
EUROGRAPHICS 2013 / M.- A. Otaduy, O. Sorkine Short Paper

GPU Roof Grammars

Cyprien Buron, Jean-Eudes Marvie and Pascal Gautron

Technicolor

(a) Hipped with halfway dormer (b) Haussmann-type (c) Normandy

Figure 1: GPU roof grammars allow for efficient modeling of complex roof structures. Note that gutters, chimneys, ridge tiles
and overhangs are also generated by the system.

Abstract

We extend GPU shape grammars [MBG∗12] to model highly detailed roofs. Starting from a consistent roof struc-
ture such as a straight skeleton computed from the building footprints, we decompose this information into local
roof parameters per input segments compliant with GPU shape grammars. We also introduce Join and Project
rules for a consistent description of roofs using grammars, bringing the massive parallelism of GPU shape gram-
mars to the benefit of coherent generation of global structures.

1. Introduction

Procedural methods provide an efficient way to model a
wide variety of elements composing large sceneries, such
as vegetation and buildings. CPU-based methods are gen-
erally based on the refinement of complex data structures.
While this approach is valuable on single-core systems, ef-
ficient parallel approaches tend to subdivide the work into
smaller independent tasks. In this way GPUs have been re-
cently used to improve interactive generation, edition and
visualization of such highly detailed models, especially in
massive scenes [LWW10,HWA∗10,MBG∗12]. In particular
Marvie et al. [MBG∗12] decomposed initial footprints into
1D atoms (segments). While enforcing massive parallelism,
global structures are lost in the process requiring ad-hoc so-
lutions for roof generation.

Our contributions bring parallelism to grammar-based
roof generation. First, a CPU component converts a global
roof structure computed from building footprints into local
roof information consistent with the 1D atoms of Marvie et
al. [MBG∗12]. This information typically include the target
roof height and slopes. We also enrich GPU shape grammars
[MBG∗12] with Join and Project rules to guide roof cre-

ation using the information distributed among the 1D atoms.
Following the GPU shape grammars pipeline (Figure 2), we
evaluate the new rules at interpretation stage to benefit from
the parallel processing capabilities of the graphics hardware.

2. Previous work

Procedural techniques are common for modeling objects
that can be built from growth and reduction processes, such
as vegetation and architecture. The object structure is de-
fined by grammar rules and parameters, where terminal
symbols may be substituted by shapes or textures. Vari-
ous grammar types have been developped for the genera-
tion of buildings and facades on the CPU, among which L-
systems [PM01], Split grammars [WWSR03], FL-systems
[MPB05] and CGA shape grammars [MWH∗06]. A frame-
work for interactive edition of buildings was also proposed
by [LWW08]. Kelly and Wonka [KW11] introduced an in-
teractive method based on extrusion profiles that replace
classical grammar rules. All these CPU-based methods have
a high memory and computational cost for object genera-
tion, and potential bandwidth issues when transferring the
geometry to the GPU for rendering.

c© The Eurographics Association 2013.

DOI: 10.2312/conf/EG2013/short/085-088

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/conf/EG2013/short/085-088

C. Buron, J. E. Marvie and P. Gautron / GPU Roof Grammars

Recent works focus on moving the generation step to the
fragment shading stage of the GPU for immediate rendering,
saving both memory and bandwidth [HWA∗10, MGHS11].
Marvie et al. [MBG∗12] further leverage the inherently par-
allel structure of GPUs by designing a complete pipeline for
interactive interpretation and rendering of shape grammars.
Based on 1D atoms extracted from input footprint segments,
the grammar rules are first interpreted on the GPU, given a
set of terminal symbols (i.e. structural information). Foot-
prints are decomposed into 1D atoms to avoid working on
complex structures. The geometry of each terminal is then
substituted to the structural information to generate highly
detailed objects interactively. However, this decomposition
into independent elements precludes the generation of con-
sistent roof structures on the GPU.

Roof construction requires a global processing of the
building footprints to extract the ridges and gables. The
straight skeleton algorithm [ADAG95] computes the skele-
ton of the polygon by sweeping the edges according to the
bissector angles. This technique has been applied to the gen-
eration of complex structures such as mansard and hipped
roofs, with [MWH∗06] or without [LD03, KW11] gram-
mars. However, due to the strongly sequential nature of this
algorithm, most GPU methods for procedural architecture
compute roofs on the CPU and transfer the geometry to the
GPU for rendering [HWA∗10, MBG∗12].

3. Principle

Figure 2: Overview of our method used for GPU roof gen-
eration. New steps are indicated in red. 1) Roof structure
extraction. 2) Conversion of global roof structure into 1D
atoms roof information. 3) Roof sections are generated in
parallel, at rule expander stage. 4) Finally terminal evalua-
tion stage performs the clipping of roof shapes.

GPU roof grammars are based on four steps integrated
within the GPU shape grammars pipeline (Figure 2). We
first determine a consistent roof structure on the CPU from

an input footprint. We then decompose this information into
parameters for 1D atoms (Section 3.1). Since GPU shape
grammars [MBG∗12] are not sufficient to model roof sec-
tions, we add Join (Section 3.2) and Project (Section 3.4)
rules to the rule expansion stage. Finally, the clipping oper-
ation required by the Join rule is performed during terminal
evaluation (Section 3.3).

3.1. Roof structure decomposition

In this step we decompose the output of the CPU-based roof
structure generator. To this end we associate one roof sec-
tion to each segment of the input footprint and store this in-
formation into the parameters of the 1D atoms (Figure 2).
We consider two cases of 1D atom roof section: the segment
either reaches another segment (ridge), or a vertex (gable).
We excluded cases where the target is composed of two or
more segments to avoid T-vertices. From this observation
both cases can be reduced to a segment to segment opera-
tion, where a gable is obtained by duplicating the destination
vertex.

3.2. Join rule

Filling a non rectangular quadrilateral with a set of shapes
may be performed in two ways. The geometry can be either
distorted by an extrusion to fit the quadrilateral (Figure 3a),
or simply clipped by the edges (Figure 3b). To avoid distor-
tions, we introduce the Join rule:

Pred→Join(float heightExtrusion, vec2 v1, vec2 v2)
{quadClipped, quadSupport, segTop}

where Pred is the rule predecessor, quadClipped is the rule
successor applied onto the clipped extruded quadrilateral
(Figure 4b), quadSupport is the rule successor applied onto
the joined face (Figure 4a) and segTop is the rule successor
applied onto the extruded segment (Figure 4c). heightExtru-
sion is the height of the extrusion, while the target 2D seg-
ment is represented by v1 and v2.

Therefore, the Join rule acts as a clipped extrusion rule
guided by a 2D segment destination and a height. More-
over, unlike the Extrude rule, Join does not change the sur-
face parametrization and prepares the clipping planes (Fig-
ures 4d-f). We provide built-in rule-scope and global-scope
accessors to users directly into the grammar file, such as
the position of the current primitive. For instance the rule-
scope accessor currentPos0() returns the coordinates of the
first vertex of the current 1D or 2D atom. Such accessors
can be combined with the roof target parameters to generate
specific roof structures.

3.3. Clipping

Clipping planes are automatically generated after a Join
rule and applied to the extruded rectangular quadrilateral,
oriented according to the bissector angles (Figures 4d-f).

c© The Eurographics Association 2013.

86

C. Buron, J. E. Marvie and P. Gautron / GPU Roof Grammars

(a) Scaled Extrude rule (b) Join rule

Figure 3: Differences on surface parametrization.

Figure 4: The Join rule has three successors : a) a joined
face, b) an extruded rectangular quadrilateral including the
joined face, and c) the top segment defined by v1 and v2
at heightExtrusion added to starting height. Clipping planes
are defined around the joined face and applied on the ex-
truded quadrilateral. The left d), right e) and top f) clipping
planes are oriented according to the bissector angles.

Adjacent terminal shapes are therefore consistently assem-
bled. Patch clipping is partially performed at the rule ex-
pansion stage for the terminal shapes generated from a Join
rule. Fully clipped terminal shapes are simply not generated.
Partial clipping is achieved at terminal evaluation stage by
applying an optimized clipping algorithm [McG11] within
the geometry shader. This algorithm takes advantage of the
SIMD capabilities of the graphics hardware to efficiently
eliminate clipped triangles.

3.4. Project rule

During rule expansion one may want to project the current
quadrilateral onto a chosen plane, for instance to create a bal-
cony window as part of a roof section (Figure 5). While split-
ting the roof section, we can separate the roof part that will
become the balcony. As this roof part is originally aligned
with the roof surface, we project it onto the plane defined by
input axes, typically the local tangent of the quadrilateral and
the cross product between this local tangent and the normal
of the building. The projected quadrilateral can then become
the base of a balcony. We thus introduce the Project rule:

Pred→Project(vec3 axis1, vec3 axis2) {quadProjected}

where Pred is the rule predecessor and quadPro jected is the
rule successor applied onto the projected quad. The plane is
defined by the vectors axis1 and axis2.

The height of projection is made available through the
rule-scope built-in accessor projectionHeigh(). The tangent,
binormal and normal of the input building are set at the be-
ginning of the grammar evaluation, while the local base is
updated throughout the rule expansion. This information is
also available for the user through accessors such as local-
Tangent() or globalNormal(). Users may thus easily set the
desired projection.

Figure 5: Illustration of the Project rule. The blue quadri-
lateral b) is the projection of the red quadrilateral a). The
projection axes are the local tangent c) and the cross prod-
uct e) between the local tangent and the global normal d).

4. Case study

The following rule sequence describes a roof with a balcony
window, using Join and Project rules. This sequence corre-
sponds to the first roof section of the roof part detailed in
Figure 5.

TopWall →Join(3, roofPos1, roofPos2)
{RoofSection, NULL, MansardTop}

RoofSection→Split(X, 2, 1, ∼){RoofCov, Balcony, RoofCov}
Balcony →Split(Y, 0.5, 2, ∼){RoofCov, BalconyPart, RoofCov}
BalconyPart→Project(localTangent(), cross(localTangent(),

globalNormal())) {BalconyFlat}
BalconyFlat→Explode() {FloorShape, NULL, RightBalc, BackBalc,

LeftBalc}
RightBalc →Join(projectHeight(), currentPos1(), currentPos1())

{ WallBalcShape, NULL, NULL }
LeftBalc →Join(projectHeight(), currentPos0(), currentPos0())

{ WallBalcShape, NULL, NULL }
BackBalc →Join(projectHeight(), currentPos0(), currentPos1())

{ NULL, WindowShape, NULL }
RoofCov →Repeat(XY, sizeTiles){TilesShape}

The hole created by the Project rule BalconyPart is entirely
filled by reconstructing the missing parts using the Join rules
LeftBalc, RightBalc and BackBalc. Note also the Explode
rule that allows to call distinct successors on the current
quadrilateral, and each of its four segments (front, right,
back, left).

c© The Eurographics Association 2013.

87

C. Buron, J. E. Marvie and P. Gautron / GPU Roof Grammars

5. Applications and Results

As for GPU shape grammars, our approach for roof gener-
ation works with the Shader Model 5.0 (DirectX 11). We
modeled various complex roofs structures featuring highly
detailed geometries using Join and Project rules. Roofs are
covered with different geometric shapes such as slates, flat
or round tiles, using Repeat rules. We also modeled geomet-
ric roof elements that are essential to create compelling roofs
(Figure 6).

Figure 6: Simple use of the grammar rules allows us to cre-
ate dormer windows, flat windows, roof balconies, chimneys,
ridge tiles, gutter, beams, and more.

As for GPU shape grammars, roof parameters can be
tuned interactively. We measured timings on object genera-
tion (rule expanding stage), and on terminal evaluation, clip-
ping and rendering using a Nvidia GeForce GTX 480 GPU.
We observed that buildings (facades and roofs) are expanded
in sublinear complexities, confirming GPU shape grammars
results. As we expand objects in parallel, we may generate
many objects at a reduced cost. For instance expansion of 1
to 20 Normandy-type houses (80 segments) requires a con-
stant time of 11.5 ms. The expansion of 21 to 40 houses (160
segments) then takes 22.3 ms. Terminal evaluation, clipping
and rendering scale linearly, taking around 1.02 ms per input
segment.

6. Discussion and Future Work

We experimented two strategies for geometric roof cover-
ing: the repetition of many terminals yielding a single tile
each and the use of fewer terminals leading to batches of
tiles (2×2 tiles). Rule expanding is thus faster in the second
case. For instance, the halfway dormer roof of Figure 1 is
expanded 1.92× faster using batches of tiles. Also, the ter-
minal evaluation part runs 1.1× faster than using unit tiles.
Hardware tessellator seems to prefer few denser meshes than
many sparse meshes.

In counterpart, misalignment can occur in some specific
cases. While the Repeat rule creates an even repartition
across adjacent children, the Split rule may introduce irregu-
larities when the splitting and repetition axes is not identical.

The children are either scaled to fit the space, or translated
to be aligned with the split. To limit these distortions we can
automatically adapt the number of repetitions to the nearest
integer part. Another solution would be to globally distribute
the children and clip split parts.

Finally, the straight skeleton algorithm may lead to inco-
herent, unrealistic roof structures. In some cases, one input
segment can be associated to multiple destination segments,
currently not supported by GPU roof grammars. Nonethe-
less our approach can be associated to any other user-defined
roof structure extractor. Future work will therefore consider
new skeleton generation algorithms based on architectural
rules and constraints. Such skeletons could be directly used
as input of our GPU roof grammars pipeline to model highly
detailed roofs.

References
[ADAG95] AICHHOLZER O., D.ALBERTS, AURENHAMMER F.,

GÄRTNER B.: A novel type of skeleton for polygons. Journal
of Universal Computer Science 1, 12 (1995), 752–761. Springer
Verlag. 2

[HWA∗10] HAEGLER S., WONKA P., ARISONA S. M., GOOL
L. J. V., MÜLLER P.: Grammar-based encoding of facades.
Computer Graphics Forum 29, 4 (2010), 1479–1487. 1, 2

[KW11] KELLY T., WONKA P.: Interactive architectural model-
ing with procedural extrusions. In Proceedings of SIGGRAPH
(2011), vol. 30, pp. 14:1–14:15. 1, 2

[LD03] LAYCOCK R. G., DAY A. M.: Automatically generating
large urban environments based on the footprint data of build-
ings. In Proceedings of ACM symposium on Solid modeling and
applications (2003), pp. 346–651. 2

[LWW08] LIPP M., WONKA P., WIMMER M.: Interactive visual
editing of grammars for procedural architecture. In Proceedings
of SIGGRAPH (2008), pp. 1–10. 1

[LWW10] LIPP M., WONKA P., WIMMER M.: Parallel gener-
ation of multiple l-systems. Computers & Graphics 34, 5 (Oct.
2010), 585–593. 1

[MBG∗12] MARVIE J.-E., BURON C., GAUTRON P., HIRTZLIN
P., SOURIMANT G.: GPU Shape Grammars. Computer Graphics
Forum 31, 7 (2012), 2087–2095. 1, 2

[McG11] MCGUIRE M.: Efficient triangle and quadrilateral clip-
ping within shaders. Journal of Graphics, GPU, and Game Tools
15, 4 (2011), 216–224. 3

[MGHS11] MARVIE J., GAUTRON P., HIRTZLIN P., SOURI-
MANT G.: Render-time procedural per-pixel geometry genera-
tion. In Proceedings of Graphics Interface (2011), pp. 167–174.
2

[MPB05] MARVIE J., PERRET J., BOUATOUCH K.: The FL-
system: a functional L-system for procedural geometric model-
ing. The Visual Computer 1, 5 (2005), 329–339. 1

[MWH∗06] MULLER P., WONKA P., HAEGLER S., ULMER A.,
GOOL L.: Procedural modeling of buildings. In Proceedings of
SIGGRAPH (2006), pp. 614–623. 1, 2

[PM01] PARISH Y., MULLER P.: Procedural modeling of cities.
In Proceedings of SIGGRAPH (2001), pp. 301–308. 1

[WWSR03] WONKA P., WIMMER M., SILLION F., RIBARSKY
W.: Instant architecture. In Proceedings of SIGGRAPH (2003),
pp. 669–677. 1

c© The Eurographics Association 2013.

88

