
EUROGRAPHICS 2013 / M.- A. Otaduy, O. Sorkine Short Paper

Real-time Collision Detection for Dynamic Hardware
Tessellated Objects

M. Nießner1 and C. Siegl1 and H. Schäfer1 and C. Loop2

1University of Erlangen-Nuremberg
2Microsoft Research

Abstract
We present a novel method for real-time collision detection of patch based, displacement mapped objects using
hardware tessellation. Our method supports fully animated, dynamically tessellated objects and runs entirely
on the GPU. In order to determine a collision between two objects, we first find the intersecting volume of the
corresponding object oriented bounding boxes. Next, patches of both objects are tested for inclusion within this
volume. All possibly colliding patches are then voxelized into a uniform grid of single bit voxels. Finally, the
resulting voxelization is used to detect collisions. Testing two moderately complex models containing thousands of
patches can be done in less than a millisecond making our approach ideally suited for real-time games.

1. Introduction

Hardware tessellation allows efficient rendering of smooth
surfaces, including subdivision surfaces, by processing patch
primitives in parallel. On top of a smooth base surface dis-
placement maps can be added to provide high-frequency ge-
ometric detail. Surfaces can be animated by updating only
the patch control points while displacement values remain
constant. Another benefit is the realization of level-of-detail
schemes by computing patch tessellation density at runtime.
However, this also makes collision detection a challenging
task since geometry is generated on-the-fly by the GPU.
Transferring geometry to the CPU would involve significant
memory I/O and is not feasible in real-time applications.
Thus, traditional collision detection approaches that main-
tain a hierarchy of proxy primitives are too costly and pro-
vide only loose results. To the best of our knowledge, pro-
viding a satisfactory collision detection scheme for hardware
tessellation has not previously been done.

We tackle this problem by considering the geometry that
is actually used for rendering. Surface geometry in our case
is based on dynamic tessellation factors and displacement
values. The first step of our approach is to test two objects for
collision by testing their oriented bounding boxes (OBBs)
for intersection. If there is no intersection, there can be no
collision (early exit); otherwise we compute the intersection
of the OBBs. Next, we determine all patches that lie within
this shared volume by performing an inclusion test. Included
patches are then voxelized into identical grids, one for each
object. Finally, the resulting voxelizations of both objects

are compared to determine collisions. We can also deter-
mine collision positions and their normals based on these
voxelizations. We provide an extension of our method that
will report colliding patch IDs and uv coordinates. These
can be used to evaluate object patches at collision points for
accurate physics handling.

patch culling
against intersection

object bounds
intersection

binary voxelizationcollision test

Figure 1: Overview of our collision detection approach.

For simplicity, we demonstrate our approach using bi-
cubic Bézier patches. However, our algorithm can be ap-
plied to any patching scheme (e.g., [LSNC09], [NLMD12])
whose patches can be bounded. An overview of our algo-
rithm pipeline of is shown in Figure 1. Our experimental
results show that a collision test between two objects con-
sisting of thousands of patches can be performed in less than
a millisecond (see 1). This is well within the processing bud-
get of real-time applications such as video games. While we
currently use our own rudimentary physics simulation for
demonstration, our approach could be also integrated into
any physics engine.

To sum up, our approach allows

• real-time collision detection for hardware tessellation
• supports animated objects with displacements

c© The Eurographics Association 2013.

DOI: 10.2312/conf/EG2013/short/033-036

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/conf/EG2013/short/033-036


M. Nießner et al. / Real-time Collision Detection for Dynamic Hardware Tessellated Objects

(a) (b) (c) (d)

Figure 2: Simple test setup visualizing our approach with the Frog moving towards the Chinchilla (a). At one point the OBBs
of both objects intersect (b, red box) and we voxelize the containing geometry (c). This allows us to determine the collision point
and corresponding surface normals (d). Patches shown in the last image could not be culled against the intersecting OBB and
thus are potential collision candidates contributing to the voxelization.

2. Previous Work

Collision detection: An essential part of physics simu-
lations (e.g., in games [Mil07]) is the ability to detect
collisions. Surveys of traditional approaches are shown
in [JTT01], [Eri04].
Bounding and culling of displaced patches: A key feature
of our approach is to reduce the number of possibly colliding
patches using patch-based culling. Therefore, patch normals
need to be bound. This can be achieved by computing an
accurate [SAE93] or approximate [SM88] cone of normals.
Munkerberg et al. [MHTAM10] and Nießner et al. [NL12]
make use of the approximate variant since resulting quality
is similar but computational costs are an order of magnitude
smaller. While we use the same normal bounds, our applica-
tion is different since we cull against a shared volume given
as a bounding box.
Real-time voxelization: A binary voxelization is a memory
efficient representation to distinguish between empty and oc-
cupied space. It can be obtained in different ways on mod-
ern GPUs in real-time [DCB∗04], [ED06], [ED08]. More
recent approaches also provide for conservative voxeliza-
tions [SS10]. However, a conservative method does not fit
our needs since it would be computationally too expensive.
Instead we rely on the more practical solid binary voxeliza-
tion proposed by Schwarz [Sch12]. In contrast to his ap-
proach we do not voxelize closed meshes; therefore we mod-
ify the approach accordingly.

3. Collision Candidates

A crucial part of our approach is to first reduce the number
of potentially colliding patches. Therefore, we first consider
the collision of the respective object bounds. Since we use
bi-cubic Bézier patches we are able to obtain bounds using
the convex hull property. Note, we could also use other sur-
face types such as B-splines, subdivision surfaces, or triangle
meshes. We compute the OBBs by applying principal com-
ponent analysis (PCA) on the patch control points.

For the collision test between two objects we then de-
termine the intersection of the two corresponding OBBs. If

there is no intersection, there is no collision (early exit). Oth-
erwise, we obtain a set of contact points by intersecting the
faces of one box with the edges of the other and vice versa.
OBB corner points that are inside the other box are also con-
sidered to be contact points. We then compute a new OBB
based on the obtained contact points; again by using PCA.
In some cases we may need to enlarge the intersecting OBB
in order for our binary voxelization to work properly (see
Section 4). For at least one pair of opposite faces, one face
must be outside of one input object OBB and the opposite
face must be outside of the other OBB (see Figure 3). We
select the OBB axis that minimizes this enlargement.

Figure 3: OBBs of two objects (black boxes, left) and joint
volume (dotted red box). Extension of joint volume to ensure
that one face of is outside of the OBB (right).

A compute kernel is used to determine patches that are in-
cluded in the intersecting OBB in parallel. Each thread pro-
cesses one patch and computes its OBB. This is done by
transforming patch control points into the space of the in-
tersecting OBB; in that space the OBB is the unit cube. As a
result we obtain axis-aligned bounding boxes (AABB) in the
respective OBB space per patch. If an AABB is outside of
the unit cube a patch can be culled. However, we also need
to incorporate displacements into the patch AABB compu-
tation. For each patch we compute a cone of normals that
bounds the patch normals. Therefore, an exact [SAE93] or
approximate [SM88] but also conservative method can be
taken into account. We rely on the approximate variant since
its computation is an order of magnitude less expensive and
provides similar results. Given the cone axis~a and cone aper-
ture α we enlarge the bounding box of a patch according to
the minimum Dmin and maximum Dmax displacement value
(see [NL12]):

c© The Eurographics Association 2013.

34



M. Nießner et al. / Real-time Collision Detection for Dynamic Hardware Tessellated Objects

if (~ax ≥ cos(α)) δ
+
x = 1

else δ
+
x = max(cos(arccos(~ax) +α), cos(arccos(~ax)−α))

if (−~ax ≥ cos(α)) δ
−
x = 1

else δ
−
x = max(cos(arccos(−~ax) +α), cos(arccos(−~ax)−α))

This allows to modify the patch AABBs:

AABBmax = AABB′max +max(Dmax · δ
+,−Dmin · δ

−)

AABBmin = AABB′min −max(Dmax · δ
−,−Dmin · δ

+)

We precompute displacement extrema Dmin and Dmax per
patch since displacements are considered to be static.

Note that it would be feasible to orient patch bounding
boxes based on patch normals [MHTAM10]. However, we
obtain better results if both patch and object intersecting
OBB share the same axes. In the end we are able to iden-
tify all patches that are within the common bounding vol-
ume intersection. Only those patches need to be considered
for collision detection; we mark those by maintaining a flag
list that contains a single binary value per patch.

4. Voxelization

The key idea of our collision test is to voxelize the rendering
geometry of the current frame. For two objects those patches
lie within the intersection of the objects’ bounding boxes
(see Section 3). We then setup an orthogonal camera matrix
that spans that space and perform a solid binary voxelization.
Therefore, we use a modified version of the algorithm pro-
posed by Schwarz [Sch12]. The voxelization is performed
within the rasterization pipeline and can be applied to any
object with or without displacements. Since DirectX 11 (or
OpenGL 4.0 or above) allows scattered memory writes in the
pixel shader there is no need for a render target. The voxel
grid is represented as a linear buffer of 32 bit integer values
allowing us to store 32 voxels per entry. In the pixel shader
we compute the voxel index depending on the x, y and depth
value. For each fragment atomic XOR-operations are used to
flip all voxels behind that fragment. Since this is an integer
operation, we process 32 voxels per instruction. In the end
only voxels within the volume will remain set resulting in a
solid voxelization.

In contrast to the binary voxelization by Schwarz, our po-
tentially colliding patches may not form a closed surface.
Therefore, we construct the intersecting OBB to have at least
one face that lies completely outside of the original object
OBB (see Section 3). Thus, we can fill voxels towards the
opposite face. We use two different kernels to perform the
solid voxelization and fill voxels backwards or forward, re-
spectively. Pseudo code of our backward voxelization kernel
is shown below (the forward kernel is similar):
//Backward solid voxelization
addr = p.x * stride.x + p.y * stride.y + (p.z >> 5) * 4;
atomicXor(voxels[addr], ~(0xffffffff << (p.z & 31)));
for (p.z = (p.z & (~31)); p.z > 0; p.z -= 32) {

addr -= 4;
atomicXor(voxels[addr], 0xffffffff);

}
}

Note that backface culling must be turned off for the vox-
elization. Performance scales linearly with the number of
patches that need to be voxelized making patch culling as
described in Section 3 essential. The resolution of the voxel
grid is adaptive and computed based on the size of the in-
tersecting OBB. However, we require the resolution in z-
direction to be a multiple of 32 to align with four byte in-
teger values. The use of a solid instead of a surface voxeliza-
tion is essential. It prevents from missing collisions where
objects entirely penetrate a surface within one time step. In
addition, a resulting voxelization that is close to the origi-
nal mesh can be obtained with a single render pass. In some
cases we may loose one voxel width around the visual hull
due to non-conservative rasterization.

5. Collision Detection

We perform collision detection based on binary voxeliza-
tions as shown in Section 4. Our basic approach is to deter-
mine collision positions and corresponding normals based
on the voxelization. In addition, we propose an extended
variant that provides patch IDs and uv coordinates of col-
lision points; e.g., for accurate surface re-evaluation.

5.1. Basic Collision Test

Determining collisions given two solid voxelizations that oc-
cupy the same space can be obtained by performing pairwise
voxel comparisons. There is a collision if equivalent vox-
els are set. Since our voxel representation is binary, we can
perform 32 voxel comparisons using a single bitwise AND-
operation of the two corresponding integer values. There-
fore, we use a compute kernel with one thread for each in-
teger value of the linear voxel buffer (each value contains
32 binary voxel entries). In addition to collision positions,
we obtain corresponding normals based on voxel neighbor-
hoods. Collisions are written into a GPU buffer using atom-
ics that can be accessed from the CPU.

5.2. Extended Collision Test

The extended collision test first executes the basic variant.
Then another pass is used to obtain patch IDs and uv co-
ordinates of collision points. Therefore, we use an ortho-
graphic camera setup that conservatively contains the inter-
secting OBB and points in the direction of the average ap-
proximate collision normal obtained from the basic collision
test. Thus, a maximum number of fragments is generated
near collision points. Passing patch IDs and uv coordinates
to the pixel shader allows us to store these in a global linked
list with an atomic counter (i.e., append buffer in DirectX
11). This allows us to accurately evaluate surface geometry
on the CPU at all collision points and to determine corre-
sponding attributes such as surface normals. In order to ob-
tain collision attributes for both colliding objects, we must
perform this test twice; once for each object while testing
against the voxelization of the other object, respectively.

c© The Eurographics Association 2013.

35



M. Nießner et al. / Real-time Collision Detection for Dynamic Hardware Tessellated Objects

6. Results

Our implementation uses the DirectX 11 graphics pipeline
and compute shaders. Performance measurements were
made using an NVIDIA GeForce GTX 680 and an Intel Core
i7 at 2.80 GHz. In our examples we use the same tessellation
density for collision detection that is used for rendering.

Figure 2 shows a simple test scene with two objects. The
Frog (w/ displacements) is moving (a) towards the Chin-
chilla until we detect a collision (b). We also visualize the
voxelization that we use for collision computation (c). In
addition, patches that could not be culled against the inter-
secting OBB and the obtained collision point with its corre-
sponding surface normals is shown (d). We used a relatively
low voxel grid resolution for visualization purposes in this
figure. For all our tests we use a volume of 1283 adapted
anisotropically to the intersecting OBB requiring no more
than 256KB of GPU memory.

Figure 4: Basic physics using our collision detection ap-
proach. In each sequence one object is falling onto another.

In order to validate the practicality of our approach we
implemented a rudimentary physics engine. We perform
physics computations based on the collisions and corre-
sponding attributes of our extended collision test. Figure 4
shows two simple examples. In the first sequence a torus is
falling until it hits its counterpart, then rotating slightly, hit-
ting the other torus again and bouncing off. In the second se-
quence a mushroom is falling on the Frog model with only a
single hit point. Note that there are two normals at collision
points (one for each object), however, the visualization is oc-
cluded by the larger objects, respectively. More examples are
provided in the supplemental video.

Performance results of our approach for two setups are
shown in Table 1. With the presented approach, we are able
to perform both the basic and the extended collision test in-
cluding all overhead in less than a millisecond.

7. Conclusion and Future Work

We have presented a method for real-time collision detection
of dynamic hardware tessellated objects with displacements.
Our approach considers the rendering geometry of the cur-
rent frame and runs entirely on the GPU. We have shown

Frog / Chinchilla Frog / Mushroom
Patches 1292 / 4270 1292 / 744
Tess Factor 4 8 4 8

Draw 0.065 0.169 0.024 0.067
OBB Intersect 0.008 0.008 0.011 0.011
Patch Culling ×2 0.016 0.016 0.012 0.012
Voxelization ×2 0.059 0.092 0.037 0.053
Collision 0.117 0.117 0.114 0.114
Collision Attributes ×2 0.210 0.262 0.222 0.232

Sum Test Basic 0.275 0.341 0.223 0.255
Sum Test Extended 0.695 0.865 0.667 0.719

Table 1: Performance measurements in milliseconds of our
approach for the two test scenes (see Figures 2 and 4). We
provide numbers for rendering (Draw) and for each step of
our collision pipeline (OBB Intersect, Patch Culling, Vox-
elization, Collision, Collision Attributes). In addition, we
show the overall performance for a pairwise collision test
for both the basic and extended variant of our approach.

that collision tests can be performed with minimal overhead
and that our method can be used for real-time physics. We
can perform both basic collision tests and extended collision
tests that find attributes at collision positions. We have also
shown that the overhead of our approach for objects contain-
ing thousands of patches is less than a millisecond.

References
[DCB∗04] DONG Z., CHEN W., BAO H., ZHANG H., PENG Q.: Real-

time voxelization for complex polygonal models. In Computer Graphics
and Applications (2004). 2

[ED06] EISEMANN E., DÉCORET X.: Fast scene voxelization and appli-
cations. In Proc. I3D’06 (2006). 2

[ED08] EISEMANN E., DÉCORET X.: Single-pass gpu solid voxelization
for real-time applications. In Proceedings of graphics interface (2008). 2

[Eri04] ERICSON C.: Real-time collision detection. Morgan Kaufmann,
2004. 2

[JTT01] JIMÉNEZ P., THOMAS F., TORRAS C.: 3D collision detection: a
survey. Computers & Graphics 25, 2 (2001). 2

[LSNC09] LOOP C., SCHAEFER S., NI T., CASTAÑO I.: Approximating
subdivision surfaces with gregory patches for hardware tessellation. ACM
Trans. Graph. 28, 5 (2009). 1

[MHTAM10] MUNKBERG J., HASSELGREN J., TOTH R., AKENINE-
MÖLLER T.: Efficient bounding of displaced bézier patches. In HPG
(2010). 2, 3

[Mil07] MILLINGTON I.: Game physics engine development. Morgan
Kaufmann Pub, 2007. 2

[NL12] NIESSNER M., LOOP C.: Patch-based occlusion culling for hard-
ware tessellation. Computer Graphics International (2012). 2

[NLMD12] NIESSNER M., LOOP C., MEYER M., DEROSE T.: Feature-
adaptive gpu rendering of catmull-clark subdivision surfaces. ACM Trans.
Graph. 31, 1 (2012). 1

[SAE93] SHIRMUN L., ABI-EZZI S.: The cone of normals technique for
fast processing of curved patches. In CGF (1993), vol. 12. 2

[Sch12] SCHWARZ M.: Practical binary surface and solid voxelization with
Direct3D 11. In GPU Pro 3. 2012. 2, 3

[SM88] SEDERBERG T., MEYERS R.: Loop detection in surface patch
intersections. Computer Aided Geometric Design 5, 2 (1988). 2

[SS10] SCHWARZ M., SEIDEL H.: Fast parallel surface and solid voxeliza-
tion on gpus. In ACM Trans. Graph. (2010), vol. 29. 2

c© The Eurographics Association 2013.

36


