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Abstract

We present an application for mobile devices, that allows any user, even without background in computer vision,
to capture a complete set of images, that is suitable for a multi-view stereo reconstruction. Compared to related
tasks, such as panorama capture, this setting is much harder, as the camera needs to move unrestricted in 3D
space. Our system uses structure from motion to register captured images and generates a sparse reconstruction
of the scene. The dataset is built in an incremental procedure, where the next best view is computed with a novel
view planning strategy, that aims for a good coverage of the scene. The user is then guided towards the new view,
and the image is captured automatically at the right position. The next iteration starts after the reconstruction has
been updated. The quality of the resulting dataset is on par with datasets captured by an expert user.

Categories and Subject Descriptors (according to ACM CCS): I.4.1 [Image Processing and Computer Vision]: Dig-
itization and Image Capture—Scanning

1. Introduction

With the constant development of computer graphics 3D
content is becoming an essential part of visual applications.
Today, even small mobile devices can render complex mod-
els. Nevertheless, an average user rarely experiences this in
an everyday environment. While online platforms such as
YouTube or Flickr are a great way to view, explore, and
share videos or photos, there exists no such platform for
3D content. One limiting factor is probably the actual cre-
ation of appropriate models. While it is trivial to capture
images, panoramas, or videos with mobile devices, there
is no easy way to also capture 3D data. Some applications
such as Autodesk’s 123D Catch are pushing casual creation
of content via image-based multi-view reconstruction. But
their capture method is not really comfortable: Since the re-
construction system is purely cloud-based, all images must
be uploaded to a central server, and a final model is then
delivered some time later. The user therefore lacks imme-
diate feedback about the quality of the dataset. If the im-
ages are too loosely connected, the reconstruction may fail.
[HKR∗12] show, that direct feedback about the reconstruc-
tion can improve the capturing process even for experienced
users. However, they rely on a nearby workstation to perform
all computations and expect the user to capture the right im-
ages manually. We want to provide a convenient way of mo-
bile capturing for average users that is independent of a net-

work connection, and does not require complex interactions.
In an ideal scenario one would just move the device around
an object while good images are captured automatically.

Elaborate applications that actively support the capturing
process already exist for special purposes such as panora-
mas. In our setting, however, the camera moves freely in 3D
space and does not just rotate around its center. Therefore the
registration of captured images, as well as user guidance is
more complicated. Recent approaches such as [KM09] use
camera phones for localization and mapping in the context
of augmented reality. Moving one step further, we present
an application that registers all captured images, creates a
sparse reconstruction, and uses this data to estimate new
views and to guide the capturing process. The whole sys-
tem is automated and the only user interaction needed is to
actually move the device.

2. Related work

Image registration techniques, that operate in realtime and
also provide an approximate reconstruction of the scene, are
mostly based on a simultaneous localization and mapping
(SLAM) approach [LDW91,DRMS07,KM09]. These meth-
ods are built for frame-to-frame video tracking, do not nec-
essarily provide a globally optimal model for wide baseline
view changes, and need special techniques for loop clos-
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ing [New05]. In contrast, we require a certain reconstruc-
tion quality as we also want to compute new viewpoints,
that explore the capture target. Therefore, we use incremen-
tal structure from motion (SfM) similar to [SSS06], which
provides an accurate global registration and reconstruction.
This also allows us to capture high quality still images (in-
stead of a video stream), which are more suitable for multi-
view stereo algorithms [FP10, HKLP09, GSC∗07]. Previous
works on next best view estimation are often restricted to
a specific setting such as polyhedral objects [WDAN07].
Other methods require a complete 3D reconstruction at each
iteration [DF09], or a specific lab setting without occlu-
sions [TMD10]. We show a new technique, that works with
any textured object, and relies only on the sparse SfM output
for view planning. [BAD10] already explored how to guide
a user in the context of rephotography. We solve a similar
problem with the key difference, that we do not know what
the new image actually looks like.

3. Guided capture

We propose a complete system for multi-view capture, de-
signed to run on current smartphones, specifically the iPhone
5. To capture a dataset the user first acquires 6 images, which
are used to initialize the SfM reconstruction. We then esti-
mate a new view that extends the reconstruction and assist
the user in capturing this view. The reconstruction is then
updated and the next iteration starts with the view planning.

Structure from motion Our SfM approach is based on typ-
ical algorithms with some modifications to speed up com-
putation on mobile devices. First, we search for point corre-
spondences between the images using ORB image features
[RRKB11], as they currently provide the best runtime per-
formance. ORB extracts binary image features, that can be
matched efficiently with multi-probe locality-sensitive hash-
ing [LJW∗07]. Once correspondences are established, we
compute the camera projection matrices and the 3D position
of all corresponding features using standard techniques. To
establish a globally optimal model we run a nonlinear least
squares optimization [AM12] over all parameters.

View planning Previous view planning approaches often
work in a laboratory environment, which is not as runtime
focused as our application. We propose a technique, that
computes an approximate next best view (NBV) in less than
a second. As we cannot build a view planning for general
scenes, we restrict our capture setting to one or a few objects,
that are captured by moving the camera around the scene.

We approximate the scene by discretizing its volume into
a voxel grid. The purpose of this grid is to identify space,
that has already been observed and does not need be seen
by another view again. Every NBV is intended to observe as
much unknown volume as possible. We thus ensure, that by
adding new views we capture additional scene geometry. To

Figure 1: Left: rays are traced from every camera, to their
corresponding 3D points. Right: all observed voxels are
marked green.

30° 30°

Figure 2: Left: A new view lies on the sphere and has to
be inside the bounds. The resulting search region is marked
gray. Right: The NBV (red) is chosen to maximize potential
new volume U(v) (blue) and to minimize already observed
volume O(v) (orange)

Figure 3: Generation of the preview image corresponding to
the NBV. Patches around reconstructed features in neighbor-
ing views are projected into the new image (dashed outline)
according to the NBV’s parameters.

build the volume we use the 3D SfM points. We select only
points, that are close to the center of mass (in terms of stan-
dard deviation), and assume that this point cloud resembles
at least parts of the object. We build our volume around the
points as an axis-aligned voxel grid with N voxels in each
dimension. For further processing we found N = 13 to give
a good tradeoff between runtime and accuracy. As the scene
will extend over time we increase the volume by a factor of
1.5 in all dimensions. Next, we determine which parts of this
volume are already covered by the views captured so far. The
idea here is, that if a 3D point was reconstructed from a set
of cameras, they have seen the point and therefore all space
between the camera and this point must be empty. The cam-
era consequently has observed all voxels, that lie along the
ray from the camera to the particular point, at least partly.
To find these observed voxels we intersect a ray from each
camera to each of its reconstructed points with all voxels of
the volume as shown in Figure 1 using [EGMM07]. If the
ray hits a voxel before the actual point, we label the voxel
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as observed, which results in an approximation of the scene
volume that is already captured with our current views.

As we want to capture objects, the views will be dis-
tributed roughly on a surrounding sphere estimated from
the camera positions of the current SfM reconstruction. The
NBV is required to lie on this sphere, and to look at the ob-
ject center. To find a specific position on the sphere, we use
spherical coordinates. We also define bounds to the parame-
ters, as the viewing angle between the new view and previous
ones must be smaller than 30° in order to ensure, that enough
feature matches can be found (see Figure 2). We finally for-
mulate the search for the best position inside the bounds as
an energy minimization problem. Because of the restriction
to only two parameters, the search can be done very quickly.
We define the energy of a view v depending on the number
of newly observed voxels U(v), the number of already ob-
served voxels O(v), and the distance d to previous views in
the set P. As some views might be computed at a physically
infeasible position, the user will have the option to reject a
NBV during the capturing process. To make sure, that we
do not visit rejected views R again, we also maximize the
distance towards this set. The final energy is

E(v) = 2 ·O(v)−U(v)+α ∑
c∈P

1
d(v,c)

+β ∑
r∈R

1
d(v,r)

. (1)

Where the parameters α = 4 ·ξ and β = 12 ·ξ are determined
based on the radius ξ of the sphere, since we always have an
arbitrary scaling of the SfM reconstructed scene. Therefore
we need to ensure, that the energy of the distance is compat-
ible to the energy of the voxels. To compute O(v) and U(v)
we determine the projection matrix of the view from the cur-
rent parameter set and estimate which voxels are inside a po-
tential camera frustum or not. Due to the discrete structure
of the volume we cannot compute the gradient of the energy
function. Therefore we minimize the energy using the com-
plex method [Box65] which does not use gradients and also
deals with bounds during the optimization.

Guiding the user In order to actually capture a computed
view, we need the user to move the device into the correct
position. We use the phone display to provide guiding in two
ways: First, we present an estimate of how the new image
has to look like, in order to give a global impression of the
camera position and viewing angle. Second, we show an ap-
proximation of the direction towards the exact 3D position.

To generate a preview of the current NBV we use the re-
constructed 3D positions of image features in neighboring
views. As we know the depth of the features, we can project
small patches from the neighbors into the NBV. The overall
process is sketched in Figure 3. The approximation is then
shown as a semitransparent overlay over the current cam-
era preview and the user simply needs to align the two im-
ages. As this alignment can be somewhat ambiguous, we ad-
ditionally render an arrow that shows the direction towards
the NBV. To generate the arrow we track the camera position

by matching the current view with the reconstructed features
and project the direction towards the computed NBV into the
image plane. We also show the normalized distance towards
the targeted position to give an impression of the amount
of movement needed. An image is captured automatically if
the current position is close enough to the planned view to
approximate a viewing direction difference of less than 10 °.

4. Results

We show results of the capture process for a simple object
in Figure 4. User navigation to a new view typically takes
5 s to 30 s depending on the quality of the generated pre-
view and the users experience. It usually takes longer if the
preview is too vague, as the user has to rely on the arrow.
An example alignment is shown in Figure 5. We also ex-
perienced situations where the application was not able to
track the device towards the NBV position due to bad fea-
ture matches. This is of course undesired, but also indicates
that the NBV is not suitable for a multi-view reconstruction.
After a view has been captured successfully the integration
into the reconstruction takes 2 s to 20 s: The feature match-
ing and pose estimation is done constantly in about 1 s but
the global optimization gets more expensive when the num-
ber of images and 3D points increases. 25 to 30 images are
usually the limit, where the runtime becomes unreasonable.
The NBV planning itself is done in about 900 ms.

The final dataset contains high quality images, that are
all suitable for further processing. As shown in Figure 6, a
final multi-view stereo reconstruction is comparable to one
obtained from a dataset captured by an expert. Results for an
outdoor statue are shown in Figure 7. As the view planning is
intended to capture the scene from all possible directions, it
also generates positions, that are way above the ground and
cannot be captured casually. Therefore the ability to reject
views is important for the system. The final scene of this
experiment is shown in Figure 8.

5. Conclusion

We presented a first approach to guided capturing of multi-
view stereo datasets on mobile devices. Our technique does
not require previous knowledge about the scene and relies
exclusively on captured visual information. It explores the
scene automatically and can therefore assist any user, espe-
cially unexperienced ones.

The main deficit of the system is currently the compu-
tation time of the reconstruction optimization, which limits
a smooth usability for a high number of images. We also
want to incorporate additional sensors of mobile devices in
order to improve the position tracking. Finally, to evaluate
and improve the view planning and the guiding interface a
user study is part of future work.
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Figure 4: Left-to-right: An initially captured image, a gener-
ated preview, and the captured view for the preview.

Figure 5: Left-to-right: The alignment process for a specific
view of the giraffe scene. The distance decreases while the
device is moved according to the arrow.

Figure 6: Left: Multi-view stereo reconstruction with just the
initial set of images. Middle: Final reconstruction with 22
images. Right: Reconstruction from a dataset of 22 images
captured by an expert without explicit view planning.
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