Eurographics 2013

Projective Geometry, Duality and Precision of Computation in Computer Graphics, Visualization and Games

Tutorial

Vaclav Skala

University of West Bohemia, Plzen, Czech Republic VSB-Technical University, Ostrava, Czech Republic http://www.VaclavSkala.eu

Eurographics 2013
 Plzen (Pilsen) City

Plzen is an old city [first records of Plzen castle 976] city of culture, industry, and brewery.

City, where today's beer fermentation process was invented that is why today's beers are called Pilsner - world wide

Eurographics 2013
 Ostrava City

Ostrava is

- an industrial city of coal mining \& iron melting
- $3^{\text {rd }}$ largest city

Eurographics 2013

University of West Bohemia 17530 students + 987 PhD students

Computer Science and Engineering Physics Cybernetics

Mathematics (+ Geomatics)
Mechanics (Computational)

- Over 50\% of income from research and application projects
- New research center EU project - investment 64 mil. EUR
- $2^{\text {nd }}$ in the ranking of Czech technical / informatics faculties 2009, 2012

Eurographics 2013

An overview

- Precision and robustness
- Euclidean space and projective extension
- Principle of duality and its applications
- Geometric computation in the projective space
- Intersection of two planes in E3 with additional constrains
- Barycentric coordinates and intersections
- Interpolation and intersection algorithms
- Implementation aspects and GPU
- Conclusion and summary

Eurographics 2013

Numerical systems

- Binary system is used nearly exclusively
- Octal \& hexadecimal representation is used
- If we would be direct descendants of tetrapods we would have a great advantage - "simple counting in hexadecimal system"

	Name	Base	Digits	E min	E max	
BI NARY						
B 16	Half	2	$10+1$	-14	15	
B 32	Single	2	$23+1$	-126	127	
B 64	Double	2	$52+1$	-1022	1023	
B 128	Quad	2	$112+1$	-16382	16383	
DECI MAL						
D 32						
D 64		10	7	-95	96	
D 128		10	16	-383	384	

irtesy Clive "Max" Maxfield and Alvin Brown

IEEE 758-2008 standard

Eurographics 2013

Mathematically perfect algorithms fail due to instability

Main issues

- stability, robustness of algorithms
- acceptable speed
- linear speedup - results depends on HW, CPU parameters !

Numerical stability

- limited precision of float / double
- tests A ? B with floats
if $A=B$ then else ; if $A=0$ then else should be forbidden in programming languages
- division operation should be removed or postponed to the last moment if possible - "blue screens", system resets

Eurographics 2013

Typical examples of instability

- intersection of 2 lines in E3
- point lies on a line in E2 or a plane in E3

$$
A x+B y+C=0 \quad \text { or } A x+B y+C z+D=0
$$

- detection if a line intersects a polygon, touches a vertex or passes through

Typical problem

double $x=-1$; double $p=\ldots$;
while ($x<+1$)

\{ if ($x==\mathrm{p}$) Console.Out.WriteLine(" *** ")
$x+=p ;$
\}
/* if $\mathrm{p}=0.1$ then no output, if $\mathrm{p}=0.25$ then expected output */

Eurographics 2013

Delaunay triangulation \& Voronoi diagram

Point inside of a circle given by three points - problems with meshing points in regular rectangular grid.

OR?

It can be seen that the DT \& VD is very sensitive to a point position change
?? ROBUSTNESS ??

If a vertex is moved by ε

Eurographics 2013

Vectors and Points in Geometry

Vectors - movable, no fixed position

- Points - no size, position fixed in the GIVEN coordinate system

Coordinate systems:

- Cartesian - left / right handed right handed system is used

Courtesy of
http://mathworld.wolfram.com/ ConfocaIEllipsoidalCoordinates.html

- Polar
- Spherical, Cylindrical
- and many others, e.g. Confocal Ellipsoidal Coordinates http://mathworld.wolfram.com/ConfocalEllipsoidalCoordinates.html

Eurographics 2013

Floating point

- Not all numbers are represented correctly
- Logarithmic arithmetic
- Continuous fractions
- Interval arithmetic

$\pi=[3 ; 7,15,1,292,1,1,1,2,1,3,1 \ldots]$

Numerically NOT valid identities due to limited precision

- $\cos ^{2} \alpha+\cos ^{2} \beta=1$
- $\mathrm{x}^{2}-\mathrm{y}^{2}=(x-y)(x+y)$

$$
\begin{aligned}
& x+y=[a+c, b+d] \quad x=[a, b] \\
& x-y=[a-d, b-c] \quad y=[c, d] \\
& x \times y=[\min (a c, a d, b c, b d), \max (a c, a d, b c, b d)] \\
& x / y=[\min (a / c, a / d, b / c, b / d), \\
& \max (a / c, a / d, b / c, b / d)] \text { if } y \neq 0
\end{aligned}
$$

Eurographics 2013

Statements like

if <float> = <float> then or if <float> \neq <float> then
should not be allowed in programming languages

Quadratic equation - more reliable results

$$
a t^{2}+b t+c=0 \quad \text { usually solved as } \quad t_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

If $b^{2} \gg 4 a c$ then

$$
q=-\left(b+\operatorname{sign}(b) \sqrt{b^{2}-4 a c}\right) / 2 \quad t_{1}=q / a \quad t_{2}=c / a
$$

The discriminant should be computed with a twice precision

Vieta's formula

$$
t_{1}+t_{2}=-b / a
$$

$$
t_{1} t_{2}=c / a
$$

Eurographics 2013

Function value computation at $x=77617, y=33096$

$$
f(x, y)=333.75 y^{6}+x^{2}\left(11 x^{2} y^{2}-y^{6}-121 y^{4}-2\right)+5.5 y^{8}+x /(2 y)
$$

$f=6.3383510^{29}$ single precision
$f=1,1726039400532$ double precision
$f=1,1726039400531786318588349045201838$ extended precision
The correct result is "somewhere" in the interval of
[-0,827396059946821368141165095479816292005,
-0,827396059946821368141165095479816291986]
Exact solution

$$
f(x, y)=-2+\frac{x}{2 y}=\frac{54767}{66192}
$$

Eurographics 2013

Summation is one of often used computations.

$$
\sum_{i=1}^{10^{3}} 10^{-3}=0.999990701675415
$$

or

$$
\sum_{i=1}^{10^{4}} 10^{-4}=1.000053524971008
$$

The result should be only one.
The correctness in summation is very important in power series computations.
!!!!ORDER of summation

$$
\sum_{n=1}^{10^{6}} \frac{1}{n}=14.357357 \quad \sum_{n=10^{6}}^{1} \frac{1}{n}=14.392651
$$

Eurographics 2013

Recursion

Towers of Hanoi

```
MOVE (A, C, n);
{ MOVE (A, B, n-1);
    MOVE (A, C, 1);
    MOVE (B, C, n-1)
} # MOVE (from, to, number) #
```

Ackermann function

$$
\begin{aligned}
& A(m, n) \\
& = \begin{cases}n+1 & \text { if } m=0 \\
A(m-1,1) & \text { if } M>0 \text { and } n=0 \\
A(m-1, A(m, n-1)) & \text { if } m>0 \text { and } N>0\end{cases}
\end{aligned}
$$

The value of the function grows very fast as

$$
A(4,4)=2^{2^{2^{65536}}}=2^{2^{10^{197296}}}
$$

Eurographics 2013

Numerical computations

$$
A x=b \quad x=A^{-1} b
$$

Hilbert's Matrix I nversion

$$
H_{i j}=\frac{1}{i+j-1}
$$

$$
H_{i j}^{-1}=(-1)^{i+j}(i+j-1)\binom{n+i-1}{n-j}\binom{n+j-1}{n-i}\binom{i+j-2}{i-1}^{2}
$$

Eurographics 2013

Mathematical "forms"
There are several "forms":
Implicit $F(x, y, z)=0$ or $F(\boldsymbol{x})=0$ or $\boldsymbol{F}(\boldsymbol{x})=\mathbf{0}$ (system of equations)
There is no orientation, e.g.

- if $F(\boldsymbol{x})=0$ is a iso-curve there is no hint how to find another point of this curve, resp. a line segment approximating the curve => tracing algorithms
- if $F(x)=0$ is a iso-surface there is no hint how to find another point of this surface $=>$ iso-surface extraction algorithms

Parametrical $\quad \boldsymbol{x}=\boldsymbol{x}(u) \quad \boldsymbol{x}=\boldsymbol{x}(u, v)$

Points of a curve are "ORDERED" according to a parameter u, resp.
u, v
Explicit $z=f(x) \quad z=f(x, y)$ [actually $21 / 2 \mathrm{D}$]
For the given value x, resp. x, y we get function value z

Eurographics 2013

I mplicit form

- Is used for separation - for detection if a point is inside or outside, e.g. a half-plane or a circle etc.
- There is always a question how to compute \boldsymbol{x} of $F(\boldsymbol{x})=0$ as there are several solutions in general
- Complexity of computations \times precision of computation

Compiler optimization is DANGEROUS in general - numerical precision

\[

\]

Eurographics 2013

Projective Space

$\boldsymbol{X}=[X, Y]^{T} \quad \boldsymbol{X} \in E^{2}$
$\boldsymbol{x}=[x, y: w]^{T} \quad \boldsymbol{x} \in P^{2}$

Conversion:

$\boldsymbol{X}=[x / w, y / w]^{T} \quad w \neq 0$

If $w=0$ then \boldsymbol{x} represents "an ideal point" - a point in infinity, i.e. it is a directional vector.

The Euclidean space E^{2} is represented as a plane $w=1$.
Equivalent "mathematical" notation often used:

$$
\boldsymbol{x}=[w: x, y]^{T} \quad \text { generally for } \mathrm{E}^{\mathrm{n}} \boldsymbol{x}=\left[x_{0}: x_{1}, \ldots, x_{n}\right]^{T}
$$

i.e. homogeneous coordinate is the first

Eurographics 2013

Points and vectors

- Vectors are "freely movable" - not having a fixed position

$$
\boldsymbol{a}_{1}=\left[x_{1}, y_{1}: 0\right]^{T}
$$

- Points are not "freely movable" - they are fixed to an origin of the current coordinate system

$$
\boldsymbol{x}_{1}=\left[x_{1}, y_{1}: w_{1}\right]^{T} \quad \text { and } \quad \boldsymbol{x}_{2}=\left[x_{2}, y_{2}: w_{2}\right]^{T}
$$

usually in textbooks $w_{1}=w_{2}=1$
A vector $\boldsymbol{A}=\boldsymbol{X}_{2}-\boldsymbol{X}_{1}$ in the Euclidean coordinate system - CORRECT Horrible "construction" DO NOT USE IT - IT IS TOTALLY WRONG

$$
\begin{aligned}
\boldsymbol{a} & =\boldsymbol{x}_{2}-\boldsymbol{x}_{1}=\left[x_{2}-x_{1}, y_{2}-y_{1}: w_{2}-w_{1}\right]^{T}=\left[x_{2}-x_{1}, y_{2}-y_{1}: 1-1\right]^{T} \\
& =\left[x_{2}-x_{1}, y_{2}-y_{1}: 0\right]^{T}
\end{aligned}
$$

This was presented as "How a vector" is constructed in the projective space P^{k} in a textbook!! WRONG, WRONG, WRONG

This construction has been found in SW as well!!

Eurographics 2013

Points and vectors

A Euclidean vector given by two points in the homogeneous coordinates

$$
\boldsymbol{a}=\boldsymbol{x}_{2}-\boldsymbol{x}_{1}=\left[w_{1} x_{2}-w_{2} x_{1}, w_{1} y_{2}-w_{2} y_{1}: w_{1} w_{2}\right]^{T}
$$

This is the CORRECT SOLUTION, but what is the interpretation?
A "difference" of coordinates of two points is a vector in the mathematical meaning and $w_{1} w_{2}$ is a "scaling" factor actually

Actually the division operation is postponed and not performed immediately. A vector in projective notation

$$
\begin{aligned}
\boldsymbol{a}=\boldsymbol{x}_{2} & -\boldsymbol{x}_{1}=\left[w_{1} x_{2}-w_{2} x_{1}, w_{1} y_{2}-w_{2} y_{1}: w_{1} w_{2}\right]^{T} \\
& \triangleq\left[\frac{w_{1} x_{2}-w_{2} x_{1}}{w_{1} w_{2}}, \frac{w_{1} y_{2}-w_{2} y_{1}}{w_{1} w_{2}}: 0\right]^{T}
\end{aligned}
$$

where: \triangleq means projectively equivalent

Eurographics 2013

A Euclidean vector in the projective representation (if the vector length matters)

$$
\begin{aligned}
\boldsymbol{a}=\boldsymbol{x}_{2} & -\boldsymbol{x}_{1}=\left[w_{1} x_{2}-w_{2} x_{1}, w_{1} y_{2}-w_{2} y_{1}: w_{1} w_{2}\right]^{T} \\
& \triangleq\left[\frac{w_{1} x_{2}-w_{2} x_{1}}{w_{1} w_{2}}, \frac{w_{1} y_{2}-w_{2} y_{1}}{w_{1} w_{2}}: 0\right]^{T}
\end{aligned}
$$

A vector in the projective space is given by coordinates x, y, w as

$$
\boldsymbol{a}=\boldsymbol{x}_{2}-\boldsymbol{x}_{1}=\left[x_{2}-x_{1}, y_{2}-y_{1}, w_{2}-w_{1}\right]^{T}
$$

[=>Linear interpolation with a non-linear monotonic interpolation]
We have to strictly distinguish meaning of one dimensional array [vector], i.e. if we are working with:

- points, i.e. a data structure represent point coordinates, or
- vectors, i.e. a data structure represent a vector in the mathematical meaning

> VECTORS x POI NTS

Eurographics 2013

Duality

For simplicity, let us consider a line p defined as:

$$
a X+b Y+c=0
$$

We can multiply it by $w \neq 0$ and we get:

$$
a w X+b w Y+c w=0
$$

As $x=w X$ and $y=w Y$
$a x+b y+c w=0$
i.e. $\quad \boldsymbol{p}^{T} \boldsymbol{x}=0$
$\boldsymbol{p}=[a, b: c]^{T} \quad \boldsymbol{x}=[x, y: w]^{T}=[w X, w Y: w]^{T}$

A line $p \in E^{2}$ is actually a plane in the projective space P^{2} (point $x=[0,0: 0]^{T}$ excluded)

Eurographics 2013

Duality

From the mathematical notation

$$
\boldsymbol{p}^{T} \boldsymbol{x}=0
$$

we cannot distinguish whether \boldsymbol{p} is a line and \boldsymbol{x} is a point or vice versa in the case of P^{2}. It means that

- a point and a line are dual in the case of P^{2}, and
- a point and a plane are dual in the case of P^{3}.

The principle of duality in P^{2} states that:
Any theorem in E^{2} remains true when we interchange the words "point" and "line", "lie on" and "pass through", "join" and "intersection", "collinear" and "concurrent" and so on.
Similarly for the E^{3} case.
Once the theorem has been established, the dual theorem is obtained as described above.
This helps a lot to solve some geometrical problems.

Eurographics 2013

Examples of dual objects and operators

	Primitive	Dual primitive
P^{2}	Point	Line
	Line	Point
P^{3}	Point	Plane
	Plane	Point

Operator	Dual operator
Join	Intersect
Intersect	Join

Computational sequence for a problem is the same for a dual problem.

Eurographics 2013

I ntersection of two lines

Let two lines p_{1} and p_{2} are given by

$$
p_{1}=\left[a_{1}, b_{1}: c_{1}\right]^{T} \quad \text { and } \quad p_{2}=\left[a_{2}, b_{2}: c_{2}\right]^{T}
$$

We have to solve a system of linear equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$

$$
\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right]=\left[\begin{array}{l}
-c_{1} \\
-c_{2}
\end{array}\right]^{*}
$$

Then well known formula is used

$$
x=\frac{\operatorname{Det_{x}}}{\operatorname{Det}}=\frac{\operatorname{det}\left[\begin{array}{ll}
q_{1} & b_{1} \\
q_{2} & b_{2}
\end{array}\right]}{\operatorname{det}\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right]} \quad y=\frac{\operatorname{Det} t_{x}}{\operatorname{Det}}=\frac{\operatorname{det}\left[\begin{array}{ll}
a_{1} & q_{1} \\
a_{2} & q_{2}
\end{array}\right]}{\operatorname{det}\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right]}
$$

But what if Det is small?
Usually a sequence like if $a b s(\operatorname{det}(.).) \leq e p s$ then is used. What is eps?
Note * usually a line is in its explicit form as $a x+b y=q$ instead of $a x+b y+c=0$, i.e. the implicit form

Eurographics 2013

Definition

The cross product of the two vectors

$$
\boldsymbol{x}_{1}=\left[x_{1}, y_{1}: w_{1}\right]^{T} \text { and } \boldsymbol{x}_{2}=\left[x_{2}, y_{2}: w_{2}\right]^{T}
$$

is defined as:

$$
\boldsymbol{x}_{1} \times \boldsymbol{x}_{2}=\operatorname{det}\left[\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
x_{1} & y_{1} & w_{1} \\
x_{2} & y_{2} & w_{2}
\end{array}\right]
$$

where: $\boldsymbol{i}=[1,0: 0]^{T} \quad \boldsymbol{j}=[0,1: 0]^{T} \quad \boldsymbol{k}=[0,0: 1]^{T}$
or as

$$
\boldsymbol{x}_{1} \times \boldsymbol{x}_{2}=\left[\begin{array}{ccc}
0 & -w_{1} & y_{1} \\
w_{1} & 0 & -x_{1} \\
-y_{1} & x_{1} & 0
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
y_{2} \\
w_{2}
\end{array}\right]=\boldsymbol{T} \boldsymbol{x}_{2}
$$

Please, note that homogeneous coordinates are used.

Eurographics 2013

Theorem

Let two points \boldsymbol{x}_{1} and \boldsymbol{x}_{2} be given in the projective space. Then the coefficients of the \boldsymbol{p} line, which is defined by those two points, are determined as the cross product of their homogeneous coordinates

$$
\boldsymbol{p}=\boldsymbol{x}_{1} \times \boldsymbol{x}_{2}=[a, b: c]^{T}
$$

Proof
Let the line P^{2} be defined in homogeneous coordinates as

$$
a x+b y+c w=0
$$

We are actually looking for a solution to the following equations:

$$
\boldsymbol{p}^{T} \boldsymbol{x}_{1}=0 \quad \boldsymbol{p}^{T} \boldsymbol{x}_{2}=0
$$

where: $\boldsymbol{p}=[a, b: c]^{T}$

Note that c represents a "distance" from the origin of the coordinate system.

Eurographics 2013

It means that any point \boldsymbol{x} that lies on the p line must satisfy both the equation above and the equation $\boldsymbol{p}^{\boldsymbol{T}} \boldsymbol{x}=0$ in other words the \boldsymbol{p} vector is defined as

$$
\boldsymbol{p}=\boldsymbol{x}_{1} \times \boldsymbol{x}_{2}=\operatorname{det}\left[\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
x_{1} & y_{1} & w_{1} \\
x_{2} & y_{2} & w_{2}
\end{array}\right]
$$

We can write

$$
\left(\boldsymbol{x}_{1} \times \boldsymbol{x}_{2}\right)^{\boldsymbol{T}} \boldsymbol{x}=0 \quad \text { i.e. } \operatorname{det}\left[\begin{array}{ccc}
x & y & w \\
x_{1} & y_{1} & w_{1} \\
x_{2} & y_{2} & w_{2}
\end{array}\right]=0
$$

Note that the Cross product and the Dot product is an instruction in $\mathrm{Cg} / \mathrm{HLSL}$ on GPU.

Eurographics 2013

Evaluating the determinant $\operatorname{det}\left[\begin{array}{ccc}a & b & c \\ x_{1} & y_{1} & w_{1} \\ x_{2} & y_{2} & w_{2}\end{array}\right]=0$
we get the line coefficients of the line p as:

$$
a=\operatorname{det}\left[\begin{array}{ll}
y_{1} & w_{1} \\
y_{2} & w_{2}
\end{array}\right] \quad b=-\operatorname{det}\left[\begin{array}{ll}
x_{1} & w_{1} \\
x_{2} & w_{2}
\end{array}\right] \quad c=\operatorname{det}\left[\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2}
\end{array}\right]
$$

Note:

1.A line $a x+b y+c=0$ is a one parametric set of coefficients

$$
\boldsymbol{p}=[a, b: c]^{T}
$$

From two values \boldsymbol{x}_{1} and \boldsymbol{x}_{2} we have to compute 3 values, coefficients a, b and c
2.For $w=1$ we get the standard cross product formula and the cross product defines the p line, i.e. $\boldsymbol{p}=\boldsymbol{x}_{1} \times \boldsymbol{x}_{2}$ where:

$$
\boldsymbol{p}=[a, b: c]^{T}
$$

Eurographics 2013

We have seen that computation of

- an intersection of two lines is given as $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$
- a line given by two points is given as $\boldsymbol{A x}=\mathbf{0}$

Different scheme BUT

Those problems are DUAL. Why algorithms are different??

Cross product is equivalent to a solution of a linear system of equations! No division operations!

Eurographics 2013

DUALI TY APPLI CATI ON

In the projective space P^{2} points and lines are dual. Due to duality we can directly intersection of two lines as

$$
\boldsymbol{x}=\boldsymbol{p}_{1} \times \boldsymbol{p}_{2}=\operatorname{det}\left[\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right]=[x, y: w]^{T}
$$

If the lines are parallel or close to parallel, the homogeneous coordinate $w \rightarrow 0$ and users have to take a decision - so there is no sequence in the code like if $a b s(\operatorname{det}(.)$.$) \leq eps then ...in the procedure.$

Generally computation can continue even if $w \rightarrow 0$ if projective space is used.

Eurographics 2013

DI STANCE

Geometry is strongly connected with distances and their measurement, geometry education is strictly sticked to the Euclidean geometry, where the distance is measured as

$$
d=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} \quad, \text { resp. } \quad d=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}} .
$$

This concept is convenient for a solution of basic geometric problems, but in many cases it results into quite complicated formula and there is a severe question of stability and robustness in many cases.

The main objection against the projective representation is that there is no metric.

Eurographics 2013

The distance of two points can be easily computed as

$$
\text { dist }=\sqrt{\xi^{2}+\eta^{2}} /\left(w_{1} w_{2}\right)
$$

$$
\text { where: } \xi=w_{1} x_{2}-w_{2} x_{1} \quad \eta=w_{1} y_{2}-w_{2} y_{1}
$$

Also a distance of a point x_{0} from a line in E^{2} can be computed as

$$
\text { dist }=\frac{\boldsymbol{a}^{T} \boldsymbol{x}_{0}}{w_{0} \sqrt{a^{2}+b^{2}}}
$$

where: $\boldsymbol{x}_{\mathbf{0}}=\left[x_{0}, y_{0}: w_{0}\right]^{T} \quad \boldsymbol{a}=[a, b: c]^{T}$
The extension to $\mathrm{E}^{3} / \mathrm{P}^{3}$ is simple and the distance of a point x_{0} from a plane in E^{3} can be computed as

$$
\text { dist }=\frac{\boldsymbol{a}^{T} \boldsymbol{x}_{0}}{w_{0} \sqrt{a^{2}+b^{2}+c^{2}}}
$$

where: $\boldsymbol{x}_{\mathbf{0}}=\left[x_{0}, y_{0}, z_{0}: w_{0}\right]^{T} \quad \boldsymbol{a}=[a, b, c: d]^{T}$.

Eurographics 2013

In many cases we do not need actually a distance, e.g. for a decision which object is closer, and distance ${ }^{2}$ can be used instead, i.e. for the E^{2} case

$$
\text { dist }^{2}=\frac{\left(\boldsymbol{a}^{T} \boldsymbol{x}_{0}\right)^{2}}{w_{0}{ }^{2}\left(a^{2}+b^{2}\right)}=\frac{\left(\boldsymbol{a}^{T} \boldsymbol{x}_{0}\right)^{2}}{w_{0}{ }^{2} \boldsymbol{n}^{T} \boldsymbol{n}}
$$

where: $\boldsymbol{a}=\lfloor a, b: c\rfloor^{T}=\lfloor\boldsymbol{n}: c\rfloor^{T}$ and the normal vector \boldsymbol{n} is not normalized If we are comparing distances of points from the given line p we can use "pseudo- distance" for comparisons

$$
(\text { pseudo_dist })^{2}=\frac{\left(\boldsymbol{a}^{T} \boldsymbol{x}_{0}\right)^{2}}{w_{0}{ }^{2}}
$$

Similarly for a plane ρ in the case of E^{3}

$$
\text { dist }^{2}=\frac{\left(\boldsymbol{a}^{T} \boldsymbol{x}_{0}\right)^{2}}{w_{0}{ }^{2}\left(a^{2}+b^{2}+c^{2}\right)}=\frac{\left(\boldsymbol{a}^{T} \boldsymbol{x}_{0}\right)^{2}}{w_{0}{ }^{2} \boldsymbol{n}^{T} \boldsymbol{n}} \quad \text { and } \quad(\text { pseudo_dist })^{2}=\frac{\left(\boldsymbol{a}^{T} \boldsymbol{x}_{0}\right)^{2}}{w_{0}{ }^{2}}
$$

where: $\boldsymbol{a}=\lfloor a, b, c: d\rfloor^{T}=\lfloor\boldsymbol{n}: d\rfloor^{T}$

Eurographics 2013

Computation in Projective Space

- Cross product definition
- A plane ρ is determined as a cross product of three given points

Due to the duality

- An intersection point x of three planes is determined as a cross product of three given planes.

$$
\begin{aligned}
\boldsymbol{x}_{1} \times \boldsymbol{x}_{2} \times \boldsymbol{x}_{3} & =\left|\begin{array}{cccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} & \boldsymbol{l} \\
x_{1} & y_{1} & z_{1} & w_{1} \\
x_{2} & y_{2} & z_{2} & w_{2} \\
x_{3} & y_{3} & z_{3} & w_{3}
\end{array}\right| \\
\boldsymbol{\rho}_{1} \times \boldsymbol{\rho}_{2} \times \boldsymbol{\rho}_{3} & =\left|\begin{array}{cccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} & \boldsymbol{l} \\
a_{1} & b_{1} & c_{1} & d_{1} \\
a_{2} & b_{2} & c_{2} & d_{2} \\
a_{3} & b_{3} & c_{3} & d_{3}
\end{array}\right|
\end{aligned}
$$

Computation of generalized cross product is equivalent to a solution of a linear system of equations => no division operation!

Eurographics 2013

Geometric transformations with points

(note $X=x / w, Y=y / w, w \neq 0$):

Translation by a vector $(A, B) \triangleq[a, b: c]^{T}$, i.e. $A=a / c, B=b / c, c \neq 0$:
In the Euclidean space:

$$
x^{\prime}=\boldsymbol{T} x
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & A \\
0 & 1 & B \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]=\left[\begin{array}{c}
x+A w \\
y+B w \\
w
\end{array}\right] \triangleq\left[\begin{array}{c}
x / w+A \\
y / w+B \\
1
\end{array}\right]=\left[\begin{array}{c}
X+A \\
Y+A \\
1
\end{array}\right]
$$

In the projective space:

$$
x^{\prime}=\boldsymbol{T}^{\prime} \boldsymbol{x}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
c & 0 & a \\
0 & c & b \\
0 & 0 & c
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]=\left[\begin{array}{c}
c x+a w \\
c y+b w \\
c w
\end{array}\right] \triangleq\left[\begin{array}{c}
(c x+a w) /(c w) \\
(c y+b w) /(c w) \\
1
\end{array}\right]=\left[\begin{array}{c}
x / w+a / c \\
y / w+b / c \\
1
\end{array}\right]=\left[\begin{array}{c}
X+A \\
Y+B \\
1
\end{array}\right]
$$

and $\operatorname{det}\left(\boldsymbol{T}^{\prime}\right)=c^{3}$. For $c=1$ we get a standard formula

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & A \\
0 & 1 & B \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Eurographics 2013

Rotation by an angle $(\cos \varphi, \sin \varphi)=\left(\frac{a}{c}, \frac{b}{c}\right) \triangleq[a, b: c]^{T}$
In the Euclidean space: $\quad \boldsymbol{x}^{\prime}=\boldsymbol{R} \boldsymbol{x}$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \triangleq\left[\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
1
\end{array}\right]
$$

In the projective space: $\quad \boldsymbol{x}^{\prime}=\boldsymbol{R}^{\prime} \boldsymbol{x}$

$$
\begin{gathered}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
a & -b & 0 \\
b & a & 0 \\
0 & 0 & c
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]=\left[\begin{array}{c}
a x-b y \\
b x+a y \\
c w
\end{array}\right] \triangleq} \\
{\left[\begin{array}{c}
(a x-b y) /(c w) \\
(b x+a y) /(c w) \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{x}{w} \frac{a}{c}-\frac{y}{w} \frac{b}{c} \\
\frac{x}{w} \frac{b}{c}+\frac{y}{w} \frac{a}{c} \\
1
\end{array}\right]=\left[\begin{array}{c}
X \cos \varphi-Y \sin \varphi \\
X \sin \varphi+Y \cos \varphi \\
1
\end{array}\right]}
\end{gathered}
$$

as $c^{2}=\left(a^{2}+b^{2}\right)$ by definition, $\operatorname{det}\left(\boldsymbol{R}^{\prime}\right)=\left(a^{2}+b^{2}\right) c=c^{3}$

Eurographics 2013

Scaling by a factor $\left(S_{x}, S_{y}\right)=\left(\frac{s_{x}}{w_{s}}, \frac{s_{y}}{w_{s}}\right) \triangleq\left[s_{x}, s_{y}: w_{s}\right]^{T}$

$$
\begin{aligned}
\boldsymbol{x}^{\prime}=\boldsymbol{S} \boldsymbol{x} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right] & =\left[\begin{array}{ccc}
S_{x} & 0 & 0 \\
0 & S_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \\
\boldsymbol{x}^{\prime}=\boldsymbol{S}^{\prime} \boldsymbol{x} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right] & =\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & w_{s}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \\
\operatorname{det}\left(\boldsymbol{S}^{\prime}\right) & =s_{x} s_{y} w_{s}
\end{aligned}
$$

It is necessary to note that the determinant of a transformation matrix \boldsymbol{Q}, i.e. matrices $\boldsymbol{T}^{\prime}, \boldsymbol{R}^{\prime}, \boldsymbol{S}^{\prime}$, is $\operatorname{det}(\boldsymbol{Q}) \neq 1$ in general, but as the formulation is in the projective space, there is no need to "normalize" transformations to $\operatorname{det}(\boldsymbol{Q})=1$ even for rotation.

It can be seen that if the parameters of a geometric transformation are given in the homogeneous coordinates, no division operation is needed at all.

Eurographics 2013

Transformation of lines and planes

$$
\rho=\stackrel{E}{1}^{\mathrm{E}^{\mathrm{J}}} \times \boldsymbol{x}_{2} \times \boldsymbol{x}_{3}
$$

Dual problem

$$
\begin{gathered}
\mathrm{E}^{2} \\
\boldsymbol{p}=\boldsymbol{x}_{1} \times \boldsymbol{x}_{2} \\
\boldsymbol{x}=\boldsymbol{p}_{1} \times \boldsymbol{p}_{2}
\end{gathered}
$$

$$
x=\rho_{1} \times \rho_{2} \times \rho_{3}
$$

In graphical applications position of points are changed by an interaction, i.e. $\boldsymbol{x}^{\prime}=\boldsymbol{T} \boldsymbol{x}$.

The question is how coefficients of a line, resp. a plane are changed without need to recompute them from the definition.

It can be proved that

$$
\boldsymbol{p}^{\prime}=\left(\boldsymbol{T} \boldsymbol{x}_{1}\right) \times\left(\boldsymbol{T} \boldsymbol{x}_{2}\right)=\operatorname{det}(\boldsymbol{T})\left(\boldsymbol{T}^{-1}\right)^{T} \boldsymbol{p} \triangleq\left(\boldsymbol{T}^{-1}\right)^{T} \boldsymbol{p}
$$

or

$$
\boldsymbol{\rho}^{\prime}=\left(\boldsymbol{T} \boldsymbol{x}_{1}\right) \times\left(\boldsymbol{T} \boldsymbol{x}_{2}\right) \times\left(\boldsymbol{T} \boldsymbol{x}_{3}\right)=\operatorname{det}(\boldsymbol{T})\left(\boldsymbol{T}^{-1}\right)^{T} \boldsymbol{\rho} \triangleq\left(\boldsymbol{T}^{-1}\right)^{T} \boldsymbol{\rho}
$$

Eurographics 2013

Transformation of lines and planes

As the computation is made in the projective space we can write

$$
\boldsymbol{p}^{\prime}=\left(\boldsymbol{T}^{-1}\right)^{T} \boldsymbol{p}=\left[a^{\prime}, b^{\prime}: c^{\prime}\right]^{T} \quad \text { for lines in } \mathrm{E}^{2}
$$

or

$$
\boldsymbol{\rho}^{\prime}=\left(\boldsymbol{T}^{-1}\right)^{T} \boldsymbol{\rho}=\left[a^{\prime}, b^{\prime}, c^{\prime}: d^{\prime}\right]^{T} \quad \text { for planes in } \mathrm{E}^{3}
$$

THIS SI MPLI FI ES COMPUTATI ONS

Transformation matrices for lines, resp. for planes are DI FFERENT from transformations for points! Note that a normal vector of a line is actually a co-vector, i.e. an oriented "surface".

Eurographics 2013

Transformation of lines and planes

Transformation about a general axis in $\mathrm{E}^{3} / \mathrm{P}^{3}$

$$
\boldsymbol{x}(t)=\boldsymbol{x}_{A}+\boldsymbol{s} t
$$

Usually used transformation (\boldsymbol{T} is translation):

$$
\begin{aligned}
\boldsymbol{Q} & =\boldsymbol{T}^{-1} \boldsymbol{R}_{z x}^{-1} \boldsymbol{R}_{y z}^{-1} \boldsymbol{R}(\varphi) \boldsymbol{R}_{z x} \boldsymbol{R}_{x y} \boldsymbol{T} \\
\boldsymbol{R}_{y z} & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{c}{\sqrt{b^{2}+c^{2}}} & \frac{-b}{\sqrt{b^{2}+c^{2}}} & 0 \\
0 & \frac{b}{\sqrt{b^{2}+c^{2}}} & \frac{c}{\sqrt{b^{2}+c^{2}}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$\boldsymbol{s}=[a, b, c]^{T}$ is an axis directional vector. This is unstable if $\sqrt{b^{2}+c^{2}} \rightarrow 0$ and not precise if $b^{2} \gg c^{2}$ or vice versa.

That is generally computationally complex and unstable as a user has to select which axis is to be used for a rotation

Eurographics 2013

Transformation of lines and planes

Transformation about an axis n in the Euclidean space E^{3}

$$
\begin{gathered}
\boldsymbol{X}=\boldsymbol{X} \cos \varphi+(1-\cos \varphi)\left(\boldsymbol{n}^{T} \boldsymbol{X}\right) \cdot \boldsymbol{n}+(\boldsymbol{n} \times \boldsymbol{X}) \sin \varphi \\
\boldsymbol{Q}=\boldsymbol{I} \cos \varphi+(1-\cos \varphi)(\boldsymbol{n} \otimes \boldsymbol{n})+\boldsymbol{W} \sin \varphi
\end{gathered}
$$

where: $\boldsymbol{n} \otimes \boldsymbol{n}=\boldsymbol{n} . \boldsymbol{n}^{T}$ is a matrix.
 In the Euclidean space E^{3} the vector \boldsymbol{n} has to be normalized

The matrix \boldsymbol{W} is defined as: $\boldsymbol{W} \boldsymbol{v}=\boldsymbol{w} \times \boldsymbol{v}$

$$
\boldsymbol{W}=\left[\begin{array}{ccc}
0 & -n_{z} & n_{y} \\
n_{z} & 0 & -n_{x} \\
-n_{y} & w_{x} & 0
\end{array}\right] \text { in our case }
$$

Eurographics 2013

Projection

Standard projection

$$
\left[\begin{array}{l}
x_{I} \\
y_{I} \\
w_{I}
\end{array}\right]=\boldsymbol{T}_{\text {projection }}\left[\begin{array}{c}
x_{I} \\
y_{I} \\
1
\end{array}\right]
$$

How to determine z_{I} coordinate?
$x_{I}=(1-\lambda) x_{P}+\lambda x_{Q}$
$y_{I}=(1-\lambda) y_{P}+\lambda y_{Q}$
$\frac{1}{z_{I}}=(1-\lambda) \frac{1}{z_{P}}+\lambda \frac{1}{z_{Q}}$

\Rightarrow "Reverse" depth computation, e.g. for correct intensity computation if perspective projection is used.

Eurographics 2013

Computation in Projective Space

Linear parametrization:
$\boldsymbol{X}(t)=\boldsymbol{X}_{0}+\left(\boldsymbol{X}_{1}-\boldsymbol{X}_{0}\right) t \quad t \in(-\infty, \infty)$
Non-linear monotonous parametrization:
$x(t)=x_{0}+\left(x_{1}-x_{0}\right) t \quad t \in(-\infty, \infty)$
$x(t)=x_{0}+\left(x_{1}-x_{0}\right) t \quad y(t)=y_{0}+\left(y_{1}-y_{0}\right) t$
$z(t)=z_{0}+\left(z_{1}-z_{0}\right) t \quad w(t)=w_{0}+\left(w_{1}-w_{0}\right) t$

- it means that we can interpolate using homogeneous coordinates without a need of "normalization" to E^{k} !!
- Homogeneous coordinate $w \geq 0$

In many algorithms, we need "monotonous" parameterization, only

Eurographics 2013

Computation in Projective Space

Spherical interpolation

$$
\operatorname{slerp}\left(\boldsymbol{X}_{0}, \boldsymbol{X}_{1}, t\right)=\frac{\sin [(1-t) \Omega]}{\sin \Omega} \boldsymbol{X}_{0}+\frac{\sin [t \Omega]}{\sin \Omega} \boldsymbol{X}_{1}
$$

Instability occurs if $\Omega \rightarrow k \pi$.

Courtesy of wikipedia
Mathematically formula is correct; in practice the code is generally incorrect! $\left[\frac{0}{0}\right]$
$\operatorname{slerp}_{p}\left(\boldsymbol{X}_{0}, \boldsymbol{X}_{1}, t\right)=\left[\begin{array}{c}\sin [(1-t) \Omega] \boldsymbol{X}_{0}+\sin [t \Omega] \boldsymbol{X}_{1} \\ \sin \Omega\end{array}\right]$

$$
\equiv\left[\sin [(1-t) \Omega] \boldsymbol{X}_{0}+\sin [t \Omega] \boldsymbol{X}_{1}: \sin \Omega\right]^{T}
$$

Homogeneous coordinates
=> better numerical stability \&

Homogeneous
coordinate
division operation can be postponed

Eurographics 2013

Computation in Projective Space

$$
\begin{gathered}
\boldsymbol{x}(t)=\operatorname{slerp}\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{1}, t\right)=\frac{\sin [(1-t) \Omega]}{\sin \Omega} \boldsymbol{x}_{0}+\frac{\sin [t \Omega]}{\sin \Omega} \boldsymbol{x}_{1} \\
\triangleq\left[\sin [(1-t) \Omega] \boldsymbol{x}_{0}+\sin [t \Omega] \boldsymbol{x}_{1}: \sin \Omega\right]^{\mathrm{T}}
\end{gathered}
$$

What is a result in the Euclidean space of a spherical interpolation with non-linear parameterization, i.e. $w_{i} \neq 1$?

$$
\begin{gathered}
x(t)=\frac{\sin [(1-t) \Omega]}{\sin \Omega} x_{0}+\frac{\sin [t \Omega]}{\sin \Omega} x_{1} \quad w(t)=\frac{\sin [(1-t) \Omega]}{\sin \Omega} w_{0}+\frac{\sin [t \Omega]}{\sin \Omega} w_{1} \\
\boldsymbol{X}(t)=\frac{\frac{\sin [(1-t) \Omega]}{\sin \Omega} x_{0}+\frac{\sin [t \Omega]}{\sin \Omega} x_{1}}{\frac{\sin [(1-t) \Omega]}{\sin \Omega} w_{0}+\frac{\sin [t \Omega]}{\sin \Omega} w_{1}}=\frac{\sin [(1-t) \Omega] x_{0}+\sin [t \Omega] x_{1}}{\sin [(1-t) \Omega] w_{0}+\sin [t \Omega] w_{1}}
\end{gathered}
$$

If $w_{i} \neq 1$

If represented as "projective scalar" value

$$
\boldsymbol{x}(t)=\left[\sin [(1-t) \Omega] x_{0}+\sin [t \Omega] x_{1}: \sin [(1-t) \Omega] w_{0}+\sin [t \Omega] w_{1}\right]^{T}
$$

$=>$ Better numerical stability

Eurographics 2013

I nfluence of homogeneous values $w_{i} \neq 1 \& w_{i} \neq 0 \quad\left(F u n 1-w_{i}=1\right)$
Can be used for:

- relative position comparison
- interpolation if a "linear" parameterization is required $w_{i}=1$

Eurographics 2013

Computation in Projective Space

Intersection line - plane (Cyrus-Beck clipping algorithm)
$\boldsymbol{x}(t)=\boldsymbol{x}_{0}+\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{0}\right) t=\boldsymbol{x}_{0}+\boldsymbol{s} t \quad$ Computation in projective space!
$\boldsymbol{s}=\boldsymbol{x}_{1}-\boldsymbol{x}_{0}=\left[x_{1}-x_{0}, y_{1}-y_{0}, z_{1}-z_{0}: w_{1}-w_{0}\right]^{T} \quad t \in(-\infty, \infty)$
$\boldsymbol{a}^{T} \boldsymbol{x}=0 \quad a x+b y+c z+d w=0$
$\boldsymbol{a}=[a, b, c: d]^{T}$
Euclidean solution:

$$
\begin{gathered}
t=-\frac{\boldsymbol{a}^{T} \boldsymbol{x}_{0}}{\boldsymbol{a}^{T} \boldsymbol{s}} \\
\tau=-\boldsymbol{a}^{T} \boldsymbol{x}_{0} \text { and } \tau_{w}=\boldsymbol{a}^{T} \boldsymbol{s} \quad \boldsymbol{t}=\left[\tau, \tau_{w}\right]^{T} \\
\text { if } \tau_{w}<0 \text { then } \boldsymbol{t}:=-\boldsymbol{t}
\end{gathered}
$$

Projective solution:
Test: if $t<t_{\text {min }}$ then ...modification:
if $\tau * \tau_{\text {min }_{w}}>\tau_{w} * \tau_{\text {min }}$ then

- An intersection of a plane with a line in $\mathrm{E}^{2} / \mathrm{E}^{3}$ can be computed efficiently, no division operation
- Comparison operations must be modified!!!
- => Cyrus-Beck line clipping algorithm 10-25\% faster

Eurographics 2013

Line Clipping - convex polygon

procedure CLIP_Line ($\mathbf{x}_{\mathrm{A}}, \mathbf{x}_{\mathrm{B}}$);
$/^{*} \mathbf{x}_{A}=\left[x_{A}, y_{A}: w_{A}\right]^{\top} \mathbf{x}_{B}=\left[x_{B}, y_{B}: w_{B}\right]^{\top} * /$
begin /* $\mathbf{p}=[\mathrm{a}, \mathrm{b}: \mathrm{c}]^{\top}$ given - NO STEP 1 */
$\{1\} \mathbf{p}:=\mathbf{x}_{\mathrm{A}} \times \mathbf{x}_{\mathrm{B}} ; \quad / * \mathbf{p}: \mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ */
$\{2\}$ for $\mathrm{k}:=0$ to $\mathrm{N}-1$ do $/{ }^{*} \mathbf{x}_{\mathrm{k}}=\left[\mathrm{x}_{\mathrm{k}}, \mathrm{y}_{\mathrm{k}}, \mathrm{w}_{\mathrm{k}}\right]^{\top} * /$
$\{3\} \quad$ if $\boldsymbol{p}^{\top} \mathbf{x}_{k} \geq 0$ then $\mathbf{c}_{k}:=1$ else $c_{k}:=0$;
$\{4\}$ if $\mathbf{c}=[0 \ldots 0]^{\top}$ or $\mathbf{c}=[1 \ldots 1]^{\top}$ then EXIT;
$\{5\} \mathrm{i}:=\mathrm{TAB1}[\mathbf{c}] ; \quad \mathrm{j}:=\mathrm{TAB} 2[\mathbf{c}] ;$
$\{6\} \mathbf{x}_{\mathrm{A}}:=\mathbf{p} \times \mathbf{e}_{\mathrm{i}} ; \quad \mathbf{x}_{\mathrm{B}}:=\mathbf{p} \times \mathbf{e}_{\mathrm{j}} ;$
\{7\} DRAW ($\mathbf{x}_{\mathrm{A}} ; \mathbf{x}_{\mathrm{B}}$) $\quad * \mathbf{e}_{\mathrm{i}}$ - i-th edge $* /$ end /* CLIP_Line */
/* c identifies an edge intersected */
TOO COMPLEX?

Line clipping algorithms in E^{2}
Cohen-Sutherland

- Liang-Barsky
- Hodgman
- Skala - modification of Clip_L for line segments

NO SI MPLE, ROBUST and FAST

- Skala,V.: A new approach to line and line segment clipping in homogeneous coordinates, The Visual Computer, SpringerVol.21, No.11, pp.905-914, 2005

Eurographics 2013

For a rectangular normalized window
$\mathbf{x}_{\mathrm{A}}:=\mathbf{p} \times \mathbf{e}_{\mathrm{i}}$
For the edge $y=-1$, i.e. $y+1=0$

$$
\begin{gathered}
\boldsymbol{x}_{A}=\left[x_{A}, y_{A}: w_{A}\right]^{T}=\left|\begin{array}{lll}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
a & b & c \\
0 & 1 & 1
\end{array}\right|=[b-c,-a: a] \\
\triangleq\left[\frac{b-c}{a}, \frac{-a}{a}: 1\right]^{T}=\left[\frac{b-c}{a},-1: 1\right]^{T}
\end{gathered}
$$

Actually expression for y_{A}, resp. for x_{A} is given by the window edge.
No multiplication or division operations
A simple modification if a line is given (in the Euclidean or projective space) as

$$
\boldsymbol{x}(t)=\boldsymbol{x}_{A}+\boldsymbol{s} t
$$

Simple modification for non-convex polygon but it requires intersections sorting $=>O(M \lg M)$

Eurographics 2013

/* Additional code for Line Segment clipping colored */
function CODE (x); /* Cohen Sutherland window coding */
begin c:= [0000]; /* land / Ior - bitwise operations and / or */
if $x<x_{\text {min }}$ then $c:=[1000]$ else if $x>x_{\max }$ then $c:=[0100]$;
if $\mathrm{y}<\mathrm{y}_{\text {min }}$ then $\mathrm{c}:=\mathbf{c}$ lor [1001] else if $\mathrm{y}>\mathrm{y}_{\max }$ then $\mathrm{c}:=\mathbf{c}$ Ior [0010]; CODE := c end /*CODE */;
procedure Clip_LineSegment $\left(\mathbf{x}_{\mathrm{A}}, \mathbf{x}_{\mathrm{B}}\right)$; /* short x long line segments $* /$ begin $c_{A}:=\operatorname{CODE}\left(x_{A}\right) ; \quad c_{B}:=\operatorname{CODE}\left(x_{B}\right) ;$
$\begin{array}{ll}\text { if }\left(\mathbf{c}_{\mathrm{A}} \operatorname{lor} \mathbf{c}_{\mathrm{B}}\right)=\mathbf{0} \text { then \{ output }\left(\mathbf{x}_{\mathrm{A}} ; \mathbf{x}_{\mathrm{B}}\right) ; \text { EXIT \}} \\ \text { if }\left(\mathbf{c}_{\mathrm{A}} \text { land } \mathbf{c}_{\mathrm{B}}\right) \neq \mathbf{0} \text { then EXIT; } & /^{*} \text { inside } * / \\ /^{*} \text { outside } * /\end{array}$
$\mathbf{p}:=\mathbf{x}_{\mathrm{A}} \times \mathbf{x}_{\mathrm{B}} ; \quad / * \mathrm{ax}+\mathrm{by}+\mathrm{c}=0 ; \mathbf{p}=[\mathrm{a}, \mathrm{b}: \mathrm{c}]^{\top} * /$
for $k:=0$ to 3 do $\quad / * x_{k}=\left[x_{k}, y_{k}: w_{k}\right]^{\top} \quad \mathbf{c}=\left[c_{3}, c_{2}, c_{1}, c_{0}\right]^{\top} * /$
if $\mathbf{p}^{\top} \mathbf{x}_{k} \geq 0$ then $c_{k}:=1$ else $c_{k}:=0$;
if $\mathbf{c}=[0000]^{\top}$ or $\mathbf{c}=[1111]^{\top}$ then EXIT;
$\mathrm{i}:=\operatorname{TAB} 1[\mathbf{c}] ; \quad \mathrm{j}:=\operatorname{TAB} 2[\mathbf{c}] ;$
/* original code $\mathbf{x}_{\mathrm{A}}:=\mathbf{p} \times \mathbf{e}_{\mathrm{i}} ; \mathbf{x}_{\mathrm{B}}:=\mathbf{p} \times \mathbf{e}_{\mathrm{j}} ;$ DRAW $\left(\mathbf{x}_{A} ; \mathbf{x}_{\mathrm{B}}\right){ }^{*} /$

Eurographics 2013

/* additional code for Line Segment clipping */
if $c_{A} \neq 0$ and $c_{B} \neq 0$
then $\left\{\mathbf{x}_{\mathrm{A}}:=\mathbf{p} \times \mathbf{e}_{\mathrm{i}} ; \mathbf{x}_{\mathrm{B}}:=\mathbf{p} \times \mathbf{e}_{\mathrm{j}}\right\} / *$ two intersections $* /$
else /* only one intersection point */
if $\mathbf{c}_{\mathrm{A}}=\mathbf{0}$ then /* \mathbf{x}_{B} is outside */
\{ if \mathbf{c}_{B} land $\mathrm{MASK}[\mathbf{c}] \neq \mathbf{0}$
then $\mathbf{x}_{\mathrm{B}}:=\mathbf{p} \times \mathbf{e}_{\mathrm{i}}$
else $\mathbf{x}_{\mathrm{B}}:=\mathbf{p} \times \mathbf{e}_{\mathrm{j}}$
\}
else if $\mathbf{c}_{\mathrm{B}}=\mathbf{0}$ then $/ * \mathbf{x}_{\mathrm{A}}$ is outside */ $\left\{\right.$ if \mathbf{c}_{A} land MASK[$\left.\mathbf{c}\right] \neq \mathbf{0}$
then $\mathbf{x}_{\mathrm{A}}:=\mathbf{p} \times \mathbf{e}_{\mathrm{i}}$
else $x_{A}:=p \times \mathbf{e}_{j}$
\};
output ($\mathrm{x}_{\mathrm{A}}, \mathrm{x}_{\mathrm{B}}$)
end /* Clip_LineSegment */

\mathbf{C}	c_{3}	c_{2}	c_{1}	c_{0}	TAB1	TAB2	MASK
0	0	0	0	0	None	None	None
1	0	0	0	1	0	3	0100
2	0	0	1	0	0	1	0100
3	0	0	1	1	1	3	0010
4	0	1	0	0	1	2	0010
5	0	1	0	1	$\mathrm{~N} / \mathrm{A}$	N / A	N / A
6	0	1	1	0	0	2	0100
7	0	1	1	1	2	3	1000
8	1	0	0	0	2	3	1000
9	1	0	0	1	0	2	0100
10	1	0	1	0	$\mathrm{~N} / \mathrm{A}$	N / A	N / A
11	1	0	1	1	1	2	0010
12	1	1	0	0	1	3	0010
13	1	1	0	1	0	1	0100
14	1	1	1	0	0	3	0100
15	1	1	1	1	None	None	None

Algorithm can be extended to convex polygon clipping \& modified for parametric lines as well
For a convex n-sided polygon the table can be generated synthetically.

Eurographics 2013

Computation in Projective Space - Barycentric coordinates
Let us consider a triangle with vertices $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \boldsymbol{X}_{31}$
A position of any point $\boldsymbol{X} \in E^{2}$ can be expressed as

$$
\begin{gathered}
a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}=X \\
a_{1} Y_{1}+a_{2} Y_{2}+a_{3} Y_{3}=Y
\end{gathered}
$$

Additional condition:

$$
\begin{gathered}
a_{1}+a_{2}+a_{3}=1 \\
0 \leq a_{i} \leq 1 \quad i=1, \ldots, 3 \\
a_{i}=\frac{P_{i}}{P}
\end{gathered}
$$

Linear system has to be solved
If points \boldsymbol{x}_{i} are given as $\boldsymbol{x}_{i}=\left[x_{i}, y_{i}, z_{i}: w_{i}\right]^{T}$ and $w_{i} \neq 1$ then \boldsymbol{x}_{i} have to be "normalized" to $w_{i}=1$, i.e. $4 * 3=12$ division operations are used.

Eurographics 2013

Computation in Projective Space

$$
\begin{gathered}
b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}+b_{4} X=0 \\
b_{1} Y_{1}+b_{2} Y_{2}+b_{3} Y_{3}+b_{4} Y=0 \\
b_{1}+b_{2}+b_{3}+b_{4}=1 \quad b_{i}=-a_{i} b_{4} \quad b_{4} \neq 0 \quad i=1, \ldots, 3
\end{gathered}
$$

Rewriting

$$
\left[\begin{array}{cccc}
X_{1} & X_{2} & X_{3} & X \\
Y_{1} & Y_{2} & Y_{3} & Y \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]=\mathbf{0} \quad \begin{gathered}
\boldsymbol{b}=\left[b_{1}, b_{2}, b_{3}, b_{4}\right]^{T} \\
\boldsymbol{\xi}=\left[X_{1}, X_{2}, X_{3}, X\right]^{T} \\
\boldsymbol{\eta}=\left[Y_{1}, Y_{2}, Y_{3}, Y\right]^{T} \\
\boldsymbol{\omega}=[1,1,1,1]^{T}
\end{gathered}
$$

A solution of the linear system of equations (LSE) is equivalent to generalized cross product:

$$
b=\xi \times \boldsymbol{\eta} \times \boldsymbol{\omega}
$$

Eurographics 2013

Computation in Projective Space

For $w_{i} \neq 0$ each column can be multiplied by the relevant w_{i}

$$
\left[\begin{array}{cccc}
w_{1} X_{1} & w_{2} X_{2} & w_{3} X_{3} & w X \\
w_{1} Y_{1} & w_{2} Y_{2} & w_{3} Y_{3} & w Y \\
w_{1} & w_{2} & w_{3} & w
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]=\mathbf{0} \quad\left[\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x \\
y_{1} & y_{2} & y_{3} & y \\
w_{1} & w_{2} & w_{3} & w
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]=\mathbf{0}
$$

where again

$$
\boldsymbol{b}=\left[b_{1}, b_{2}, b_{3}, b_{4}\right]^{T} \quad \xi=\left[x_{1}, x_{2}, x_{3}, x\right]^{T} \quad \boldsymbol{\eta}=\left[y_{1}, y_{2}, y_{3}, y\right]^{T} \quad \boldsymbol{\omega}=\left[w_{1}, w_{2}, w_{3}, w\right]^{T}
$$

Barycentric coordinates (Euclidean):

$$
0 \leq\left(-b_{1}: w_{2}, w_{3}, w\right) \leq 1 \quad 0 \leq\left(-b_{2}: w_{3}, w_{1}, w\right) \leq 1 \quad 0 \leq\left(-b_{3}: w_{1}, w_{2}, w\right) \leq 1
$$

$=>$ Tests - point in triangle, point in tetrahedron -

all in homogeneous coordinates

=> new entities: projective scalar, projective vector
(Skala,V.: Barycentric coordinates computation in homogeneous coordinates, Computers\&Graphics, 2008)

Eurographics 2013

Computation in Projective Space

Area of a triangle
Volume of a tetrahedron

$$
P=\frac{1}{2} \boldsymbol{x}_{1}^{T} \cdot\left(\boldsymbol{x}_{2} \times \boldsymbol{x}_{3}\right) /\left(w_{1} w_{2} w_{3}\right) \quad V=\frac{1}{6} \boldsymbol{x}_{1}^{T} \cdot\left(\boldsymbol{x}_{2} \times \boldsymbol{x}_{3} \times \boldsymbol{x}_{4}\right) /\left(w_{1} w_{2} w_{3} w_{4}\right)
$$

As the principle of duality is valid, one could ask: What is a "dual" value G to a computation of the area P if the triangle is given by three lines in the "normalized" form, e.g. $\boldsymbol{a}_{1}^{T} .\left(\boldsymbol{a}_{2} \times \boldsymbol{a}_{3}\right)$ instead of three points?

$$
\begin{gathered}
G=\boldsymbol{a}_{\mathbf{1}}^{\boldsymbol{T}} \cdot\left(\boldsymbol{a}_{\mathbf{2}} \times \boldsymbol{a}_{\mathbf{3}}\right) \triangleq\left|\begin{array}{ccc}
\cos \alpha_{1} & \cos \alpha_{2} & \cos \alpha_{3} \\
\sin \alpha_{1} & \sin \alpha_{2} & \sin \alpha_{3} \\
d_{1} & d_{2} & d_{3}
\end{array}\right|=\left|\begin{array}{ccc}
1 & \cos \alpha_{2} & \cos \alpha_{3} \\
0 & \sin \alpha_{2} & \sin \alpha_{3} \\
0 & 0 & d_{3}
\end{array}\right|=d_{3} \sin \alpha_{2} \\
=d_{3} \cdot a /(2 R)=P / R
\end{gathered}
$$

It can be seen that $G=d_{3} \sin \alpha_{2}=P / R$, where: a is the length of the line segment on \boldsymbol{a}_{3} and R is a radius of the circumscribing circle.
$=>$ value G can be used as criterion for a quality triangular meshes.

- Skala,V.: Geometric Computation, Duality and Projective Space, IW-LGK workshop proceedings, ISBN 978-3-86780-244-4, pp.105-111, Dresden University of Technology, 2011

Eurographics 2013

Computation in Projective Space

Line in $E^{\mathbf{3}}$ as Two Plane Intersection

Standard formula in the Euclidean space

$$
\boldsymbol{\rho}_{1}=\left[a_{1}, b_{1}, c_{1}: d_{1}\right]^{T}=\left[\boldsymbol{n}_{1}^{T}: d_{1}\right]^{T} \quad \boldsymbol{\rho}_{2}=\left[a_{2}, b_{2}, c_{2}: d_{2}\right]^{T}=\left[\boldsymbol{n}_{2}^{T}: d_{2}\right]^{T}
$$

Line given as an intersection of two planes

$$
\begin{array}{cc}
\boldsymbol{s}=\boldsymbol{n}_{1} \times \boldsymbol{n}_{2} \equiv\left[a_{3}, b_{3}, c_{3}\right]^{T} & \boldsymbol{x}(t)=\boldsymbol{x}_{0}+\boldsymbol{s} t \\
x_{0}=\frac{d_{2}\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{3} & c_{3}
\end{array}\right|-d_{1}\left|\begin{array}{ll}
b_{2} & c_{2} \\
b_{3} & c_{3}
\end{array}\right|}{D E T} & y_{0}=\frac{d_{2}\left|\begin{array}{ll}
a_{3} & c_{3} \\
a_{1} & c_{1}
\end{array}\right|-d_{1}\left|\begin{array}{ll}
a_{3} & c_{3} \\
a_{2} & c_{2}
\end{array}\right|}{D E T} \\
z_{0}=\frac{d_{2}\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{3} & b_{3}
\end{array}\right|-d_{1}\left|\begin{array}{ll}
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right|}{D E T} & D E T=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
\end{array}
$$

The formula is quite "horrible" one and for students not acceptable as it is too complex and they do not see from the formula comes from.

Eurographics 2013

Computation in Projective Space

Line in E3 as Two Plane Intersection

- Standard formula in the Euclidean space
- Plücker's coordinates a line is given by two points. DUALITY - a point is dual to a plane and vice versa => an intersection of two planes can be computed as

$$
\hat{Z} \quad \mathbf{q}(\tau)=\frac{\boldsymbol{\omega} \times \mathbf{v}}{\|\mathbf{v}\|^{2}}+\mathbf{v} \tau
$$

$$
\omega=\left[\begin{array}{lll}
l_{41} & l_{42} & l_{43}
\end{array}\right]^{T} \quad \mathbf{v}=\left[\begin{array}{lll}
l_{23} & l_{31} & l_{12}
\end{array}\right]^{T}
$$

$$
\mathbf{L}=\mathbf{a}_{0} \mathbf{a}_{1}^{T}-\mathbf{a}_{\mathbf{1}} \mathbf{a}_{0}^{T} \quad \text { tensor product }- \text { matrix }
$$

$$
\mathbf{a}_{i}=\left[a_{i}, b_{i}, c_{i}, d_{i}\right]^{T} \quad i=1,2
$$ a dual problem

But computationally expensive computation

- Projective formulation and simple computation

Eurographics 2013

Computation in Projective Space

Line in E3 as Two Plane Intersection

$\boldsymbol{\rho}_{1}=\left[a_{1}, b_{1}, c_{1}: d_{1}\right]^{T} \boldsymbol{\rho}_{2}=\left[a_{2}, b_{2}, c_{2}: d_{2}\right]^{T}$
normal vectors are
$\boldsymbol{n}_{1}=\left[a_{1}, b_{1}, c_{1}\right]^{T} \quad \boldsymbol{n}_{2}=\left[a_{2}, b_{2}, c_{2}\right]^{T}$
Directional vector of a line of two planes ρ_{1} and ρ_{1} is given as

$$
\boldsymbol{s}=\boldsymbol{n}_{1} \times \boldsymbol{n}_{2}
$$

"starting" point x_{0} ???

A plane $\boldsymbol{\rho}_{0}$ passing the origin with a normal vector $\boldsymbol{s}, \boldsymbol{\rho}_{0}=\left[a_{0}, b_{0}, c_{0}: 0\right]^{T}$
The point x_{0} is defined as

$$
\boldsymbol{x}_{0}=\boldsymbol{\rho}_{1} \times \rho_{2} \times \rho_{0}
$$

Simple formula for matrix-vector architectures like GPU and parallel processing. Compare the standard and projective formulas

Eurographics 2013

Computation in Projective Space - the nearest point
Find the nearest point on an intersection of two planes to the given point ξ
Simple solution:

- Translate planes ρ_{1} and ρ_{2} so the ξ is in the origin
- Compute intersection of two planes i.s. \boldsymbol{x}_{0} and \boldsymbol{s}
- Translate \boldsymbol{x}_{0} using \boldsymbol{T}^{-1}

Again - an elegant solution, simple formula supporting matrix-vector architectures like GPU and parallel processing

Solution DETAILS next

Known solution using Lagrange multipliers

$$
\left[\begin{array}{ccccc}
2 & 0 & 0 & n_{1 x} & n_{2 x} \\
0 & 2 & 0 & n_{1 y} & n_{2 y} \\
0 & 0 & 2 & n_{1 z} & n_{2 z} \\
n_{1 x} & n_{1 y} & n_{1 z} & 0 & 0 \\
n_{2 x} & n_{2 y} & n_{2 z} & 0 & 0
\end{array}\right]\left(\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
\lambda \\
\mu
\end{array}\right)=\left(\begin{array}{c}
2 p_{0 x} \\
2 p_{0 y} \\
2 p_{0 z} \\
\vec{p}_{1} \cdot \vec{n}_{1} \\
\vec{p}_{2} \cdot \vec{n}_{2}
\end{array}\right)
$$

Krumm,J.: Intersection of Two Planes, Microsoft Research

Eurographics 2013

The closest point to an intersection of two planes

In some applications we need to find a closest point on a line given as an intersection of two planes. We want to find a point $\xi_{0}{ }^{\prime}$, the closest point to the given point ξ, which lies on an intersection of two planes
$\boldsymbol{\rho}_{1} \triangleq\left[\boldsymbol{n}_{1}^{T}: d_{1}\right]^{T}$ and $\boldsymbol{\rho}_{2} \triangleq\left[\boldsymbol{n}_{2}^{T}: d_{2}\right]^{T}$
This problem was recently solved by using Lagrange

multipliers and an optimization approach leading to a solution of a system of linear equations with 5 equations.

Eurographics 2013

Solution in the projective space

1.Translate the given point $\xi=\left[\xi_{x}, \xi_{y}, \xi_{z}: 1\right]^{T}$ to the origin - matrix \boldsymbol{Q}
2.Compute parameters of the given planes ρ_{1} and ρ_{2} after the transformation as $\boldsymbol{\rho}_{1}^{\prime}=\boldsymbol{Q}^{-T} \boldsymbol{\rho}_{1}$ and $\boldsymbol{\rho}_{2}^{\prime}=\boldsymbol{Q}^{-T} \boldsymbol{\rho}_{2}$,
3. Compute the intersection of those two planes ρ_{1}^{\prime} and ρ_{2}^{\prime}
4.Transform the point ξ_{0} to the original coordinate system using transformation

$$
\begin{aligned}
& \boldsymbol{n}_{0}=\boldsymbol{n}_{1} \times \boldsymbol{n}_{2} \quad \boldsymbol{\rho}_{0} \triangleq\left[\boldsymbol{n}_{0}^{T}: 0\right]^{T} \quad \xi_{0}=\boldsymbol{\rho}_{1} \times \boldsymbol{\rho}_{2} \times \boldsymbol{\rho}_{0} \quad \xi_{0}^{\prime}=\boldsymbol{Q}^{-1} \xi_{0} \\
& \boldsymbol{Q}=\left[\begin{array}{cccc}
1 & 0 & 0 & -\xi_{x} \\
0 & 1 & 0 & -\xi_{y} \\
0 & 0 & 1 & -\xi_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \quad \boldsymbol{Q}^{-T}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\xi_{x} & \xi_{y} & \xi_{z} & 1
\end{array}\right] \quad \boldsymbol{Q}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & \xi_{x} \\
0 & 1 & 0 & \xi_{y} \\
0 & 0 & 1 & \xi_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

It is simple, easy to implement on GPU.

Eurographics 2013

Curves and surfaces

Rational Bézier curve - Euclidean $X=[X, Y, Z]^{T}$

$$
\boldsymbol{X}(t)=\frac{\sum_{i=0}^{n} B_{i}^{n}(t) w_{i} q_{i}}{\sum_{i=0}^{n} B_{i}^{n}(t) w_{i}} \quad 0 \leq t \leq 1 \quad B_{i}^{n}\binom{n}{i}(1-t)^{n-1} t^{i}
$$

$1^{\text {st }}$ derivative

$$
\left[\frac{a}{b}\right]^{\prime}=\frac{a^{\prime} b-a b^{\prime}}{b^{2}}
$$

quite complicated Projective $\boldsymbol{x}=[x, y, z: w]^{T}$

$$
\boldsymbol{x}(t)=\sum_{i=0}^{n} B_{i}^{n}(t) q_{i} \quad \boldsymbol{x}^{\prime}(t)=\sum_{i=0}^{n} B_{i}^{n}(t) q_{i}
$$

How simple!

Eurographics 2013

Computation in Projective Space

Disadvantages

- Careful handling with formula as the projective space
- "Oriented" projective space is to be used, i.e. $w \geq 0$; HW could support it
- Exponents of homogeneous vectors can overflow
o exponents should be normalized; HW could support it unfortunately not supported by the current hardware
o P_Lib - library for computation in the projective space - uses SW solution for normalization on GPU (C\# and C++)

Eurographics 2013

Computation in Projective Space

Advantages

- "Infinity" is well represented
- No division operation is needed, a division operation can be hidden to the homogeneous coordinate
- Many mathematical formula are simpler and elegant
- One code sequence solve primary and dual problems
- Supports matrix-vector operations in hardware - like GPU etc.
- Numerical computation can be faster
- More robust and stable solutions can be achieved
- System of linear equations can be solved directly without division operation, if exponent normalization is provided

Eurographics 2013

I mplementation aspects and GPU

- GPU (Graphical Processing Unit) -optimized for matrix-vector, vector-vector operation - especially for $[x, y, z: w]^{\top}$
- Native arithmetic operations with homogeneous coordinates without exponent "normalization"
- Programmable HW - parallel processing

Eurographics 2013

I mplementation aspects and GPU

4D cross product can be implemented in Cg/HLSL on GPU (not optimal implementation) as:
float4 cross_4D(float4 $\times 1$, float 4×2, float 4×3)
\{ float4 a; \# simple formula \#

```
    a.x=dot(x1.yzw, cross(x2.yzw, x3.yzw));
    a.y=-dot(x1.xzw, cross(x2.xzw, x3.xzw));
    a.z=dot(x1.xyw, cross(x2.xyw, x3.xyw));
    a.w=-dot(x1.xyz, cross(x2.xyz, x3.xyz));
    return a;
```

\}
\# more compact formula available \#

Eurographics 2013

Appendix

Data processing - main field in computer science
Data processing itself can be split to two main areas:

- processing of textual data
limited interval of values, unlimited dimensionality
[a char as one dimension -
Methionylthreonylthreonylglutaminylarginyl..isoleucine 189,819 chars]
No interpolation is defined
- processing of numerical data
unlimited interval of values, limited dimensionality - usually 2 or 3
Interpolation can be used

	Textual	Graphical
Dim	∞	2,3
Interval	$0-255($ ASCII $)$	$(-\infty, \infty)$

Eurographics 2013

Hash functions

- usually used for textual data processing
- prime numbers and modulo used

Usual form Addr $=[3 x+5 y+7 z] \bmod$ size
multiplication int $*$ float needed

Eurographics 2013

If the hash function is constructed as
$A d d r=\lfloor C(\alpha x+\beta y+\gamma z)\rfloor \bmod m$
where α, β, γ are "irrational" numbers and $m=2^{k}$ better distribution is obtained => much faster processing.
C is a "magic" constant which maps the expression for $<$
$x_{\text {min }}, x_{\text {max }}>$ to (0, maxint)

$A d d r=\lfloor C(\alpha x+\beta y+\gamma z)\rfloor$ and $\left(2^{\mathrm{k}}-1\right)$

- Hradek,J., Skala,V.: Hash Function and Triangular Mesh Reconstruction, Vol.29, No.6., pp.741-751, Computers\&Geosciences, Pergamon Press, ISSN 0098-3004, 2003

Eurographics 2013

Textual processing

The has function is constructed as
$h(\boldsymbol{x})=\left(C * \sum_{i=1}^{L} q^{i} x_{i}\right) \boldsymbol{\operatorname { m o d }} m$
q,,irrational" $0<q<1$
$m=2^{k}-1$
Both geometrical and textual
 hash function design have the same approach coefficients are "irrational" and no division operation is needed.

Some differences for Czech, Hebrew, English, German, Arabic, ... languages and "chemical" words.

Eurographics 2013

Summary and conclusion

We have got within this course an understanding of:

- projective representation use for geometric transformations with points, lines and planes
- principle of duality and typical examples of dual problems, influence to computational complexity
- intersection computation of two planes in E3, dual Plücker coordinates and simple projective solution
- geometric problems solution with additional constrains
- intersection computations and interpolation algorithms directly in the projective space
- barycentric coordinates computation on GPU
- avoiding or postponing division operations in computations

Projective space representation supports matrix-vector architectures like GPU - faster, robust and easy to implement algorithms achieved

Eurographics 2013

References

- Skala,V.: Barycentric Coordinates Computation in Homogeneous Coordinates, Computers \& Graphics, Elsevier, ISSN 0097-8493, Vol. 32, No.1, pp.120-127, 2008
- Skala,V.: Intersection Computation in Projective Space using Homogeneous Coordinates, Int. Journal of Image and Graphics, ISSN 0219-4678, Vol.7, No.4, pp.615-628, 2008
- Skala,V.: Length, Area and Volume Computation in Homogeneous Coordinates, Int. Journal of Image and Graphics, Vol.6., No.4, pp.625-639, ISSN 0219-4678, 2006
- Skala,V., Kaiser,J., Ondracka,V.: Library for Computation in the Projective Space, 6th Int.Conf. Aplimat, Bratislava, ISBN 978-969562-4-1, pp. 125-130, 2007
- Skala,V.: GPU Computation in Projective Space Using Homogeneous Coordinates, Game Programming GEMS 6 (Ed.Dickheiser,M.), pp.137-147, Charles River Media, 2006
- Skala,V.: A new approach to line and line segment clipping in homogeneous coordinates, The Visual Computer, Vol.21, No.11, pp.905-914, Springer Verlag, 2005
- Skala,V.: Geometric Computation, Duality and Projective Space, IW-LGK workshop proceedings, ISBN 978-3-86780-244-4, pp.105-111, Dresden University of Technology, 2011
- Generally: "Publications with on-line DRAFTs" via http:// www.VaclavSkala.eu

References related

- Agoston,M.K.: Computer Graphics and Geometric Modeling - Mathematics, ISBN 1-58233-817-2, Springer, 2005
- Ammeral,L: Programming Principles in Computer Graphics, John Wiley, 1986

Eurographics 2013

- Miller,J.R., The Mathematics of Graphical Transformations: Vector Geometric and Coordinate-Based Approaches, DesignLab, 1997
- Yamaguchi,F.:Computer-Aided Geometric Design: A Totally Four-Dimensional Approach, Springer, 2002

Eurographics 2013

?? Questions ??

Contact: Vaclav Skala
c/o University of West Bohemia CZ 30614 Plzen, Czech Republic
http://www.VaclavSkala.eu skala@kiv.zcu.cz subj. EG 2013

I NVI TATI ON
WSCG conference on Computer Graphics, Visualizaction and Computer Vision 2013
since 1992
http://www.wscg.eu http://www.wscg.cz
J une 24-27, 2013

Supported by the Ministry of Education of the Czech Republic, projects No. ME10060, LH12181, LG13047

