) + sin (/ (nx/2 - x)
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...Approximates an Edge
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Power Spectrum
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Spectral Slope

Spectra of individual images 
varies

AVERAGE spectra follow 
power law:

Humans most sensitive to 
slopes between 2.8 and 3.2

A ⇡ 1

f�
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Spectral Slope
Study # of Images β±1sd

Burton G. J., Moorhead I. R. 1987 19 2.1±0.24
Dong D.,  Atick J. 1995 320 2.30
Dror R. O.,  Adelson E. H.,  Willsky A. S. 2001 95 2.29
Field D. J. 1987 6 2.0
Field D. J. 1993 85 2.20
Field D. J., Brady N. 1997 20 2.20±0.28
van Hateren J. 1992 117 2.13±0.36
Huang J., Mumford D. 1999 216 1.96
Pàrraga C. A., Brelstaff G., Troscianko T. 1998 29 2.22±0.26
Reinhard E., Shirley P., Troscianko T. 2001 133 1.88±0.42
Ruderman D., Bialec W. 1994 45 1.81
van der Schaaf A., van Hateren J. 1996 276 1.88±0.42
Thomson M., Foster D. 1997 82 2.38
Tolhurst D. J., Tadmory Y., Chiao T. 1992 135 2.4±0.26
Torralba A., Oliva A. 2003 12,000 2.08
Webster M., Miharaya E. 1997 48 2.26
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Spectral slope is related to 
autocorrelation

Increasing slope increases 
coarseness

Self similar (fractal)

β=0.8 β=1.6

β=3.2β=2.4

Spectral Slope
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Edge Effects

Cosine Edge Effects
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Windowing
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Angular Power Spectrum
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Spectral Slope differs by scene 

Webster & Miyahara (1997)

Forest (2.15) distant meadow (2.4) Close-up (2.23)

Applications: 
Scene Classification
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and orientation

Torralba & Oliva (2003)

Horizontal Vertical Oblique

Applications: 
Scene Classification

Natural
1.98 2.02 2.22
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and orientation

Torralba & Oliva (2003)

Horizontal Vertical Oblique

Applications: 
Scene Classification

Natural
1.98 2.02 2.22

Man Made
1.83 2.37 2.07

and orientation by scene
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and orientation by scene

Applications: 
Scene Classification

Torralba & Oliva (2003)

Friday, 8 February 13



Applications: 
Scene Synthesis

© Ken Musgrave
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Height map for terrain 

Applications: 
Scene Synthesis

Deussen
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Plant modeling 

Applications: 
Scene Synthesis

Weber
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 Applications:
Deblurring 

Real World
Camera 
shakes

Resulting photograph
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 Applications:
Deblurring 

Real World
Camera 
shakes

Resulting photograph

?
?

Friday, 8 February 13



Constraint: Real world image must follow power law
(Caron et al, 2002; Jalobeanu et al, 2002; Neelamani et al, 2004)

Constraint: Estimate Blur by optimizing to match
real gradient distributions

 Applications:
Blind motion Deconvolution 

Before After
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 Applications:
Image Inpainting

Remove an unwanted object from an image
Fill in hole by copying from elsewhere in image

Noisy After 1 iteration

After 2 iterationsAfter 10 iterations

Noisy After 10 iterations

a

b

c

d

e

Figure 10: Results of algorithms A1, A2, A3. (a)-(c) Show removal of noise using A1 from textured images with (a) systematic long distance structure
(cement lines in brick wall) (b) small regular texture (fabric) and (c) randomly placed prominent lines (stone wall). Images are , scratches approx. 9,
4 and 8 pixels wide. (d) Shows a simple application of A2 to a color image by applying A2 to each channel. (e) Shows results of A3 on an image with intensity
varying across the image. See section 5 for more details and Fig. 6 and Fig. 7 for sample and repair subimages.

276

Match based on spectra (and other) information 
(Hirani & Totsuka, 1996)
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Wavelets

Erik Reinhard
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Phase Structure
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Wavelets

Phase spectra are computed over entire images

What about spatially localized analysis?

Wavelets do this

They are also selective to specific orientations 
and scales

Friday, 8 February 13



Gabor Filters

Sinusoids weighted by Gaussians

Image filtered with with Gabor
filters with different wavelength
parameters:
Left to right: 16, 32 and 64.
Top: Filtered results.
Bottom: Gabor filter.

Image filtered with with Gabor
filters with different wavelength
parameters:
Left to right: 16, 32 and 64.
Top: Filtered results.
Bottom: Gabor filter.
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Haar Decomposition
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Haar Decomposition
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Haar Decomposition
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Coefficient Histogram
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Wavelet Analysis

Distributions of histograms of wavelet 
coefficients have high kurtosis, i.e. long tails

Can be modeled with a Laplacian
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Meaning of High Kurtosis

Many natural image statistics end up showing 
high kurtosis

This means that lots of values are small and 
some are large

Effectively sparse coding
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Sparse Coding

In human vision, sparse coding is an important 
feature:

Variability of input is explained by fewer neurons

Metabolic efficiency

Minimizes wiring length

Increases capacity in associative memory
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Wavelet Analysis

Both phase and amplitude can be measured 
and correlated in a wavelet decomposition

Surprising result: natural images are scale-
invariant in both phase and amplitude
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Complex Wavelet Amplitude
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Complex Wavelet Amplitude
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Applications of  Wavelets

Image denoising

Image compression

Object detection

Image retrieval
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Image Denoising
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Face Detection

Viola & Jones use a 
small set of wavelet-

like features to 
detect faces
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Wavelet Reconstruction
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Color Statistics

Erik Reinhard
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Light Transduction
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Implications

Metamerism: different spectra integrate to the 
same cone responses, and are therefore 
perceived identically

This allows us to build color displays, for 
instance

Color statistics can be collected on tristimulus 
values, rather than color spectra
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Color Constancy

 Humans can discount the color of the 
illumination
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Color Constancy

Cannot be computed analytically from retinal 
input; it is an under-constrained problem

Human vision makes statistical assumptions
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Statistical Assumptions

Grey world:

Spectrum of light sources usually off-white

Average BRDF of a scene often close to grey

Average color of an image yields estimate of 
dominant illuminant
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Grey World
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Grey World - Failure
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Possible Fixes

Exclude most saturated pixels from average

Optionally: convert to CIELAB

Compute 2D histogram on a* and b* channels

Spread of histogram and distance to origin 
determine if color cast is likely due to illumination 
or reflectance
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White Patch Algorithm

Assume that lightest patches in the scene are 
neutral in color

Their color therefore represents the illuminant
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Grey-Edge Assumption

The difference between two colored pixels 
tends to evaluate to grey
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Algorithm Selection

Different white balancing algorithms tend to 
work best on specific types of images

Can therefore collect statistics on the image 
pixels and select an appropriate algorithm 
based on the outcome

Weibull distribution is shown to be 
indicative
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A Further Implication

For grey values, in RGB (as well as LMS and 
similar color spaces) we have R=G=B

If values average to grey, then in RGB-like color 
spaces strong correlations exist between 
channels

Remember
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Statistical Decorrelation

Tania Pouli, Douglas W. Cunningham and Erik Reinhard / Image Statistics and their Applications in Computer Graphics

Figure 18: Examples images used to demonstrate the correlation between channels. The first two images are reasonable ex-
amples of natural images, whereas the third image is an example of an image taken in a built-up area. Built environments tend
to have somewhat different natural image statistics compared with natural scenes [ZL97, ZL98]. Figure taken from [RKAJ08],
courtesy AK Peters, Ltd.
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Figure 19: Random samples plotted in RGB color space (top) and L�⇥ color space (bottom). The top to bottom order of the
plots is the same as the order of the images in Figure 18. Figure taken from [RKAJ08], courtesy AK Peters, Ltd.

The measure D⇤ = D/⇤ can be used to assess the strength
of the cast. If the spread of the histogram is small, and lies
far away from the origin, the image is likely to be dominated
by strong reflectances rather than illumination.

6.1.2. Generalised Grey-World and White Patch
Assumptions

It was found that while grey-world algorithms work well on
some images, alternate solutions such as the white-patch al-
gorithm [Lan77] perform better on texture-rich images. The
white-patch algorithm assumes that the lightest pixels in an
image depict a surface with neutral reflectance, so that its
colour represents the illuminant.

Both the grey-world and white patch algorithms are spe-

cial instances of the Minkowski norm [FT04]:

Lp =

� �
f p(x)dx�

dx

⇥1/p
= ke (44)

where f (x) denotes the image at pixel x. The average of
the image is computed for p = 1, thereby implementing the
grey-world assumption. The maximum value of the image
is computed by substituting p = �, which represents the
white-patch algorithm.

A further generalised assumption can be made about im-
ages, which is that the average difference between two pixels
evaluates to grey. This is known as the grey-edge assump-

c� The Eurographics Association 2010.

Friday, 8 February 13



Correlations in RGB/LMS

Tania Pouli, Douglas W. Cunningham and Erik Reinhard / Image Statistics and their Applications in Computer Graphics

Figure 18: Examples images used to demonstrate the correlation between channels. The first two images are reasonable ex-
amples of natural images, whereas the third image is an example of an image taken in a built-up area. Built environments tend
to have somewhat different natural image statistics compared with natural scenes [ZL97, ZL98]. Figure taken from [RKAJ08],
courtesy AK Peters, Ltd.
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Figure 19: Random samples plotted in RGB color space (top) and L�⇥ color space (bottom). The top to bottom order of the
plots is the same as the order of the images in Figure 18. Figure taken from [RKAJ08], courtesy AK Peters, Ltd.

The measure D⇤ = D/⇤ can be used to assess the strength
of the cast. If the spread of the histogram is small, and lies
far away from the origin, the image is likely to be dominated
by strong reflectances rather than illumination.

6.1.2. Generalised Grey-World and White Patch
Assumptions

It was found that while grey-world algorithms work well on
some images, alternate solutions such as the white-patch al-
gorithm [Lan77] perform better on texture-rich images. The
white-patch algorithm assumes that the lightest pixels in an
image depict a surface with neutral reflectance, so that its
colour represents the illuminant.

Both the grey-world and white patch algorithms are spe-

cial instances of the Minkowski norm [FT04]:

Lp =

� �
f p(x)dx�

dx

⇥1/p
= ke (44)

where f (x) denotes the image at pixel x. The average of
the image is computed for p = 1, thereby implementing the
grey-world assumption. The maximum value of the image
is computed by substituting p = �, which represents the
white-patch algorithm.

A further generalised assumption can be made about im-
ages, which is that the average difference between two pixels
evaluates to grey. This is known as the grey-edge assump-

c� The Eurographics Association 2010.
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Color Opponent Space

Tania Pouli, Douglas W. Cunningham and Erik Reinhard / Image Statistics and their Applications in Computer Graphics

Figure 18: Examples images used to demonstrate the correlation between channels. The first two images are reasonable ex-
amples of natural images, whereas the third image is an example of an image taken in a built-up area. Built environments tend
to have somewhat different natural image statistics compared with natural scenes [ZL97, ZL98]. Figure taken from [RKAJ08],
courtesy AK Peters, Ltd.
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Figure 19: Random samples plotted in RGB color space (top) and L�⇥ color space (bottom). The top to bottom order of the
plots is the same as the order of the images in Figure 18. Figure taken from [RKAJ08], courtesy AK Peters, Ltd.

The measure D⇤ = D/⇤ can be used to assess the strength
of the cast. If the spread of the histogram is small, and lies
far away from the origin, the image is likely to be dominated
by strong reflectances rather than illumination.

6.1.2. Generalised Grey-World and White Patch
Assumptions

It was found that while grey-world algorithms work well on
some images, alternate solutions such as the white-patch al-
gorithm [Lan77] perform better on texture-rich images. The
white-patch algorithm assumes that the lightest pixels in an
image depict a surface with neutral reflectance, so that its
colour represents the illuminant.

Both the grey-world and white patch algorithms are spe-

cial instances of the Minkowski norm [FT04]:

Lp =

� �
f p(x)dx�

dx

⇥1/p
= ke (44)

where f (x) denotes the image at pixel x. The average of
the image is computed for p = 1, thereby implementing the
grey-world assumption. The maximum value of the image
is computed by substituting p = �, which represents the
white-patch algorithm.

A further generalised assumption can be made about im-
ages, which is that the average difference between two pixels
evaluates to grey. This is known as the grey-edge assump-

c� The Eurographics Association 2010.
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Statistical Decorrelation
Tania Pouli, Douglas W. Cunningham and Erik Reinhard / Image Statistics and their Applications in Computer Graphics

Figure 20: The top-left image is decomposed into the L
channel of the L�⇥ color space, as well as L+� and L+⇥
channels in the bottom-left and bottom-right images. Figure
from [RKAJ08], courtesy AK Peters, Ltd.
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while the inverse transform is given by:
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For 2000 random samples drawn from each of the images
shown in Figure 18, their distribution is plotted in Figure 19.
The point clouds form more or less diagonal lines in RGB
space when pairs of channels are plotted against each other,
showing that the three color channels in RGB space are al-
most completely correlated for these images. This is not the
case for the same pixels plotted in L�⇥ space.

The colour opponency of the L�⇥ space is demonstrated
in Figure 20, where the image is decomposed into its sepa-
rate channels. The image representing the � channel has the
⇥ channel reset to 0 and vice versa. We have retained the lu-
minance variation here for the purpose of visualization. The
image showing the luminance channel only was created by
setting both the � and ⇥ channels to zero.

The fact that natural images can be transformed to a
decorrelated colour space, which coincides with a colour de-
composition occurring in the human visual system, points to
a beautiful adaptation of human vision to its natural input.

It also points to several applications that are possible due
to the fact that opponent spaces are decorrelated. In particu-
lar, we highlight colour transfer, an algorithm that attempts
to transfer the look and feel of one image to another on the
basis of its colour content. Due to the three-dimensional na-
ture of colour spaces, this is in the general sense a compli-
cated three-dimensional problem. However, by converting to
a colour opponent space, the data in each channel will be
decorrelated from the other channels. As a first example, the
histogram projection onto the a and b axes as outlined in
Section 6.1.1 yields meaningful results as the CIELAB space
used here is an example of a colour opponent space.

6.2.1. Colour Transfer

Perhaps one of the most direct applications of the use of
decorrelated colour spaces is colour transfer between im-
ages. The aim is to transfer some statistical properties of one
image to another. To make this process straightforward, im-
ages can be converted to a decorrelated colour space, such
as the L�⇥ space proposed by Ruderman [RCC98]. In this
space, the means and standard deviations of all the pixels can
be computed separately in each of the three axis. Doing this
for both a source and a target image yields a set of factors
and terms that can be used to shift and scale the pixel data
in one image to match the means and standard deviations of
the other image [RAGS01]. An example of this procedure
is shown in Figure 21. Applications of colour transfer, aside
from producing aesthetically pleasing images, include cre-
ating night-time images from day-time images, as well as
augmented reality applications, where colour transfer pro-
vides an inexpensive way to make rendered objects fit into a
captured environment.

Although the L�⇥ space is on average decorrelated, in-
dividual images may deviate arbitrarily from this ideal. As
such, many images may still show significant correlations

c� The Eurographics Association 2010.

Lαβ color space

decorrelated - values 
of pixels in one 
channel do not 
predict the values in 
another

L - luminance

α,β - opponent 
channels
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Histogram Matching

Source Target Result

a
b
L

Source Target Result

Reminder
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Color Transfer

Color transfer between images 
(Reinhard et al.2001) 
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Histogram Reshaping 
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Histogram Reshaping
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Histogram Reshaping

Friday, 8 February 13



Conclusions

Friday, 8 February 13



Statistics

There are many ways to transform images, 
after which we can compute statistics

When we transform images according to how 
we think the human visual system operates, we 
end up with highly kurtotic and sometimes 
independent representations

Sparse coding is good for human vision, and 
probably good for solving engineering problems
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Applications

Many applications already known

Object detection

Compression

Deblurring

Inpainting

Color transfer

etc.
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Applications

Hopefully, as our knowledge of our 
environment increases, there will be many 
more to come

Graphics, computer vision and image 
processing are prime areas of research that we 
think may benefit from natural image statistics
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Questions?
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