Dynamic Geometry Processing

EG 2012 Tutorial

2.1 Dynamic Registration
Scan Registration
Scan Registration

Solve for inter-frame motion: $\alpha := (R, t)$
Scan Registration

Solve for inter-frame motion: $\alpha_j := (R_j, t_j)$
The Setup

Given:
A set of frames \{P_0, P_1, \ldots P_n\}

Goal:
Recover rigid motion \{\alpha_1, \alpha_2, \ldots \alpha_n\} between adjacent frames
The Setup

Smoothly varying object motion

Unknown correspondence between scans

Fast acquisition \rightarrow

motion happens between frames
Insights

Rigid registration \rightarrow kinematic property of space-time surface (locally exact)

Registration \rightarrow surface normal estimation

Extension to deformable/articulated bodies
Time Ordered Scans

\[\tilde{P}^j \equiv \{ \tilde{p}^j_i \} := \{(p^j_i, t^j), p^j_i \in \mathbb{R}^d, t^j \in \mathbb{R}\} \]
Space-time Surface
Space-time Surface

\[\tilde{p}_i^j \rightarrow \tilde{\alpha}_j(\tilde{p}_i^j) = \left(R_j p_i^j + t_j, t_j^j + \Delta t_j^j \right) \]
\(\tilde{p}_i^j \rightarrow \bar{\alpha}_j(\tilde{p}_i^j) = \left(R_j p_i^j + t_j, t^j + \Delta t^j \right) \)
\[
\bar{\alpha}_j = \arg \min \left| P^j \right| \sum_{i=1}^{\left| P^j \right|} d^2 \left(\bar{\alpha}_j(\tilde{p}_i^j), S \right)
\]
Spacetime Velocity Vectors

Tangential point movement \rightarrow velocity vectors orthogonal to surface normals

$$\widetilde{\alpha}_j = \arg\min \sum_{i=1}^{P^j} d^2 (\widetilde{\alpha}_j(\widetilde{p}_i^j), S)$$
Spacetime Velocity Vectors

Tangential point movement \(\rightarrow\) velocity vectors orthogonal to surface normals
Final Steps

(rigid) velocity vectors →

\[\tilde{v}(\tilde{p}_i^j) = (c_j \times p_i^j + \overline{c}_j, 1) \]

\[\min_{c_j, \overline{c}_j} \sum_{i=1}^{P^j} w_i^j \left[(c_j \times p_i^j + \overline{c}_j, 1) \cdot \tilde{n}_i^j \right]^2 \]
Final Steps

(rigid) velocity vectors $\rightarrow \tilde{v}(\tilde{p}_i^j) = (c_j \times p_i^j + \bar{c}_j, 1)$

$$\min_{c_j, \bar{c}_j} \sum_{i=1}^{P^j} w_i^j \left[(c_j \times p_i^j + \bar{c}_j, 1) \cdot \tilde{n}_i^j \right]^2$$

$$A\mathbf{x} + \mathbf{b} = 0$$

$$A = \sum_{i=1}^{P^j} w_i^j \left[\begin{array}{c} \tilde{n}_i^j \\ p_i^j \times \tilde{n}_i^j \end{array} \right] \begin{bmatrix} \tilde{n}_i^j & (p_i^j \times \tilde{n}_i^j)^T \end{bmatrix}$$

$$\mathbf{b} = \sum_{i=1}^{P^j} w_i^j n_i^j \left[\begin{array}{c} \tilde{n}_i^j \\ p_i^j \times \tilde{n}_i^j \end{array} \right] \quad \mathbf{x} = \begin{bmatrix} \tilde{c}_j \\ c_j \end{bmatrix}$$
Registration Algorithm

1. Compute time coordinate spacing (σ), and form space-time surface.

2. Compute space time neighborhood using ANN, and locally estimate space-time surface normals.

3. Solve linear system to estimate (c_j, c_j).

Normal Estimation: PCA Based

Plane fitting using PCA using chosen neighborhood points.
Normal Estimation: Iterative Refinement

Update neighborhood with current velocity estimate.
Normal Refinement: Effect of Noise

Stable, but more expensive.
Normal Estimation: Local Triangulation

Perform local surface triangulation (tetrahedralization).
Normal Estimation

Stable, but more expensive.
Comparison with ICP

ICP point-plane

Dynamic registration
Rigid: Bee Sequence (2,200 frames)
Rigid: Coati Sequence (2,200 frames)
Handling Large Number of Frames
Rigid/Deformable: Teapot Sequence (2,200 frames)
Deformable Bodies

\[\min_{c_j, \bar{c}_j} \sum_{i=1}^{\left| P^j \right|} w^j_i \left[(c_j \times p^j_i + \bar{c}_j, 1) \cdot \tilde{n}^j_i \right]^2 \]

Cluster points, and solve smaller systems.

Propagate solutions with regularization.
Deformable: Hand (100 frames)
Deformable: Hand (100 frames)

scan #1 ⊮ scan #50

scan #1 ⊮ scan #100
Deformation + scanner motion: Skeleton (100 frames)
Deformation + scanner motion: Skeleton (100 frames)

scan #1 ↩ scan #50

scan #1 ↩ scan #100
Deformation + scanner motion: Skeleton (100 frames)

rigid components
Performance (on 2.4GHz Athlon Dual Core, 2GB RAM)

<table>
<thead>
<tr>
<th>Model</th>
<th># scans</th>
<th># points/scan (in 1000s)</th>
<th>Time (mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bunny (simulated)</td>
<td>314</td>
<td>33.8</td>
<td>13</td>
</tr>
<tr>
<td>bee</td>
<td>2,200</td>
<td>20.7</td>
<td>51</td>
</tr>
<tr>
<td>coati</td>
<td>2,200</td>
<td>28.1</td>
<td>71</td>
</tr>
<tr>
<td>teapot (rigid)</td>
<td>2,200</td>
<td>27.2</td>
<td>68</td>
</tr>
<tr>
<td>skeleton (simulated)</td>
<td>100</td>
<td>55.9</td>
<td>11</td>
</tr>
<tr>
<td>hand</td>
<td>100</td>
<td>40.1</td>
<td>17</td>
</tr>
</tbody>
</table>
Conclusion

Simple algorithm using kinematic properties of space-time surface.

Easy modification for deformable bodies.

Suitable for use with fast scanners.
Limitations

Need more scans, dense scans, ...

Sampling condition \rightarrow time and space
thank you