Projective Geometry, Duality and Precision of Computation in Computer Graphics, Visualization and Games

Tutorial

Vaclav Skala

University of West Bohemia, Plzen, Czech Republic VSB-Technical University, Ostrava, Czech Republic http://www.VaclavSkala.eu

Eurographics 2013 Plzen (Pilsen) City

Plzen is an old city [first records of Plzen castle 976] city of culture, industry, and brewery.

City, where today's beer fermentation process was invented that is why today's beers are called Pilsner - world wide

Eurographics 2013 Ostrava City

Ostrava is

an industrial city of coal mining & iron melting

• 3rd largest city

University of West Bohemia 17530 students + 987 PhD students

Computer Science and Engineering Mathematics (+ Geomatics)

Physics Cybernetics Mechanics (Computational)

- Over 50% of income from research and application projects
- New research center EU project investment 64 mil. EUR
- 2nd in the ranking of Czech technical / informatics faculties 2009, 2012

An overview

- Precision and robustness
- Euclidean space and projective extension
- Principle of duality and its applications
- Geometric computation in the projective space
- Intersection of two planes in E3 with additional constrains
- Barycentric coordinates and intersections
- Interpolation and intersection algorithms
- Implementation aspects and GPU
- Conclusion and summary

Numerical systems

- Binary system is used nearly exclusively
- Octal & hexadecimal representation is used
- If we would be direct descendants of tetrapods –
 we would have a great advantage "simple counting in
 hexadecimal system"

	Name	Base	Digits	E min	E max	
BINARY						
B 16	Half	2	10+1	-14	15	
B 32	Single	2	23+1	-126	127	
B 64	Double	2	52+1	-1022	1023	
B 128	Quad	2	112+1	-16382	16383	
DECIMAL						
D 32		10	7	-95	96	
D 64		10	16	-383	384	
D 128		10	34	-6143	6144	

ırtesy Clive "Max" Maxfield and Alvin Brown

tetrapods had eight fingers on each hand

Mathematically perfect algorithms fail due to instability

Main issues

- stability, robustness of algorithms
- acceptable speed
- linear speedup results depends on HW, CPU parameters!

Numerical stability

- limited precision of float / double
- tests A? B with floats

```
if A = B then ..... else .... ; if A = 0 then ..... else .... should be forbidden in programming languages
```

 division operation should be removed or postponed to the last moment if possible - "blue screens", system resets

Typical examples of instability

- intersection of 2 lines in E3
- point lies on a line in E2 or a plane in E3

$$Ax + By + C = 0$$
 or $Ax + By + Cz + D = 0$

 detection if a line intersects a polygon, touches a vertex or passes through

Typical problem

```
double x = -1; double p = ....;
while (x < +1)
{    if (x == p) Console.Out.WriteLine(" *** ")
        x += p;
}
/*    if p = 0.1 then no output, if p = 0.25 then expected output */</pre>
```

Delaunay triangulation & Voronoi diagram

Point inside of a circle given by three points – problems with meshing points in regular rectangular grid.

?? ROBUSTNESS ??

Vectors and Points in Geometry

Vectors - movable, no fixed position

 Points – no size, position fixed in the GIVEN coordinate system

Coordinate systems:

- Cartesian left / right handed right handed system is used
- Polar
- Spherical, Cylindrical
- and many others, e.g. Confocal Ellipsoidal Coordinates
 http://mathworld.wolfram.com/ConfocalEllipsoidalCoordinates.html

Courtesy of http://mathworld.wolfram.com/ConfocalEllipsoidalCoordinates.html

Floating point

- Not all numbers are represented correctly
- Logarithmic arithmetic
- Continuous fractions
- Interval arithmetic

$$\pi = \frac{4}{1 + \frac{1^2}{3 + \frac{2^2}{5 + \frac{3^2}{\dots}}}}$$

$$\pi = [3; 7,15,1,292,1,1,1,2,1,3,1...]$$

Numerically NOT valid identities due to limited precision

•
$$cos^2\alpha + cos^2\beta = 1$$

•
$$x^2 - y^2 = (x - y)(x + y)$$

$$x + y = [a + c, b + d]$$
 $x = [a, b]$
 $x - y = [a - d, b - c]$ $y = [c, d]$
 $x \times y = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]$
 $x / y = [min(a/c, a/d, b/c, b/d),$
 $max(a/c, a/d, b/c, b/d)]$ if $y \neq 0$

Statements like

if $\langle f|oat \rangle = \langle f|oat \rangle$ then or if $\langle f|oat \rangle \neq \langle f|oat \rangle$ then

should not be allowed in programming languages

Quadratic equation - more reliable results

$$at^2 + bt + c = 0$$

 $at^2 + bt + c = 0$ usually solved as

$$t_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

If $b^2 \gg 4ac$ then

$$q = -(b + sign(b)\sqrt{b^2 - 4ac})/2$$

$$t_1 = q/a$$

$$t_2 = {}^{\mathcal{C}}/a$$

The discriminant should be computed with a twice precision

Vieta's formula

$$t_1 + t_2 = -b/a$$

$$t_1t_2 = {}^{\mathcal{C}}/a$$

Function value computation

at
$$x = 77617$$
, $y = 33096$

$$f(x,y) = 333.75y^6 + x^2(11x^2y^2 - y^6 - 121y^4 - 2) + 5.5y^8 + x/(2y)$$

 $f = 6.33835 \ 10^{29}$ single precision

f = 1,1726039400532 double precision

f = 1,1726039400531786318588349045201838 extended precision

The correct result is "somewhere" in the interval of

[-0.82739605994682136814116509547981629**2005**,

-0,82739605994682136814116509547981629**1986**]

Exact solution

$$f(x,y) = -2 + \frac{x}{2y} = \frac{54767}{66192}$$

Summation is one of often used computations.

$$\sum_{i=1}^{10^3} 10^{-3} = 0.999990701675415$$

or

$$\sum_{i=1}^{10^4} 10^{-4} = 1.000053524971008$$

The result should be only one.

The correctness in summation is very important in power series computations.

!!!!ORDER of summation

$$\sum_{n=1}^{10^6} \frac{1}{n} = 14.357357 \qquad \sum_{n=10^6}^{1} \frac{1}{n} = 14.392651$$

Recursion

Towers of Hanoi

```
MOVE (A, C, n);

{ MOVE (A, B, n-1);

 MOVE (A, C, 1);

 MOVE (B, C, n-1)

} # MOVE (from, to, number) #
```

Ackermann function

$$A(m,n)$$
=\begin{cases} n+1 & if m = 0 \\ A(m-1,1) & if M > 0 \ and n = 0 \\ A(m-1,A(m,n-1)) & if m > 0 \ and N > 0 \end{cases}

The value of the function grows very fast as

$$A(4,4) = 2^{2^{2^{65536}}} = 2^{2^{10^{197296}}}$$

Numerical computations

$$Ax = b x = A^{-1}b$$

Hilbert's Matrix Inversion

$$H_{ij} = \frac{1}{i+j-1}$$

$$H_{ij}^{-1} = (-1)^{i+j} (i+j-1) \binom{n+i-1}{n-j} \binom{n+j-1}{n-i} \binom{i+j-2}{i-1}^2$$

Mathematical "forms"

There are several "forms":

Implicit F(x,y,z) = 0 or F(x) = 0 or F(x) = 0 (system of equations)

There is no orientation, e.g.

- if F(x) = 0 is a iso-curve there is no hint how to find another point of this curve, resp. a line segment approximating the curve => tracing algorithms
- if F(x) = 0 is a iso-surface there is no hint how to find another point of this surface => iso-surface extraction algorithms

Parametrical

$$x = x(u)$$

$$x = x(u)$$
 $x = x(u, v)$

Points of a curve are "ORDERED" according to a parameter u, resp. u, v

Explicit
$$z = f(x)$$
 $z = f(x, y)$ [actually 2 ½ D]

For the given value x, resp. x, y we get function value z

Implicit form

- Is used for separation for detection if a point is inside or outside, e.g. a half-plane or a circle etc.
- There is always a question how to compute x of F(x) = 0 as there are several solutions in general
- Complexity of computations × precision of computation

Compiler optimization is **DANGEROUS** in general - numerical precision

$$x^2 - y^2 = (x + y)(x - y)$$

$$\begin{vmatrix} A_{x} & A_{y} & A_{x}^{2} + A_{y}^{2} & 1 \\ B_{x} & B_{y} & B_{x}^{2} + B_{y}^{2} & 1 \\ B_{x} & B_{y} & B_{x}^{2} + B_{y}^{2} & 1 \\ B_{x} & B_{y} & B_{x}^{2} + B_{y}^{2} & 1 \end{vmatrix} = \begin{vmatrix} A_{x} - D_{x} & A_{y} - D_{y} & (A_{x}^{2} - D_{x}^{2}) + (A_{y}^{2} - D_{x}^{2}) \\ B_{x} - D_{x} & B_{y} - D_{y} & (B_{x}^{2} - D_{x}^{2}) + (B_{y}^{2} - D_{x}^{2}) \\ C_{x} - D_{x} & C_{y} - D_{y} & (C_{x}^{2} - D_{x}^{2}) + (C_{y}^{2} - D_{x}^{2}) \end{vmatrix} > 0$$

Projective Space

$$X = [X, Y]^T$$
 $X \in E^2$

$$\mathbf{x} = [x, y: w]^T$$
 $\mathbf{x} \in P^2$

Conversion:

$$X = [x/w, y/w]^T$$
 $w \neq 0$

If w = 0 then x represents "an ideal point" - a point in infinity, i.e. it is a directional vector.

The Euclidean space E^2 is represented as a plane w = 1.

Equivalent "mathematical" notation often used:

$$\mathbf{x} = [w: x, y]^T$$

generally for
$$E^n x = [x_0: x_1, ..., x_n]^T$$

i.e. homogeneous coordinate is the first

Points and vectors

Vectors are "freely movable" – not having a fixed position

$$\mathbf{a}_1 = [x_1, y_1: 0]^T$$

 Points are not "freely movable" – they are fixed to an origin of the current coordinate system

$$\mathbf{x}_1 = [x_1, y_1: w_1]^T$$
 and $\mathbf{x}_2 = [x_2, y_2: w_2]^T$

usually in textbooks $w_1 = w_2 = 1$

A vector $A = X_2 - X_1$ in the Euclidean coordinate system - **CORRECT**

Horrible "construction" DO NOT USE IT - IT IS TOTALLY WRONG

$$\mathbf{a} = \mathbf{x}_2 - \mathbf{x}_1 = [\mathbf{x}_2 - \mathbf{x}_1, \mathbf{y}_2 - \mathbf{y}_1 : \mathbf{w}_2 - \mathbf{w}_1]^T = [\mathbf{x}_2 - \mathbf{x}_1, \mathbf{y}_2 - \mathbf{y}_1 : 1 - 1]^T$$

= $[\mathbf{x}_2 - \mathbf{x}_1, \mathbf{y}_2 - \mathbf{y}_1 : 0]^T$

This was presented as "How a vector" is constructed in the projective space P^k in a textbook!! WRONG, WRONG

This construction has been found in SW as well!!

Points and vectors

A Euclidean vector given by two points in the homogeneous coordinates

$$\mathbf{a} = \mathbf{x}_2 - \mathbf{x}_1 = [w_1 x_2 - w_2 x_1, w_1 y_2 - w_2 y_1; w_1 w_2]^T$$

This is the **CORRECT SOLUTION**, but what is the interpretation?

A "difference" of coordinates of two points is a vector in the mathematical meaning and $w_1 w_2$ is a "scaling" factor actually

Actually the division operation is postponed and not performed immediately. A vector in projective notation

$$\mathbf{a} = \mathbf{x}_2 - \mathbf{x}_1 = [w_1 x_2 - w_2 x_1, w_1 y_2 - w_2 y_1 : w_1 w_2]^T$$

$$\triangleq \left[\frac{w_1 x_2 - w_2 x_1}{w_1 w_2}, \frac{w_1 y_2 - w_2 y_1}{w_1 w_2} : 0 \right]^T$$

where: ≜ means projectively equivalent

A Euclidean vector in the projective representation (if the vector length matters)

$$\mathbf{a} = \mathbf{x}_2 - \mathbf{x}_1 = [w_1 x_2 - w_2 x_1, w_1 y_2 - w_2 y_1 : w_1 w_2]^T$$

$$\triangleq \left[\frac{w_1 x_2 - w_2 x_1}{w_1 w_2}, \frac{w_1 y_2 - w_2 y_1}{w_1 w_2} : 0 \right]^T$$

A vector in the projective space is given by coordinates x, y, w as

$$\mathbf{a} = \mathbf{x}_2 - \mathbf{x}_1 = [x_2 - x_1, y_2 - y_1, w_2 - w_1]^T$$

[=>Linear interpolation with a non-linear monotonic interpolation]

We have to strictly distinguish meaning of one *dimensional array* [vector], i.e. if we are working with:

- points, i.e. a data structure represent point coordinates, or
- vectors, i.e. a data structure represent a vector in the mathematical meaning

VECTORS x POINTS

W

w=1

 P^2

 E^2

С

c=1

 $D(P^2)$

D(p)

 $D(E^2)$

(b)

 $D(\rho)$

В

Duality

For simplicity, let us consider a line p defined as:

$$aX + bY + c = 0$$

We can multiply it by $w \neq 0$ and we get:

$$awX + bwY + cw = 0$$

As
$$x = wX$$
 and $y = wY$

$$ax + by + cw = 0$$
 i.e. $p^{T}x = 0$

$$\mathbf{p}^T \mathbf{x} = 0$$

(a)

$$p = [a, b: c]^T$$
 $x = [x, y: w]^T = [wX, wY: w]^T$

A line $p \in E^2$ is actually a plane in the projective space P^2 (point $x = [0,0:0]^T$ excluded)

Duality

From the mathematical notation

$$\boldsymbol{p}^T\boldsymbol{x}=0$$

we cannot distinguish whether p is a line and x is a point or vice versa in the case of P^2 . It means that

- a point and a line are dual in the case of P^2 , and
- a point and a plane are dual in the case of P^3 .

The principle of duality in P^2 states that:

Any theorem in E² remains true when we interchange the words "point" and "line", "lie on" and "pass through", "join" and "intersection", "collinear" and "concurrent" and so on.

Similarly for the E^3 case.

Once the theorem has been established, the dual theorem is obtained as described above.

This helps a lot to solve some geometrical problems.

Examples of dual objects and operators

	Primitive	Dual primitive	
P^2	Point	Line	
	Line	Point	
P^3	Point	Plane	
	Plane	Point	

Operator	Dual operator
Join	Intersect
Intersect	Join

Computational sequence for a problem is the same for a dual problem.

Intersection of two lines

Let two lines p_1 and p_2 are given by

$$p_1 = [a_1, b_1 : c_1]^T$$
 and $p_2 = [a_2, b_2 : c_2]^T$

$$p_2 = [a_2, b_2 : c_2]^T$$

We have to solve a system of linear equations Ax = b

$$\begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} q_1 \\ q_2 \end{bmatrix}$$

and

$$\begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = \begin{bmatrix} -c_1 \\ -c_2 \end{bmatrix} *$$

Then well known formula is used

$$x = \frac{Det_x}{Det} = \frac{det \begin{bmatrix} q_1 & b_1 \\ q_2 & b_2 \end{bmatrix}}{det \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}}$$

$$y = \frac{Det_x}{Det} = \frac{det \begin{bmatrix} a_1 & q_1 \\ a_2 & q_2 \end{bmatrix}}{det \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}}$$

But what if *Det* is small?

Usually a sequence like **if** $abs(det(..)) \le eps$ **then** is used. What is eps?

Note * usually a line is in its explicit form as ax + by = g instead of ax + by + c = 0, i.e. the implicit form

Definition

The cross product of the two vectors

$$x_1 = [x_1, y_1: w_1]^T$$
 and $x_2 = [x_2, y_2: w_2]^T$

is defined as:

$$\mathbf{x}_1 \times \mathbf{x}_2 = det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_1 & y_1 & w_1 \\ x_2 & y_2 & w_2 \end{bmatrix}$$

where: $i = [1,0:0]^T$ $j = [0,1:0]^T$ $k = [0,0:1]^T$

or as

$$\boldsymbol{x}_1 \times \boldsymbol{x}_2 = \begin{bmatrix} 0 & -w_1 & y_1 \\ w_1 & 0 & -x_1 \\ -y_1 & x_1 & 0 \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \\ w_2 \end{bmatrix} = \boldsymbol{T}\boldsymbol{x}_2$$

Please, note that homogeneous coordinates are used.

Theorem

Let two points x_1 and x_2 be given in the projective space. Then the coefficients of the p line, which is defined by those two points, are determined as the cross product of their homogeneous coordinates

$$\boldsymbol{p} = \boldsymbol{x}_1 \times \boldsymbol{x}_2 = [a, b : c]^T$$

Proof

Let the line P^2 be defined in homogeneous coordinates as

$$ax + by + cw = 0$$

We are actually looking for a solution to the following equations:

$$\boldsymbol{p}^T \boldsymbol{x}_1 = 0 \qquad \qquad \boldsymbol{p}^T \boldsymbol{x}_2 = 0$$

where: $\boldsymbol{p} = [a, b : c]^T$

Note that *c* represents a "distance" from the origin of the coordinate system.

It means that any point x that lies on the p line must satisfy both the equation above and the equation $p^Tx=0$ in other words the p vector is defined as

$$\boldsymbol{p} = \boldsymbol{x}_1 \times \boldsymbol{x}_2 = det \begin{bmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ x_1 & y_1 & w_1 \\ x_2 & y_2 & w_2 \end{bmatrix}$$

We can write

$$(x_1 \times x_2)^T x = 0$$
 i.e. $det \begin{bmatrix} x & y & w \\ x_1 & y_1 & w_1 \\ x_2 & y_2 & w_2 \end{bmatrix} = 0$

Note that the Cross product and the Dot product is an instruction in Cg/HLSL on GPU.

Evaluating the determinant
$$det\begin{bmatrix} a & b & c \\ x_1 & y_1 & w_1 \\ x_2 & y_2 & w_2 \end{bmatrix} = 0$$

we get the line coefficients of the line p as:

$$a = det \begin{bmatrix} y_1 & w_1 \\ y_2 & w_2 \end{bmatrix}$$

$$a = det \begin{bmatrix} y_1 & w_1 \\ y_2 & w_2 \end{bmatrix} \qquad b = -det \begin{bmatrix} x_1 & w_1 \\ x_2 & w_2 \end{bmatrix} \qquad c = det \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix}$$

$$c = det \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix}$$

Note:

1.A line ax + by + c = 0 is a one parametric set of coefficients

$$\mathbf{p} = [a, b : c]^T$$

From two values x_1 and x_2 we have to compute 3 values, coefficients a , b and c

2. For w = 1 we get the standard cross product formula and the cross product defines the p line, i.e. $p = x_1 \times x_2$ where:

$$\boldsymbol{p} = [a, b : c]^T$$

We have seen that computation of

- an intersection of two lines is given as Ax = b
- a line given by two points is given as Ax = 0

Different scheme BUT

Those problems are DUAL.

Why algorithms are different??

Cross product is equivalent to a solution of a linear system of equations!

No division operations!

DUALITY APPLICATION

In the projective space P^2 points and lines are dual. Due to duality we can directly intersection of two lines as

$$\mathbf{x} = \mathbf{p}_1 \times \mathbf{p}_2 = det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{bmatrix} = [x, y: w]^T$$

If the lines are parallel or close to parallel, the homogeneous coordinate $w \to 0$ and users have to take a decision – so there is no sequence in the code like *if* $abs(\det(...)) \le eps$ *then* ...in the procedure.

Generally computation can continue even if $w \to 0$ if projective space is used.

DISTANCE

Geometry is strongly connected with distances and their measurement, geometry education is strictly sticked to the Euclidean geometry, where the distance is measured as

$$d=\sqrt{(\Delta x)^2+(\Delta y)^2}$$
 , resp. $d=\sqrt{(\Delta x)^2+(\Delta y)^2+(\Delta z)^2}$.

This concept is convenient for a solution of basic geometric problems, but in many cases it results into quite complicated formula and there is a severe question of stability and robustness in many cases.

The main objection against the projective representation is that there is no metric.

The distance of two points can be easily computed as

$$dist = \sqrt{\xi^2 + \eta^2}/(w_1w_2)$$

where: $\xi = w_1 x_2 - w_2 x_1$ $\eta = w_1 y_2 - w_2 y_1$

$$\eta = w_1 y_2 - w_2 y_1$$

Also a distance of a point x_0 from a line in E^2 can be computed as

$$dist = \frac{a^T x_0}{w_0 \sqrt{a^2 + b^2}}$$

where: $x_0 = [x_0, y_0; w_0]^T$ $a = [a, b; c]^T$

$$\mathbf{a} = [a, b: c]^T$$

The extension to E^3/P^3 is simple and the distance of a point x_0 from a plane in E³ can be computed as

$$dist = \frac{a^{T} x_0}{w_0 \sqrt{a^2 + b^2 + c^2}}$$

where: $x_0 = [x_0, y_0, z_0; w_0]^T$ $a = [a, b, c; d]^T$.

$$\boldsymbol{a} = [a, b, c: d]^T.$$

In many cases we do not need actually a *distance*, e.g. for a decision which object is closer, and *distance*² can be used instead, i.e. for the E² case

$$dist^{2} = \frac{(\boldsymbol{a}^{T}\boldsymbol{x}_{0})^{2}}{w_{0}^{2}(a^{2} + b^{2})} = \frac{(\boldsymbol{a}^{T}\boldsymbol{x}_{0})^{2}}{w_{0}^{2}\boldsymbol{n}^{T}\boldsymbol{n}}$$

where: $\mathbf{a} = [a, b : c]^T = [\mathbf{n} : c]^T$ and the normal vector \mathbf{n} is not normalized

If we are comparing distances of points from the given line p we can use "pseudo-distance" for comparisons

$$(pseudo_dist)^2 = \frac{(\boldsymbol{a}^T \boldsymbol{x}_0)^2}{{w_0}^2}$$

Similarly for a plane ρ in the case of E^3

$$dist^2 = \frac{(\boldsymbol{a}^T \boldsymbol{x}_0)^2}{w_0^2 (a^2 + b^2 + c^2)} = \frac{(\boldsymbol{a}^T \boldsymbol{x}_0)^2}{w_0^2 \, \boldsymbol{n}^T \boldsymbol{n}}$$
 and $(pseudo_dist)^2 = \frac{(\boldsymbol{a}^T \boldsymbol{x}_0)^2}{w_0^2}$

where: $\boldsymbol{a} = [a, b, c : d]^T = [\boldsymbol{n} : d]^T$

Computation in Projective Space

- Cross product definition
- A plane ho is determined as a cross product of three given points

Due to the duality

 An intersection point x of three planes is determined as a cross product of three given planes.

$$x_1 \times x_2 \times x_3 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} & \mathbf{l} \\ x_1 & y_1 & z_1 & w_1 \\ x_2 & y_2 & z_2 & w_2 \\ x_3 & y_3 & z_3 & w_3 \end{vmatrix}$$

$$| \boldsymbol{\rho}_1 \times \boldsymbol{\rho}_2 \times \boldsymbol{\rho}_3 = \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} & \boldsymbol{l} \\ a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \end{vmatrix}$$

Computation of generalized cross product is equivalent to a solution of a linear system of equations => no division operation!

Geometric transformations with points

(note $X = {}^{\chi}/_{W}$, $Y = {}^{y}/_{W}$, $W \neq 0$):

Translation by a vector $(A,B) \triangleq [a,b;c]^T$, i.e. A = a/c, B = b/c, $c \neq 0$:

In the Euclidean space:

$$x' = Tx$$

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & A \\ 0 & 1 & B \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} x + Aw \\ y + Bw \\ w \end{bmatrix} \triangleq \begin{bmatrix} x/w + A \\ y/w + B \\ 1 \end{bmatrix} = \begin{bmatrix} X + A \\ Y + A \\ 1 \end{bmatrix}$$

In the projective space: x' = T'x

$$x' = T'x$$

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} c & 0 & a \\ 0 & c & b \\ 0 & 0 & c \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} cx + aw \\ cy + bw \\ cw \end{bmatrix} \triangleq \begin{bmatrix} (cx + aw)/(cw) \\ (cy + bw)/(cw) \\ 1 \end{bmatrix} = \begin{bmatrix} x/w + a/c \\ y/w + b/c \\ 1 \end{bmatrix} = \begin{bmatrix} X + A \\ Y + B \\ 1 \end{bmatrix}$$

and $det(T') = c^3$. For c = 1 we get a standard formula

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & A \\ 0 & 1 & B \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotation by an angle $(cos\varphi, sin\varphi) = \left(\frac{a}{c}, \frac{b}{c}\right) \triangleq [a, b: c]^T$

In the Euclidean space: x' = Rx

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} \cos\varphi & -\sin\varphi & 0 \\ \sin\varphi & \cos\varphi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix} \triangleq \begin{bmatrix} \cos\varphi & -\sin\varphi & 0 \\ \sin\varphi & \cos\varphi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

In the projective space: x' = R'x

$$x' = R'x$$

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & -b & 0 \\ b & a & 0 \\ 0 & 0 & c \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} ax - by \\ bx + ay \\ cw \end{bmatrix} \triangleq$$

$$\begin{bmatrix} (ax - by)/(cw) \\ (bx + ay)/(cw) \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{x}{w} \frac{a}{c} - \frac{y}{w} \frac{b}{c} \\ \frac{x}{w} \frac{b}{c} + \frac{y}{w} \frac{a}{c} \end{bmatrix} = \begin{bmatrix} X\cos\varphi - Y\sin\varphi \\ X\sin\varphi + Y\cos\varphi \\ 1 \end{bmatrix}$$

as $c^2 = (a^2 + b^2)$ by definition, $\det(\mathbf{R}') = (a^2 + b^2)c = c^3$

Scaling by a factor
$$(S_x, S_y) = (\frac{s_x}{w_s}, \frac{s_y}{w_s}) \triangleq [s_x, s_y; w_s]^T$$

$$\mathbf{x}' = \mathbf{S}\mathbf{x} \qquad \begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{w}' \end{bmatrix} = \begin{bmatrix} S_{x} & 0 & 0 \\ 0 & S_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{w} \end{bmatrix}$$

$$\mathbf{x}' = \mathbf{S}'\mathbf{x} \qquad \begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{w}' \end{bmatrix} = \begin{bmatrix} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & w_{s} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{w} \end{bmatrix}$$

$$\det(\mathbf{S}') = s_{x} s_{y} w_{s}$$

It is necessary to note that the determinant of a transformation matrix Q, i.e. matrices T', R', S', is $\det(Q) \neq 1$ in general, but as the formulation is in the projective space, there is no need to "normalize" transformations to $\det(Q) = 1$ even for rotation.

It can be seen that if the parameters of a geometric transformation are given in the homogeneous coordinates, no division operation is needed at all.

Transformation of lines and planes

In graphical applications position of points are changed by an interaction, i.e. x' = Tx.

The question is how coefficients of a line, resp. a plane are changed without need to recompute them from the definition.

It can be proved that

$$\mathbf{p}' = (\mathbf{T}\mathbf{x}_1) \times (\mathbf{T}\mathbf{x}_2) = \det(\mathbf{T})(\mathbf{T}^{-1})^T \mathbf{p} \triangleq (\mathbf{T}^{-1})^T \mathbf{p}$$

or

$$\boldsymbol{\rho}' = (\boldsymbol{T}\boldsymbol{x}_1) \times (\boldsymbol{T}\boldsymbol{x}_2) \times (\boldsymbol{T}\boldsymbol{x}_3) = det(\boldsymbol{T})(\boldsymbol{T}^{-1})^T \boldsymbol{\rho} \triangleq (\boldsymbol{T}^{-1})^T \boldsymbol{\rho}$$

Transformation of lines and planes

As the computation is made in the projective space we can write

$$p' = (T^{-1})^T p = [a', b': c']^T$$
 for lines in E^2

or

$$\boldsymbol{\rho}' = (\mathbf{T}^{-1})^T \boldsymbol{\rho} = [a', b', c': d']^T$$
 for planes in E^3

THIS SIMPLIFIES COMPUTATIONS

Transformation matrices for lines, resp. for planes are **DIFFERENT** from transformations for points! Note that a normal vector of a line is actually a co-vector, i.e. an oriented "surface".

Transformation of lines and planes

Transformation about a general axis in E³ / P³

$$x(t) = x_A + st$$

Usually used transformation (T is translation):

$$\boldsymbol{Q} = \boldsymbol{T}^{-1} \boldsymbol{R}_{zx}^{-1} \boldsymbol{R}_{yz}^{-1} \boldsymbol{R}(\varphi) \boldsymbol{R}_{zx} \boldsymbol{R}_{xy} \boldsymbol{T}$$

$$\mathbf{R}_{yz} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{c}{\sqrt{b^2 + c^2}} & \frac{-b}{\sqrt{b^2 + c^2}} & 0 \\ 0 & \frac{b}{\sqrt{b^2 + c^2}} & \frac{c}{\sqrt{b^2 + c^2}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $s=[a,b,c]^T$ is an axis directional vector. This is unstable if $\sqrt{b^2+c^2}\to 0$ and not precise if $b^2\gg c^2$ or vice versa.

That is generally computationally complex and unstable as a user has to select which axis is to be used for a rotation

Transformation of lines and planes

Transformation about an axis n in the Euclidean space E^3

$$X = X \cos \varphi + (1 - \cos \varphi)(n^T X) \cdot n + (n \times X) \sin \varphi$$
$$Q = I \cos \varphi + (1 - \cos \varphi)(n \otimes n) + W \sin \varphi$$

where: $n \otimes n = n \cdot n^T$ is a matrix. In the Euclidean space E^3 the vector n has to be normalized

$$\mathbf{W} = \begin{bmatrix} 0 & -n_z & n_y \\ n_z & 0 & -n_x \\ -n_y & w_x & 0 \end{bmatrix} \text{ in our case}$$

Projection

Standard projection

$$\begin{bmatrix} x_I \\ y_I \\ w_I \end{bmatrix} = \boldsymbol{T}_{projection} \begin{bmatrix} x_I \\ y_I \\ 1 \end{bmatrix}$$

How to determine z_I coordinate?

$$x_I = (1 - \lambda)x_P + \lambda x_O$$

$$y_I = (1 - \lambda)y_P + \lambda y_Q$$

$$\frac{1}{z_I} = (1 - \lambda) \frac{1}{z_P} + \lambda \frac{1}{z_Q}$$

⇒ "Reverse" depth computation, e.g. for correct intensity computation if perspective projection is used.

Computation in Projective Space

Linear parametrization:

$$X(t) = X_0 + (X_1 - X_0) t \quad t \in (-\infty, \infty)$$

Non-linear monotonous parametrization:

$$\mathbf{x}(t) = \mathbf{x}_0 + (\mathbf{x}_1 - \mathbf{x}_0) t \qquad t \in (-\infty, \infty)$$

$$x(t) = x_0 + (x_1 - x_0) t$$
 $y(t) = y_0 + (y_1 - y_0) t$

$$z(t) = z_0 + (z_1 - z_0) t$$
 $w(t) = w_0 + (w_1 - w_0) t$

- it means that we can interpolate using homogeneous coordinates without a need of "normalization" to E^k!!
- Homogeneous coordinate $w \ge 0$

In many algorithms, we need "monotonous" parameterization, only

Computation in Projective Space

Spherical interpolation

$$slerp(X_0, X_1, t) = \frac{\sin[(1 - t)\Omega]}{\sin \Omega} X_0 + \frac{\sin[t\Omega]}{\sin \Omega} X_1$$

Instability occurs if $\Omega \to k\pi$.

Mathematically formula is correct; in practice the **code is generally incorrect**! $\left[\begin{array}{c} 0 \\ 0 \end{array}\right]$

$$slerp_p(X_0, X_1, t) = \begin{bmatrix} \sin[(1-t)\Omega]X_0 + \sin[t\Omega]X_1 \\ \sin \Omega \end{bmatrix}$$
$$\equiv [\sin[(1-t)\Omega]X_0 + \sin[t\Omega]X_1 : \sin \Omega]^T$$

Homogeneous coordinates => better numerical stability &

division operation can be postponed

Courtesy of wikipedia

projective scalar use

Homogeneous coordinate

Computation in Projective Space

$$x(t) = \operatorname{slerp}(x_0, x_1, t) = \frac{\sin[(1 - t)\Omega]}{\sin \Omega} x_0 + \frac{\sin[t\Omega]}{\sin \Omega} x_1$$
$$\triangleq \left[\sin[(1 - t)\Omega] x_0 + \sin[t\Omega] x_1 : \sin \Omega\right]^{\mathrm{T}}$$

What is a result in the Euclidean space of a spherical interpolation with non-linear parameterization, i.e. $w_i \neq 1$?

$$x(t) = \frac{\sin[(1-t)\Omega]}{\sin\Omega} x_0 + \frac{\sin[t\Omega]}{\sin\Omega} x_1 \qquad w(t) = \frac{\sin[(1-t)\Omega]}{\sin\Omega} w_0 + \frac{\sin[t\Omega]}{\sin\Omega} w_1$$

$$X(t) = \frac{\frac{\sin[(1-t)\Omega]}{\sin\Omega} x_0 + \frac{\sin[t\Omega]}{\sin\Omega} x_1}{\frac{\sin[(1-t)\Omega]}{\sin\Omega} w_0 + \frac{\sin[t\Omega]}{\sin\Omega} x_1} = \frac{\sin[(1-t)\Omega] x_0 + \sin[t\Omega] x_1}{\sin[(1-t)\Omega] w_0 + \sin[t\Omega] w_1}$$

If $w_i \neq 1$

If represented as "projective scalar" value

$$x(t) = [\sin[(1-t)\Omega] x_0 + \sin[t\Omega] x_1 : \sin[(1-t)\Omega] w_0 + \sin[t\Omega] w_1]^T$$

=> Better numerical stability

Influence of homogeneous values $w_i \neq 1$ & $w_i \neq 0$ (Fun1 - $w_i = 1$)

Can be used for:

- relative position comparison
- interpolation if a "linear" parameterization is required $w_i = 1$

Computation in Projective Space

Intersection line – plane (Cyrus-Beck clipping algorithm)

$$x(t) = x_0 + (x_1 - x_0) t = x_0 + s t$$

 $x(t) = x_0 + (x_1 - x_0) t = x_0 + s t$ Computation in projective space!

$$s = x_1 - x_0 = [x_1 - x_0, y_1 - y_0, z_1 - z_0 : w_1 - w_0]^T$$
 $t \in (-\infty, \infty)$

$$a^{T}x = 0$$
 $ax + by + cz + dw = 0$ $a = [a, b, c: d]^{T}$

$$\mathbf{a} = [a, b, c: d]^T$$

Euclidean solution:

$$t = -\frac{\boldsymbol{a}^T \boldsymbol{x}_0}{\boldsymbol{a}^T \boldsymbol{s}}$$

Projective solution:

$$au = -a^T x_0$$
 and $au_w = a^T s$ $t = [au, au_w]^T$
if $au_w < 0$ then $t \coloneqq -t$

Test: **if** $t < t_{min}$ **then** ...modification:

if
$$\tau * \tau_{min_W} > \tau_w * \tau_{min}$$
 then

- An intersection of a plane with a line in E² / E³ can be computed efficiently, no division operation
- Comparison operations must be modified!!!
- => Cyrus-Beck line clipping algorithm 10-25% faster

Line Clipping – convex polygon

```
procedure CLIP_Line ( x_A , x_B );
/* \mathbf{x}_A = [X_A, Y_A: W_A]^T \mathbf{x}_B = [X_B, Y_B: W_B]^T */
begin /* p = [a,b:c]^T given - NO STEP 1 */
\{1\} p := x_A \times x_B; /* p: ax+by+c = 0 */
{2} for k:=0 to N-1 do /*x_k = [x_k, y_k, w_k]^{T*}/
{3} if p^T x_k \ge 0 then c_k := 1 else c_k := 0;
\{4\} if c = [0...0]^T or c = [1...1]^T then EXIT;
\{5\}i:=TAB1[c]; j:=TAB2[c];
\{6\} \mathbf{x}_A := \mathbf{p} \times \mathbf{e}_i ; \quad \mathbf{x}_B := \mathbf{p} \times \mathbf{e}_i ;
\{7\} DRAW (x_A; x_B) * e_i - i-th edge */
end /* CLIP_Line */
/* c identifies an edge intersected */
                 TOO COMPLEX?
```

Line clipping algorithms in E²

- Cohen-Sutherland
- Liang-Barsky
- Hodgman
- Skala modification of Clip_L for line segments

NO SIMPLE, ROBUST and FAST

• Skala,V.: A new approach to line and line segment clipping in homogeneous coordinates, The Visual Computer, SpringerVol.21, No.11, pp.905-914, 2005

For a rectangular normalized window

$$\mathbf{x}_{A} := \mathbf{p} \times \mathbf{e}_{i}$$

For the edge y = -1, i.e. y + 1 = 0

$$\mathbf{x}_{A} = [x_{A}, y_{A}: w_{A}]^{T} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a & b & c \\ 0 & 1 & 1 \end{vmatrix} = [b - c, -a: a]$$

$$\triangleq \left[\frac{b - c}{a}, \frac{-a}{a}: 1\right]^{T} = \left[\frac{b - c}{a}, -1: 1\right]^{T}$$

Actually expression for y_A , resp. for x_A is given by the window edge.

No multiplication or division operations

A simple modification if a line is given (in the Euclidean or projective space) as $x(t) = x_A + st$

$$x(t) = x_A + st$$

Simple modification for non-convex polygon but it requires intersections sorting => O(M lgM)

```
/* Additional code for Line Segment clipping colored */
function CODE (x); /* Cohen Sutherland window coding */
begin c := [0000]; /* land / lor - bitwise operations and / or */
     if x < x_{min} then c:=[1000] else if x > x_{max} then c:= [0100];
     if y < y_{min} then c:=c lor [1001] else if y > y_{max} then c:=c lor [0010];
     CODE := c
end /*CODE */;
procedure Clip_LineSegment (\mathbf{x}_A, \mathbf{x}_B); /* short x long line segments */
begin c_A := CODE(x_A); c_B := CODE(x_B);
    if (c_A lor c_B) = 0 then { output (x_A; x_B); EXIT } /* inside */
                                                                          /* outside */
    if (c_A \text{ land } c_B) \neq 0 \text{ then EXIT};
    p := x_A \times x_B; /* ax+by+c = 0; p = [a,b:c]^T */
    for k:=0 to 3 do /* \mathbf{x}_k = [x_k, y_k; w_k]^T c=[ c<sub>3</sub>, c<sub>2</sub>, c<sub>1</sub>, c<sub>0</sub>]<sup>T</sup> */
         if \mathbf{p}^{\mathsf{T}}\mathbf{x}_{\mathsf{k}} \geq 0 then c_{\mathsf{k}} := 1 else c_{\mathsf{k}} := 0;
     if c = [0000]^T or c = [1111]^T then EXIT;
    i:= TAB1[c]; j:= TAB2[c];
    /* original code \mathbf{x}_A := \mathbf{p} \times \mathbf{e}_i; \mathbf{x}_B := \mathbf{p} \times \mathbf{e}_i; DRAW (\mathbf{x}_A; \mathbf{x}_B) */
```

```
/* additional code for Line Segment clipping */
     if c_A \neq 0 and c_B \neq 0
     then \{ \mathbf{x}_A := \mathbf{p} \times \mathbf{e}_i ; \mathbf{x}_B := \mathbf{p} \times \mathbf{e}_i \} /* \text{ two intersections }*/
     else /* only one intersection point */
                                                              C
                                                                      C_2
                                                                          C_1
                                                                              C_0
                                                                                  TAB1 TAB2
                                                                                               MASK
       if c_A = 0 then /* x_B is outside */
                                                              0
                                                                  0
                                                                      0
                                                                          0
                                                                                  None None
                                                                                               None
     { if c_B land MASK[c] \neq 0
                                                                  0
                                                                          0
                                                                                               0100
                                                              2
                                                                                               0100
               then x_B := p \times e_i
                                                              3
                                                                                               0010
               else x_B := p \times e_i
                                                              4
                                                                          0
                                                                                               0010
                                                              5
                                                                                   N/A
                                                                                         N/A
                                                                                               N/A
                                                                          0
                                                                  0
                                                              6
                                                                                               0100
                                                                                    0
                                                                  0
      else if c_B = 0 then /* x_A is outside */
                                                              7
                                                                  0
                                                                                               1000
          { if c_A land MASK[c] \neq 0
                                                              8
                                                                          0
                                                                                                1000
                                                              9
                                                                          0
                                                                                               0100
               then x_A := p \times e_i
                                                             10
                                                                               0
                                                                                   N/A
                                                                                         N/A
                                                                                               N/A
               else x_A := p \times e_i
                                                             11
                                                                                               0010
                                                                          0
                                                             12
                                                                               0
                                                                                               0010
                                                             13
                                                                          0
                                                                                               0100
                                                                                    0
     output (x<sub>A</sub>, x<sub>B</sub>)
                                                                                               0100
                                                             14
                                                                               0
end /* Clip_LineSegment */
                                                             15
                                                                                   None | None
                                                                                               None
```

Algorithm can be extended to convex polygon clipping & modified for parametric lines as well

For a convex n-sided polygon the table can be generated synthetically.

Computation in Projective Space - Barycentric coordinates Let us consider a triangle with vertices X_1 , X_2 , X_{31}

A position of any point $X \in E^2$ can be expressed as

$$a_1 X_1 + a_2 X_2 + a_3 X_3 = X$$
$$a_1 Y_1 + a_2 Y_2 + a_3 Y_3 = Y$$

Additional condition:

$$a_1 + a_2 + a_3 = 1$$

$$0 \le a_i \le 1 \qquad i = 1, \dots, 3$$

$$a_i = \frac{P_i}{P}$$

Linear system has to be solved

If points x_i are given as $x_i = [x_i, y_i, z_i: w_i]^T$ and $w_i \neq 1$ then x_i have to be "normalized" to $w_i = 1$, i.e. 4 * 3 = 12 division operations are used.

Computation in Projective Space

$$b_1X_1 + b_2X_2 + b_3X_3 + b_4X = 0$$

$$b_1Y_1 + b_2Y_2 + b_3Y_3 + b_4Y = 0$$

$$b_1 + b_2 + b_3 + b_4 = 1$$

$$b_i = -a_ib_4$$

$$b_4 \neq 0$$

$$i = 1, ..., 3$$

Rewriting

$$\begin{bmatrix} X_1 & X_2 & X_3 & X \\ Y_1 & Y_2 & Y_3 & Y \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} = \mathbf{0}$$

$$\begin{aligned} \boldsymbol{b} &= [b_1, b_2, b_3, b_4]^T \\ \boldsymbol{\xi} &= [X_1, X_2, X_3, X]^T \\ \boldsymbol{\eta} &= [Y_1, Y_2, Y_3, Y]^T \\ \boldsymbol{\omega} &= [1, 1, 1, 1]^T \end{aligned}$$

A solution of the linear system of equations (LSE) is equivalent to generalized cross product:

$$b = \xi \times \eta \times \omega$$

Computation in Projective Space

For $w_i \neq 0$ each column can be multiplied by the relevant w_i

$$\begin{bmatrix} w_1 X_1 & w_2 X_2 & w_3 X_3 & wX \\ w_1 Y_1 & w_2 Y_2 & w_3 Y_3 & wY \\ w_1 & w_2 & w_3 & w \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} = \mathbf{0} \qquad \begin{bmatrix} x_1 & x_2 & x_3 & x \\ y_1 & y_2 & y_3 & y \\ w_1 & w_2 & w_3 & w \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} = \mathbf{0}$$

$$\begin{bmatrix} x_1 & x_2 & x_3 & x \\ y_1 & y_2 & y_3 & y \\ w_1 & w_2 & w_3 & w \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} = \mathbf{0}$$

where again

$$\mathbf{b} = [b_1, b_2, b_3, b_4]^T$$
 $\mathbf{\xi} = [x_1, x_2, x_3, x]^T$ $\mathbf{\eta} = [y_1, y_2, y_3, y]^T$ $\mathbf{\omega} = [w_1, w_2, w_3, w]^T$
Barycentric coordinates (Euclidean):

 $0 \le (-b_1: w_2, w_3, w) \le 1$ $0 \le (-b_2: w_3, w_1, w) \le 1$ $0 \le (-b_3: w_1, w_2, w) \le 1$ => Tests - point in triangle, point in tetrahedron -

all in homogeneous coordinates

=> **new entities**: projective scalar, projective vector

(Skala, V.: Barycentric coordinates computation in homogeneous coordinates, Computers&Graphics, 2008)

Computation in Projective Space

Area of a triangle

Volume of a tetrahedron

$$P = \frac{1}{2} \mathbf{x}_1^T \cdot (\mathbf{x}_2 \times \mathbf{x}_3) / (w_1 w_2 w_3)$$

$$P = \frac{1}{2} \mathbf{x}_1^T \cdot (\mathbf{x}_2 \times \mathbf{x}_3) / (w_1 w_2 w_3) \qquad V = \frac{1}{6} \mathbf{x}_1^T \cdot (\mathbf{x}_2 \times \mathbf{x}_3 \times \mathbf{x}_4) / (w_1 w_2 w_3 w_4)$$

As the principle of duality is valid, one could ask: What is a "dual" value G to a computation of the area P if the triangle is given by three lines in the "normalized" form, e.g. \mathbf{a}_1^T . $(\mathbf{a}_2 \times \mathbf{a}_3)$ instead of three points?

$$G = \boldsymbol{a_1^T}. (\boldsymbol{a_2} \times \boldsymbol{a_3}) \triangleq \begin{vmatrix} \cos\alpha_1 & \cos\alpha_2 & \cos\alpha_3 \\ \sin\alpha_1 & \sin\alpha_2 & \sin\alpha_3 \\ d_1 & d_2 & d_3 \end{vmatrix} = \begin{vmatrix} 1 & \cos\alpha_2 & \cos\alpha_3 \\ 0 & \sin\alpha_2 & \sin\alpha_3 \\ 0 & 0 & d_3 \end{vmatrix} = d_3 \sin\alpha_2$$
$$= d_3. \, a/(2R) = P/R$$

It can be seen that $G = d_3 sin \alpha_2 = P/R$, where: α is the length of the line segment on a_3 and R is a radius of the circumscribing circle.

- => value G can be used as criterion for a quality triangular meshes.
 - Skala, V.: Geometric Computation, Duality and Projective Space, IW-LGK workshop proceedings, ISBN 978-3-86780-244-4, pp.105-111, Dresden University of Technology, 2011

Computation in Projective Space

Line in E³ as Two Plane Intersection

Standard formula in the Euclidean space

$$\boldsymbol{\rho}_1 = [a_1, b_1, c_1: d_1]^T = [\boldsymbol{n}_1^T: d_1]^T$$
 $\boldsymbol{\rho}_2 = [a_2, b_2, c_2: d_2]^T = [\boldsymbol{n}_2^T: d_2]^T$

$$\boldsymbol{\rho}_2 = [a_2, b_2, c_2: d_2]^T = [\boldsymbol{n}_2^T: d_2]^T$$

Line given as an intersection of two planes

$$\mathbf{s} = \mathbf{n}_{1} \times \mathbf{n}_{2} \equiv \begin{bmatrix} a_{3}, b_{3}, c_{3} \end{bmatrix}^{T} \qquad \mathbf{x}(t) = \mathbf{x}_{0} + \mathbf{s}t \\
x_{0} = \frac{d_{2} \begin{vmatrix} b_{1} & c_{1} \\ b_{3} & c_{3} \end{vmatrix} - d_{1} \begin{vmatrix} b_{2} & c_{2} \\ b_{3} & c_{3} \end{vmatrix}}{DET} \qquad y_{0} = \frac{d_{2} \begin{vmatrix} a_{3} & c_{3} \\ a_{1} & c_{1} \end{vmatrix} - d_{1} \begin{vmatrix} a_{3} & c_{3} \\ a_{2} & c_{2} \end{vmatrix}}{DET} \\
z_{0} = \frac{d_{2} \begin{vmatrix} a_{1} & b_{1} \\ a_{3} & b_{3} \end{vmatrix} - d_{1} \begin{vmatrix} a_{2} & b_{2} \\ a_{3} & b_{3} \end{vmatrix}}{DET} \qquad DET = \begin{vmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{2} & b_{3} & c_{3} \end{vmatrix}}$$

The formula is quite "horrible" one and for students not acceptable as it is too complex and they do not see from the formula comes from.

Computation in Projective Space

Line in E3 as Two Plane Intersection

- Standard formula in the Euclidean space
- Plücker's coordinates
 a line is given by two
 points. DUALITY a point
 is dual to
 a plane and vice versa =>
 an intersection of two
 planes can be computed as
 a dual problem

But computationally expensive computation

Projective formulation and simple computation

Computation in Projective Space

Line in E3 as Two Plane Intersection

 $\boldsymbol{\rho}_1 = [a_1, b_1, c_1: d_1]^T \ \boldsymbol{\rho}_2 = [a_2, b_2, c_2: d_2]^T$

normal vectors are

$$\mathbf{n}_1 = [a_1, b_1, c_1]^T$$
 $\mathbf{n}_2 = [a_2, b_2, c_2]^T$

Directional vector of a line of two planes ρ_1 and ρ_1 is given as

$$s = n_1 \times n_2$$

"starting" point x_0 ???

The point x_0 is defined as

$$\boldsymbol{x}_0 = \boldsymbol{\rho}_1 \times \boldsymbol{\rho}_2 \times \boldsymbol{\rho}_0$$

S2

Simple formula for matrix-vector architectures like GPU and parallel processing. Compare the standard and projective formulas

Computation in Projective Space – the nearest point

Find the nearest point on an intersection of two planes to the given point $\boldsymbol{\xi}$

Simple solution:

- Translate planes ho_1 and ho_2 so the ξ is in the origin
- Compute intersection of two planes i.s. x_0 and s
- Translate x_0 using T^{-1}

Again – an elegant solution, simple formula supporting matrix-vector architectures like GPU and parallel processing

Solution DETAILS next

Known solution using Lagrange multipliers

$$\begin{bmatrix} 2 & 0 & 0 & n_{1x} & n_{2x} \\ 0 & 2 & 0 & n_{1y} & n_{2y} \\ 0 & 0 & 2 & n_{1z} & n_{2z} \\ n_{1x} & n_{1y} & n_{1z} & 0 & 0 \\ n_{2x} & n_{2y} & n_{2z} & 0 & 0 \end{bmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \\ \lambda \\ \mu \end{pmatrix} = \begin{pmatrix} 2p_{0x} \\ 2p_{0y} \\ 2p_{0z} \\ \vec{p}_1 \cdot \vec{n}_1 \\ \vec{p}_2 \cdot \vec{n}_2 \end{pmatrix}$$

Krumm,J.: Intersection of Two Planes, Microsoft Research

The closest point to an intersection of two planes

In some applications we need to find a closest point on a line given as an intersection of two planes. We want to find a point ξ_0 , the closest point to the given point ξ , which lies on an intersection of two planes

$$\boldsymbol{\rho}_1 \triangleq [\boldsymbol{n}_1^T:d_1]^T \text{ and } \boldsymbol{\rho}_2 \triangleq [\boldsymbol{n}_2^T:d_2]^T$$

This problem was recently solved by using Lagrange

multipliers and an optimization approach leading to a solution of a system of linear equations with 5 equations.

Solution in the projective space

- 1.Translate the given point $\boldsymbol{\xi} = [\xi_x, \xi_y, \xi_z : 1]^T$ to the origin matrix \boldsymbol{Q}
- 2. Compute parameters of the given planes ρ_1 and ρ_2 after the transformation as $\rho_1' = \mathbf{Q}^{-T} \rho_1$ and $\rho_2' = \mathbf{Q}^{-T} \rho_2$,
- 3. Compute the intersection of those two planes ho_1' and ho_2'
- 4.Transform the point ξ_0 to the original coordinate system using transformation

$$\boldsymbol{n}_0 = \boldsymbol{n}_1 \times \boldsymbol{n}_2$$
 $\boldsymbol{\rho}_0 \triangleq [\boldsymbol{n}_0^T: 0]^T$ $\boldsymbol{\xi}_0 = \boldsymbol{\rho}_1 \times \boldsymbol{\rho}_2 \times \boldsymbol{\rho}_0$ $\boldsymbol{\xi}_0' = \boldsymbol{Q}^{-1} \, \boldsymbol{\xi}_0$

$$\boldsymbol{Q} = \begin{bmatrix} 1 & 0 & 0 & -\xi_x \\ 0 & 1 & 0 & -\xi_y \\ 0 & 0 & 1 & -\xi_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \boldsymbol{Q}^{-T} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \xi_x & \xi_y & \xi_z & 1 \end{bmatrix} \qquad \boldsymbol{Q}^{-1} = \begin{bmatrix} 1 & 0 & 0 & \xi_x \\ 0 & 1 & 0 & \xi_y \\ 0 & 0 & 1 & \xi_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

It is simple, easy to implement on GPU.

Curves and surfaces

Rational Bézier curve – Euclidean $X = [X, Y, Z]^T$

$$X(t) = \frac{\sum_{i=0}^{n} B_{i}^{n}(t) w_{i} q_{i}}{\sum_{i=0}^{n} B_{i}^{n}(t) w_{i}}$$

$$0 \le t \le 1$$

$$B_i^n \binom{n}{i} (1-t)^{n-1} t^i$$

$$\left[\frac{a}{b}\right]' = \frac{a'b - ab'}{b^2}$$

quite complicated

Projective $x = [x, y, z: w]^T$

$$x(t) = \sum_{i=0}^{n} B_i^n(t) q_i$$

How simple!

$$x'(t) = \sum_{i=0}^{n} B_i^n(t) q_i$$

Computation in Projective Space

Disadvantages

- Careful handling with formula as the projective space
- "Oriented" projective space is to be used, i.e. w ≥ 0;
 HW could support it
- Exponents of homogeneous vectors can overflow
 - exponents should be normalized; HW could support it unfortunately not supported by the current hardware
 - P_Lib library for computation in the projective space uses
 SW solution for normalization on GPU (C# and C++)

Computation in Projective Space

Advantages

- "Infinity" is well represented
- No division operation is needed, a division operation can be hidden to the homogeneous coordinate
- Many mathematical formula are simpler and elegant
- One code sequence solve primary and dual problems
- Supports matrix-vector operations in hardware like GPU etc.
- Numerical computation can be faster
- More robust and stable solutions can be achieved
- System of linear equations can be solved directly without division operation, if exponent normalization is provided

Implementation aspects and GPU

- GPU (Graphical Processing Unit) -optimized for matrix-vector, vector-vector operation – especially for [x,y,z:w]^T
- Native arithmetic operations with homogeneous coordinates without exponent "normalization"
- Programmable HW parallel processing

Implementation aspects and GPU

4D cross product can be implemented in Cg/HLSL on GPU (not optimal implementation) as:

```
float4 cross_4D(float4 x1, float4 x2, float4 x3)
{ float4 a; # simple formula #
  a.x=dot(x1.yzw, cross(x2.yzw, x3.yzw));
  a.y=-dot(x1.xzw, cross(x2.xzw, x3.xzw));
  a.z=dot(x1.xyw, cross(x2.xyw, x3.xyw));
  a.w=-dot(x1.xyz, cross(x2.xyz, x3.xyz));
  return a;
# more compact formula available #
```

Appendix

Data processing - main field in computer science

Data processing itself can be split to two main areas:

processing of textual data

limited interval of values, unlimited dimensionality

[a char as one dimension -

Methionylthreonylthreonylglutaminylarginyl..isoleucine 189,819 chars]

No interpolation is defined

 processing of numerical data unlimited interval of values, limited dimensionality – usually 2 or 3 Interpolation can be used

	Textual	Graphical
Dim	∞	2, 3
Interval	0-255(ASCII)	(-∞, ∞)

Hash functions

- usually used for textual data processing
- prime numbers and modulo used

Usual form $Addr = [3x + 5y + 7z] \mathbf{mod} \ size$ multiplication int * float needed

Bucket length

If the hash function is constructed as

$$Addr = [C(\alpha x + \beta y + \gamma z)] \mathbf{mod} \ m$$

where α, β, γ are "irrational" numbers and $m = 2^k$ better distribution is obtained => much faster processing.

C is a "magic" constant which maps the expression for < $x_{min}, x_{max} >$ to (0, maxint)

$$Addr = [C(\alpha x + \beta y + \gamma z)] \text{ and } (2^{k} - 1)$$

Hradek, J., Skala, V.: Hash Function and Triangular Mesh Reconstruction, Vol. 29, No. 6., pp. 741-751,
 Computers & Geosciences, Pergamon Press, ISSN 0098-3004, 2003

Textual processing

The has function is constructed as

$$h(\mathbf{x}) = \left(C * \sum_{i=1}^{L} q^{i} x_{i}\right) \mathbf{mod} m$$

q "irrational" 0 < q < 1

$$m = 2^k - 1$$

Both geometrical and textual

hash function design have the same approach coefficients are "irrational" and no division operation is needed.

Some differences for Czech, Hebrew, English, German, Arabic, ... languages and "chemical" words.

Summary and conclusion

We have got within this course an understanding of:

- projective representation use for geometric transformations with points, lines and planes
- principle of duality and typical examples of dual problems, influence to computational complexity
- intersection computation of two planes in E3, dual Plücker coordinates and simple projective solution
- geometric problems solution with additional constrains
- intersection computations and interpolation algorithms directly in the projective space
- barycentric coordinates computation on GPU
- avoiding or postponing division operations in computations

Projective space representation supports matrix-vector architectures like GPU – faster, robust and easy to implement algorithms achieved

References

- Skala,V.: Barycentric Coordinates Computation in Homogeneous Coordinates, Computers & Graphics, Elsevier, ISSN 0097-8493, Vol. 32, No.1, pp.120-127, 2008
- Skala,V.: Intersection Computation in Projective Space using Homogeneous Coordinates, Int. Journal of Image and Graphics, ISSN 0219-4678, Vol.7, No.4, pp.615-628, 2008
- Skala,V.: Length, Area and Volume Computation in Homogeneous Coordinates, Int. Journal of Image and Graphics, Vol.6., No.4, pp.625-639, ISSN 0219-4678, 2006
- Skala, V., Kaiser, J., Ondracka, V.: Library for Computation in the Projective Space, 6th Int. Conf. Aplimat, Bratislava, ISBN 978-969562-4-1, pp. 125-130, 2007
- Skala,V.: GPU Computation in Projective Space Using Homogeneous Coordinates, Game Programming GEMS 6 (Ed.Dickheiser,M.), pp.137-147, Charles River Media, 2006
- Skala,V.: A new approach to line and line segment clipping in homogeneous coordinates, The Visual Computer, Vol.21, No.11, pp.905-914, Springer Verlag, 2005
- Skala,V.: Geometric Computation, Duality and Projective Space, IW-LGK workshop proceedings, ISBN 978-3-86780-244-4, pp.105-111, Dresden University of Technology, 2011
- Generally: "Publications with on-line DRAFTs" via http://www.VaclavSkala.eu

References related

- Agoston, M.K.: Computer Graphics and Geometric Modeling Mathematics, ISBN 1-58233-817-2, Springer, 2005
- Ammeral,L: Programming Principles in Computer Graphics, John Wiley, 1986

- Miller, J.R., The Mathematics of Graphical Transformations: Vector Geometric and Coordinate-Based Approaches, DesignLab, 1997
- Yamaguchi,F.:Computer-Aided Geometric Design: A Totally Four-Dimensional Approach, Springer, 2002

?? Questions ??

Contact: Vaclav Skala

c/o University of West Bohemia CZ 306 14 Plzen, Czech Republic

http://www.VaclavSkala.eu skala@kiv.zcu.cz subj. EG 2013

INVITATION

WSCG conference on Computer Graphics, Visualizaction and Computer Vision 2013 since 1992

http://www.wscg.eu http://www.wscg.cz June 24-27, 2013

Supported by the Ministry of Education of the Czech Republic, projects No. ME10060, LH12181, LG13047