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Figure 1: Our method can capture both contracting and expanding fluid behaviour. The vividnesses of the particle colours show
the densities. (a) Initial state of a volume contraction and expansion test. The initial volume is 150%. (b) Fluid after volume
contraction from 150% to 100%. (c) Fluid after volume expansion from 100% to 200% and overflowing out of the bucket.

Abstract
We extend a Predictive Corrective Incompressible SPH (PCISPH) algorithm to a volume controllable SPH algo-
rithm. In order to handle volume changes, we develop a method to control fluid volume. Our method precomputes
a pressure correction factor of PCISPH at various particle volume and interpolates these factors to get a factor
for arbitrary particle volume. Thanks to a PCISPH’s high correctiveness, our method enables both stiff volume
contraction and expansion. Additionally we derive computations for density and a force by pressure to prevent
instabilities and unnatural flocks near interfaces between two fluids with different particle volume. Furthermore,
granular simulators based on fluid simulators are also extensible to simulate volume change of granular materials.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling I.3.7 [Computer Graphics]: Three Dimensional Graphics and
Realism—Animation

1. Introduction

Fluid simulations for animations are one of the most tack-
led fields in computer graphics because they are hard to be
captured and animated by human efforts. One subfield of the
fluid simulations is to achieve incompressibility; fluid vol-
ume is intended to be constant. Fluid simulations without
incompressibility would produce disappointing fluid anima-
tions with unnatural compressive and expansive behaviour.

In some cases, however, representing volume change is
beneficial or required. For liquid with excessive number of
small bubbles, naively simulating interactions of each bubble

fosters expensive computational cost and forces the simula-
tion to be infeasible. Furthermore, these bubbles contribute
to volume rise, which has been ignored. For granular mate-
rials, loosely packed granular materials can be compressed
by external forces. However, previous studies have assumed
particle volumes to be constant and have failed to simulate
volume-changing behaviour although there exist compres-
sive granular materials such as snow. Another expanding ex-
ample is sodium polyacrylate, sold as "Instant snow", which
expands extremely after water absorption.

In order to break through these incapabilities, we present
a preliminary but fundamental method to control fluid vol-
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ume for the future simulations of compressive and expansive
behaviour. Currently we have two contributions: a stiff vol-
ume controlling method, an modified evaluations of density
and pressure force under heterogeneous particle volume set-
tings to stabilize simulation and to prevent unnatural particle
distribution near interfaces between multiple fluids with dif-
ferent density.

2. Related Work

Lagrangian fluid simulation for computer graphics was
primarily initiated by Müller et al. [MCG03] based on
Smoothed Particle Hydrodynamics (SPH), invented by Mon-
aghan [Mon92]. Solenthaler et al. [SP09] present Predictive
Corrective Incompressible SPH (PCISPH), which iteratively
corrects particle positions to ensure incompressibility. Bub-
bling is challenged topic in fluid simulations. A large number
of tiny bubbles is handled by Cleary et al. [CPPK07] on par-
ticle based fluid simulators, although their method separates
liquid and air phases and does not contribute volume rise by
these bubbles.

Instead of directly simulating every granular particle, Zhu
et al. [ZB05] replace viscosity term of Navier-Stokes equa-
tion with frictional force term, producing fine-grained sand
behaviour without excessive number of particles. Lenaerts et
al. [LD09] derive the Lagrangian version from that by Zhu
et al. Unilateral incompressibility by Narain et al. [NGL10]
restricts compression above a certain density limit but allows
free expansion, succeeding in free-flowing granular materi-
als. However, these methods, based on limited-density fluid
simulators, also can neither capture volume rise nor loss.

Porous flow simulation by Lenaerts et al. [LAD08] han-
dles volume expansion by changing internal stress using
SPH. However, this volume change is only applicable to
elastic bodies, not to free-flowing materials such as fluids
and granular materials. Geretshauser et al. [GSG∗10] simu-
late porous dust collision and volumetric compression based
on SPH. Although they can handle compressive volumet-
ric change by external forces, their applications are trapped
within passive volumetric change.

3. PCISPH and Extension for Granular Materials

We summarize PCISPH method by Solenthaler et al. [SP09]
and its derivative work for granular materials by Alduán et
al. [AO11]. The methods we present in this paper originate
from their methods.

3.1. Original PCISPH

Fluid density is computed by the following summation.

ρi = ∑
j

m jWi j (1)

where Wi j = W (xi− x j). At each simulation step, the fol-
lowing pressure correction is iteratively accumulated using
density computed by Eq. (1).

∆pi = δ · (ρi−ρrest) (2)

where ρ, ρrest are a density and a rest density, respectively. δ

is a pressure correction factor, which is precomputed among
neighbouring particles at uniform rectangular grid points. δ

is obtained with a squared summation of kernel gradients
and a summation of squared kernel gradients.

δ =
1

V 2∆t2
((

∑ j∇Wi j
)2

+∑ j
(
∇Wi j

)2
) (3)

where V = m/ρ.

3.2. Unilateral Incompressibility, Friction and Cohesion

Unilateral incompressibility sets an upper limit of density
and exhibits free-flowing granular behaviour. A pressure cor-
rection with a density limit is

∆pi = δ ·max(0,ρ−ρrest) (4)

Besides pressure, internal stress s is also corrected.

∆s = D−1∇uT , with D =
m∆t

ρ
∑

j

1
ρ2∇Wi j∇W T

i j (5)

where D−1 is a internal stress correction factor, which is pre-
computed, as with δ from PCISPH. Piling and cohesive be-
haviour is represented by forcing following yield criteria on
internal stress.

|si j|< αp for deviatoric elements
|si j|< β

2C for all elements
(6)

where α and C are controlling parameters. β is a cohesion
intensity and is updated at each simulation step.

4. Controlling Volume

Because PCISPH aims to correct density to a fixed value un-
der a constant particle mass, we modify pressure computa-
tion from Eq. (3,4), so that variable volume can be handled.

We represent volume change of fluid by volume change
of particles. However, pressure correction factor is com-
puted by virtual particles. Because pressure correction factor
is dependent on particle volume and on the distances from
the others, precomputing singular pressure correction factor
contradicts heterogeneous particle volume settings.

In order to solve this problem, we interpolate precom-
puted pressure correction factor for various particle volume
V . Our key idea is illustrated in Fig. 2. First, we precom-
pute δ under different particle volume. Precomputation is
performed among virtual particles at uniformly distanced
grid points. Grid spacing l is computed by the cube root of
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volume: l = V 1/3. While simulating, pressure correction re-
quires δ at arbitrary particle volume. To obtain the δ at arbi-
trary particle volume V : δ(V ), we interpolate these precom-
puted δ. The δ(V ) computed by the interpolation is plugged
into Eq. (3), yielding a pressure correction:

∆p = δ(V ) · (ρ−ρrest (t)) (7)

The rest density of each particle is given by ρrest (t) =
m/V (t).

For granular materials, we also interpolate precomputed
D−1 at various particle volume, yielding D(V )−1.

∑ ∑ ∑

l0 = V
1
3
0 l1 = V

1
3
1 l2 = V

1
3
2

δ (V0) δ (V1) δ (V2)

Figure 2: δ(V ) precomputation at various particle volume
V0, V1, and V2 (V0 > V1 > V2), yielding δ(V0), δ(V1), and
δ(V2), respectively. Summations in Eq. (3) are computed
with virtual filled neighbourhoods at uniform rectangular
grid points. Particle spacing l is derived from the cube root
of particle volume: l =V 1/3.

5. Modified Evaluations of Density and Pressure Force

In this section we present some modifications required to
prevent spurious particle distribution under heterogeneous
particle volume simulations.

Solenthaler et al. [SP08] raise and resolve two problems
under conditions of constant particle volume: spurious parti-
cle crowding and interfacial tension near interfaces with high
density contrast. They define particle density as φi = ∑ j Wi j
and evaluate density at each particle by ρi = miφi. Mon-
aghan’s version of pressure force [Mon92] is also modified
into Fpressure =−∑ j

(
pi/φ

2
i + p j/φ

2
j

)
∇Wi j to avoid under-

ivability of density near the interfaces. These modifications
prevent unnatural surface tension and particle overlapping
near fluid interfaces with a high density contrast.

However, particle volume also affects density. As shown
in Fig. 4(b), particle crowds revive near interfaces with den-
sity contrast caused by particle volume. Furthermore, over-
laps of particles lead to falsified decrease of entire volume,
degrading volume controllability.

Thus we first extend their particle density model to that
dependent on particle volume by weighting contributions of
φi with volume ratio Vi j =Vi/Vj:

φi = ∑
j

VjiWi j (8)

Figure 3: An expanding Instant snow. (left) Initial pile.
(right) After expansion.

Scenario Particles Time (sec) Iterations
Cont. and Exp. 39k 0.091 3.9
Instant snow 41k 0.076 3.0

Rayleigh-Taylor 48k 0.093 3.1

Table 1: Performance results

This extension prevents overestimation and underestimation
of smaller and larger neighbourhoods, respectively.

We also modify Fpressure because φi is unsmooth and un-
derivable near density interfaces caused by particle volume
difference, which trigger numerical instability. As Solen-
thaler et al. [SP08] utilize a smooth and derivable density
equivalent φi, we further make particle density smooth by
multiplying particle density with particle volume to obtain
a further density equivalent: ϕi = Viφi. Following the steps
in which Solenthaler et al. [SP08] derive Fpressure, we first

discretise∇pi/ϕi =∇(pi/ϕi)+
(

pi/ϕ
2
i

)
∇ϕi, yielding

∇pi

ϕi
= ∑

j

(
p j

φ jϕ j
+

piϕ j

φ jϕ
2
i

)
∇Wi j (9)

Because Fpressure =−∇p/φ and ϕi =Viφi,

Fpressure =−∑
j

(
Vji

pi

φ2
i
+Vi j

p j

φ2
j

)
∇Wi j (10)

These derivations also apply to the force by internal stress

F f riction = ∑
j

(
Vji

si

φ2
i
+Vi j

s j

φ2
j

)
∇Wi j (11)

Viscous and pressure force by Müller et al. [MCG03] are
computed in the same manner as that by Solenthaler et al.
[SP08] with adopting our Eq. (8) as their particle density.

6. Results and Discussion

All simulations are run on a personal computer with 3.20
GHz Quad-Core CPU, 24 GB RAM, and NVIDIA Geforce
560 Ti GPU. All the simulations are implemented on GPU.
Animations are rendered by Pov-Ray. Timing and average
PCISPH iteration results are shown in Table 1.

Fig. 1 shows the result of contracting and expanding fluid
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(a) (b) (c)

Figure 4: Cross sectional views of Rayleigh-Taylor instability simulation. (a) Initial state the simulation. The volume of blue
particles at the lower layer double. (b) and (c) are the result at t = 1.67s without and with our modified density and pressure
force computations, respectively. Without our method, the smaller particles flock at the interface.

simulation. Fluid is filled in a bucket and is forced to contract
and expand serially. Initial condition is shown in Fig. 1(a).
Fig. 1(b) shows volume contraction from 150% to 100%.
After contraction, we force expansion from 100% to 200%,
resulting in overflow out of the bucket, as shown in Fig. 1(c).
Expanding granular material is also shown in Fig. 3.

In Fig. 4, Rayleigh-Taylor instability is simulated by het-
erogeneous particle volume. Fig. 4(a) shows the initial con-
dition. All particles have the same volume and blue particles
expand. The wavy interface is introduced to trigger the insta-
bility. Fig. 4(b) shows the result without our modified den-
sity and pressure force evaluations. Unnatural crowd of par-
ticles is observed near the interfaces. On the other hand, in-
troducing our method adaptively distribute particles even on
heterogeneous particle volume settings as shown in Fig. 4(c).

Our method would fail in extremely volume-changing
scenarios. Too much volume rise pushes all neighbouring
particles out of the kernel support, destabilizing the simula-
tion. The more particles are within kernel support for volume
decrease of particles, the more expensive the computational
cost becomes. To overcome these drawbacks, adaptive sam-
pling techniques could be a saviour; for large volume, par-
ticle splitting keep all neighbouring particles within kernel
support; for small volume, particle merging limits the num-
ber of neighbouring particles.

7. Conclusion and Future Work

We obtain both expansive and contractive fluid animations
through our volume controllable method. Our method also
allows simulations of free-flowing granular materials by re-
placing viscosity with frictional stress. Furthermore, our
modified density and pressure force evaluations prevent par-
ticles near interfaces from flocking even for heterogeneous
particle volume settings.

Our method succeeds in transitional volume change while
we do not take any account of reactive volume change, such
as compaction by outer forces and volume-raising external

stimuli, which is required in future challenges such as snow
and liquid with excessive number of bubbles.
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