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3D shapes vs. images

Array of pixels
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3D shapes vs. images

Array of pixels

Splines, Mesh, Point cloud, etc
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3D shapes vs. images

Affine, projective
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3D shapes vs. images

Affine, projective
Wealth of nonrigid

deformations
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Setting

Endow shapes with a structre

Similarity, correspondence, retrieval, etc. = similarity and
correspondence between structures

Invariance under bending, scale, affine transformations, etc.
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Structure

Global structure
Metric space
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Global structure
Metric space
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Stable regions

Local structure
Point descriptors
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Agenda

Diffusion processes on surfaces

Spectral point of view

Global structure: diffusion geometry

Local structure: diffusion kernel descriptors

Semi-local structure: maximally stable components

Extensions
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Diffusion processes on surfaces

Heat equation (
∆X +

∂

∂t

)
u = 0

governs heat propagation on manifold X

Solution u(x , t): heat distribution at point x at time t

Initial condition u0(x): heat distribution at time t = 0

Boundary condition if manifold has a boundary
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Laplace-Beltrami operator ∆X

For two smooth functions f , g : X → R and standard inner product
on X

〈f , g〉 =

∫
X

f (x)g(x) da

the Laplacian satisfies the following properties:

Constant eigenfunction: ∆X f = 0 if f = const

Symmetry: 〈∆X f , g〉 = 〈∆Xg , f 〉
Locality: (∆X f )(x) does not depend on f (x ′) at any x ′ 6= x

Linear precision: if X as a plane and f = ax + by + c , then
∆X f = 0

Positive semi-definiteness: 〈∆X f , f 〉 ≥ 0

Maximum principle: functions satisfying ∆X f = 0 (harmonic)
have no minima/maxima in the interior of X
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Discretization of the Laplacian

Surface X is discretized at n points {x1, . . . , xn} and points
are connected to form a triangular mesh

Function f : X → R represented a vector f ∈ Rn, fi = f (xi )

Discrete version of the Laplacian

(LX f )i =
1

ai

∑
j

wij(fi − fj)

wij – edge weights, ai vertex normalization coefficients.

In matrix notation

LX f = A−1Lf

where A = diag{ai} and (L)ij = diag

∑
k 6=i

wik

− wij
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Discretization of the Laplacian

xi

xj

xi

xj

αij

βij

Discrete Laplacian

wij =

{
1 : xj ∈ N1(xi )
0 : else

ai = 1 (umbrella operator); or
ai = |N1(xi )|, valence (Tutte)

Discretized Laplacian

wij =

{
cotαij + cotβij : xj ∈ N1(xi )
0 : else

ai = sum of areas of triangles
sharing vertex xi
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Desired properties of discrete Laplacians

Constant eigenfunction: ∆X f = 0 if f = const

Symmetry:

Locality:

Linear precision:
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Desired properties of discrete Laplacians

Constant eigenfunction: Satisfied by construction of LX

Symmetry: LX = LT
X

Reason: To have real eigenvalues and orthogonal eigenvectors

Locality: wij = 0 if xj 6= N1(xi )

wij stand for random walk transition probabilities along the
graph edges.

Linear precision: equivalently, if X is a plane, then

(LX x)i =
∑
j

wij(xi − xj) = 0

Reason: Flat plate must have zero bending energy.
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Desired properties of discrete Laplacians

Positive semi-definiteness: 〈∆X f , f 〉 ≥ 0

Positive weights: wij ≥ 0 and each vertex i has at least one
wij > 0

Convergence: solution of discrete PDE with LX converges to
solution of continuous PDE with ∆X as n→∞
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Desired properties of discrete Laplacians

Positive semi-definiteness: f TLX f ≥ 0, i.e., LX � 0

Positive weights: wij ≥ 0 and each vertex i has at least one
wij > 0

Reasons: Sufficient condition to satisfy discrete maximum
principle
Positive weights + Symmetry ⇒ PSD

Convergence: solution of discrete PDE with LX converges to
solution of continuous PDE with ∆X as n→∞
Indispensable for discretization of PDE solutions
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No free lunch

Discrete Laplacians are not convergent

cot weight discretized Laplacians is convergent but has
negative weights

Many attempts have been made to construct discrete
Laplacians satisfying above desired properties

“No free lunch theorem” (Wardetzky et al., 2007)
There is no discrete Laplacian satisfying the above properties
simultaneously!
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Eigendecomposition of Laplacian

On compact domains Laplacian admits countable orthogonal
eigendecomposition

∆Xφi = λiφi

λi – eigenvalues; φi (x) – corresponding eigenfunctions

Discrete generalized eigendecomposition for LX = A−1L

AΦ = ΛLΦ

Λ = diag{λ1, . . . , λk} – diagonal matrix of first k eigenvalues
Φ – n × k matrix of corresponding eigenvectors

Spectral decomposition theorem

(∆X f )(x) =
∑
i≥0

λiφi (x) · 〈φi , f 〉

Discrete equivalent: LX f =
∑
i≥0

λiφiφ
T
i f
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Finite elements

Discretize {λi , φi} directly!

Weak form eigendecomposition

〈∆Xφ, α〉 = λ〈φ, α〉

Fix a sufficiently regular basis {α1, . . . , αm} spanning a
subspace of L2(X )

φ(x) ≈ u1α1(x) + · · · umαm(x)

Write a system of equations for k = 1, . . . ,m

m∑
i=1

ui 〈∆Xαi , αj〉︸ ︷︷ ︸
aij

=
m∑
i=1

ui 〈αi , αj〉︸ ︷︷ ︸
bij

In matrix notation: Au = λBu
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To see the sound
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chladni.mov
Media File (video/quicktime)



Chladni plates

Solutions to stationary Helmholtz equation

∆X f = λf

Laplacian eigenfunctions = plate vibration modes
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Chladni plates

Solutions to stationary Helmholtz equation

∆X f = λf

Laplacian eigenfunctions = plate vibration modes
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Shape DNA

(Reuter et al., 2006) use Laplacian spectrum {λi} as an
isometry-invariant shape descriptor – shape DNA
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Shape DNA

Shape similarity using Shape DNA
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“Can we hear the shape of the drum?”

Isometric shapes are isospectral

Are isospectral shapes isometric?

Can one hear the shape of the drum? (Mark Kac)
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“Can we hear the shape of the drum?”

The following shape properties can be recovered (“heard”) from
the spectrum of the Laplacian:

Area

Euler characteristic (genus)

Total Gaussian curvature

Can we hear the metric?
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One cannot hear the shape of the drum!

Counter example of isospectral non-isometric shapes
(Gordon et al., 1991)
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Relation to harmonic analysis

1D signals

− d2

dx2
e inx = n2e inx
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Relation to harmonic analysis

1D signals

− d2

dx2
e inx = n2e inx

3D shapes

∆Xφi (x) = λiφi (x)
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Relation to harmonic analysis

A continuous function f ∈ L2(X ) can be represented as

Synthesis: f (x) =
∑
i≥0

F (λi )φi (x)

Analysis: F (λi ) =

∫
X

f (x)φi (x)da = 〈f , φi 〉

λ = frequency

{F (λi )} = Fourier coefficients
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Heat kernel

Heat equation (
∆X +

∂

∂t

)
u = 0

Solution given by heat operator

u(x , t) = (Htu0)(x) =

∫
X

ht(x , y)u0(y)da(y)

Heat kernel ht(x , y) : solution at point x at time t with point
heat source at y

Impulse response of heat equation

Intrinsic quantity – invariant to inelastic (isometric) bending

Heat operator can be interpreted as a non shift-invariant
version of convolution
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Heat kernel

Alex Bronstein, Michael Bronstein, Umberto Castellani Spectral methods in shape analysis


heatkernel.mov
Media File (video/quicktime)



Probabilistic interpretation

Brownian motion x(t) starts at point x

x

x(t)

C

Pr(x(t) ∈ C ) =

∫
C

ht(x , y)da(y)

ht(x , y) = transition probability density from x to y by
random walk of length t
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Spectral interpretation

Let ∆Xφi = λiφi be the Laplacian eigendecomposition

By spectral decomposition theorem

ht(x , y) =
∑
i≥0

e−λi tφi (x)φi (y)

e−λt = frequency response of heat operator Ht
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Diffusion operators

General diffusion operator

(Ku)(x) =

∫
X

k(x , y)u(y)da(y)

Diffusion kernel

k(x , y) =
∑
i≥0

K (λi )φi (x)φi (y)

K (λ) = frequency response (lowpass filter)

Kt is also a diffusion operator with response K t(λ)

A scale space of operators {Kt}t≥0
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Properties of diffusion operators

Non-negativity: k(x , y) ≥ 0

Symmetry: k(x , y) = k(y , x)

Positive semidefiniteness: for every f (x), 〈Kf , f 〉 ≥ 0

Square integrability:∫ ∫
k2(x , y)da(x)da(y) <∞

Conservation: ∫
k(x , y)da(x) = 1
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Properties of diffusion operators

Non-negativity: k(x , y) ≥ 0

Symmetry: k(x , y) = k(y , x)

Positive semidefiniteness: K (λi ) ≥ 0

Square integrability: by Parseval’s theorem∑
i≥0

K 2(λi ) <∞

Conservation: by Perron-Frobenius theorem λi ≤ 1
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Diffusion geometry

Family of diffusion metrics

d2(x , y) = ‖k(x , ·)− k(y , ·)‖2L2(X )

=

∫
X

(k(x , z)− k(y , z))2da(z)

Alternatively,

d2(x , y) = ‖K (λi )φi (x)− K (λi )φi (y)‖`2
=

∑
i≥0

K 2(λi )(φi (x)− φi (y))2

Equivalent due to Parseval’s theorem

{Kt}t≥0 define a scale space of metrics {dt}t≥0
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Diffusion geometry

Heat diffusion metric

K (λ) = e−λt

d2
t (x , y) =∑
i≥0

e−2λi t(φi (x)− φi (y))2

Commute time metric

K (λ) = 1√
λ

d2(x , y) =

“Connectability” of x and y
by random walks of length t

“Connectability” by random
walks of any length

Scale invariant!
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Diffusion maps

Map each point x on X to a sequence

Φ(x) = {K (λi )φi (x)}i≥0

Φ(x) are embedding coordinates of x in `2 (“R∞”)

By Parseval’s theorem

‖Φ(x)− Φ(y)‖2`2 =
∑
i>0

K 2(λi )(φi (x)− φi (y))2

= d2(x , y)

Diffusion distance is represented by Euclidean distance in
embedding space
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Diffusion maps
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Correspondence

x

x ′

ϕ(x)

ϕ(x ′)

Embed one shape into the other

Find minimum distortion correspondence

Solved using generalized multidimensional scaling
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Correspondence

x

x ′

ϕ(x)

ϕ(x ′)

Embed one shape into the other

Find minimum distortion correspondence

min
ϕ:X→Y

‖dX − dY ◦ (ϕ× ϕ)‖

Solved using generalized multidimensional scaling
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Correspondence

x

x ′

ϕ(x)

ϕ(x ′)

Embed one shape into the other
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Diffusion distance distributions

0.5 1 1.5 2 2.5 3 3.5 x 10-3

Represent shape as distribution of diffusion distances

Compare shapes using divergence of distributions
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Diffusion distance distributions

K (λ) ‖ · ‖ histA A A

D A

K (λ) ‖ · ‖ histA A A
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Diffusion distance distributions

Particular case I: Rustamov’s GPS embedding

e−λt ‖ · ‖2 hist
∫∞
0

dt

‖ · ‖2

e−λt ‖ · ‖2 hist
∫∞
0

dt

d2
CT(x , y) =

∫ ∞
0

∑
i≥0

e−2λi t(φi (x)− φi (y))2︸ ︷︷ ︸
Diffusion distance d2

t (x ,y)

dt
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Diffusion distance distributions

Particular case II: Mahmoudi & Sapiro

e−λt ‖ · ‖2 histt = t0

‖ · ‖2

e−λt ‖ · ‖2 histt = t0
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Diffusion distance distributions
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Generalizations

K (λ) ‖ · ‖ histA A A

D A

K (λ) ‖ · ‖ histA A A

Diffusion distances generated by other norms, e.g. ‖ · ‖L1(X )

Construct (or learn) optimal task-specific diffusion kernels
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Local structure

Global structure
Metric space

Glocal structure
Stable regions

Local structure
Point descriptors
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Diffusion kernel descriptors

Associate each point x with a vector (kt1(x , x), . . . , ktn(x , x))

Multi-scale point-wise descriptor

Heat kernel signature (HKS): x 7→ (ht1(x , x), . . . , htn(x , x))

(Sun et al., SGP’09)
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Heat kernel signature

ht(x , x) =
1

4πt

(
1 +

1

3
K (x)t +O(t2)

)
K (x) = Gaussian curvature at point x

(Sun et al., SGP’09)
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Scale invariance

Original shape

Eigenvalues λi

Eigenfunctions φi (x)

Heat kernel ht(x , x)

Scaled by 1
α

Eigenvalues α2λi

Eigenfunctions αφi (x)

Heat kernel α2hα2t(x , x)

Not scale invariant!
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Scale invariance

Log scale space
heτ → α2heτ+β

β = logα2

Scale →
shift + factor
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Scale invariance

Log scale space Log + derivative
heτ → α2heτ+β

β = logα2 d

dτ

(
logα2 + log heτ+β

)
=

d

dτ
log heτ+β

Scale →
shift + factor

Undo factor
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Scale invariance

Log scale space Log + derivative Fourier magnitude

heτ → α2heτ+β

β = logα2 d

dτ

(
logα2 + log heτ+β

)
=

d

dτ
log heτ+β

F
{

d

dτ
log heτ+β

}
=

eβiωπF
{

d

dτ
log heτ

}

Scale →
shift + factor

Undo factor Undo shift
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Scale invariant heat kernel signature

(B&Kokkinos, CVPR’09)

Alex Bronstein, Michael Bronstein, Umberto Castellani Spectral methods in shape analysis
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Scale invariant heat kernel signature

(B&Kokkinos, CVPR’09)
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ShapeGoogle

HKS descriptors Geometric words Bag of words

Given point-wise descriptor h(x)

Quantize each h in a fixed vocabulary V = {v1, . . . , vn}
Bag-of-words shape descriptor

H =

∫
X

v(x)da(x)
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ShapeGoogle

“ ”
“ ”

HKS descriptors Geometric
expressions

Spatially-sensitive
bag of words

Spatially-sensitive bags of pairs of words

H =

∫
X×X

v(x)v(y)ht(x , y)da(x)da(y)
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ShapeGoogle
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Partial matching

Given a bag-of-features descriptor H′ of a part Y ′ ⊂ Y

Find part X ′ ⊂ X with equal area such that the descriptor

H =

∫
X ′

vda

best matches H′

Regularize part boundary length a lá Mumford-Shah

min
X ′

∥∥∥∥∫
X ′

vda−H′
∥∥∥∥2 + µL(∂X ′) s.t. A(X ′) = A(Y ′)

Ambrosio-Tortorelli approximation

min
u,ρ

∥∥∥∥∫
X

vuda−H′
∥∥∥∥2 + µ1

∫
X
ρ2‖∇u‖2da + µ2ε

∫
X
‖∇ρ‖2da

+
µ2
4ε

∫
X

(1− ρ)2da s.t.

∫
X

uda = A(Y ′)
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Partial matching
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Global + local structures

Global structure
Metric space

+

Local structure
Point descriptors
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Correspondence encore

x

x ′

ϕ(x)

ϕ(x ′)

Find minimum distortion correspondence

min
ϕ:X→Y

‖dX − dY ◦ (ϕ× ϕ)‖

Combine local and global structure distortion
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Correspondence encore

x

x ′

ϕ(x)

ϕ(x ′)

Find minimum distortion correspondence

min
ϕ:X→Y

‖dX − dY ◦ (ϕ× ϕ)‖+ µ‖hX − hY ◦ ϕ‖

dX , dY – global structures
hX ,hY – local structures

Combine local and global structure distortion

Alex Bronstein, Michael Bronstein, Umberto Castellani Spectral methods in shape analysis



Heat kernel signature encore

Poor spatial feature localization!

Aubry et al., CVPR’11; B, PAMI’11
Alex Bronstein, Michael Bronstein, Umberto Castellani Spectral methods in shape analysis



Wave kernel signature

Different physical model: a quantum particle with initial
energy distribution f (ν).

Described by the Schrödinger equation(
i∆ +

∂

∂t

)
ψ(x , t) = 0

Solution ψ(x , t) complex wave function – oscillatory behavior

|ψ(x , t)|2 = probability to find particle at point x at time t.

Solution in spectral domain

ψ(x , t) =
∑
k≥0

e iνk t f (νk)φk(x)

Aubry et al., CVPR’11
Alex Bronstein, Michael Bronstein, Umberto Castellani Spectral methods in shape analysis



Wave kernel signature

Different physical model: a quantum particle with initial
energy distribution f (ν).

Described by the Schrödinger equation(
i∆ +

∂

∂t

)
ψ(x , t) = 0

Solution ψ(x , t) complex wave function – oscillatory behavior

|ψ(x , t)|2 = probability to find particle at point x at time t.

Solution in spectral domain

ψ(x , t) =
∑
k≥0

e iνk t f (νk)φk(x)

Aubry et al., CVPR’11
Alex Bronstein, Michael Bronstein, Umberto Castellani Spectral methods in shape analysis



Wave kernel signature

Different physical model: a quantum particle with initial
energy distribution f (ν).

Described by the Schrödinger equation(
i∆ +

∂

∂t

)
ψ(x , t) = 0

Solution ψ(x , t) complex wave function – oscillatory behavior

|ψ(x , t)|2 = probability to find particle at point x at time t.

Solution in spectral domain

ψ(x , t) =
∑
k≥0

e iνk t f (νk)φk(x)

Aubry et al., CVPR’11
Alex Bronstein, Michael Bronstein, Umberto Castellani Spectral methods in shape analysis



Wave kernel signature

Different physical model: a quantum particle with initial
energy distribution f (ν).

Described by the Schrödinger equation(
i∆ +

∂

∂t

)
ψ(x , t) = 0

Solution ψ(x , t) complex wave function – oscillatory behavior

|ψ(x , t)|2 = probability to find particle at point x at time t.

Solution in spectral domain

ψ(x , t) =
∑
k≥0

e iνk t f (νk)φk(x)

Aubry et al., CVPR’11
Alex Bronstein, Michael Bronstein, Umberto Castellani Spectral methods in shape analysis



Wave kernel signature

Different physical model: a quantum particle with initial
energy distribution f (ν).

Described by the Schrödinger equation(
i∆ +

∂

∂t

)
ψ(x , t) = 0

Solution ψ(x , t) complex wave function – oscillatory behavior

|ψ(x , t)|2 = probability to find particle at point x at time t.

Solution in spectral domain

ψ(x , t) =
∑
k≥0

e iνk t f (νk)φk(x)

Aubry et al., CVPR’11
Alex Bronstein, Michael Bronstein, Umberto Castellani Spectral methods in shape analysis



Wave kernel signature

Family of log-normal initial energy distributions

fe(ν) ∝ exp

(
−(log e − log ν)2

2σ2

)

Probability to find particle at point x

pe(x) = lim
T→∞

1

T

∫ T

0
|ψ(x , t)|2dt =

∑
k≥1

f 2
e (νk)φ2k(x)

Each point is associated the wave kernel signature

p(x) : x 7→ (pe1(x), . . . , pen(x))

Aubry et al., CVPR’11
Alex Bronstein, Michael Bronstein, Umberto Castellani Spectral methods in shape analysis
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Wave kernel signature

0

0.2

0.4

0.6

0.8

1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Collection of band pass filters

p(x) =
∑
k≥0

 p1(νk)
...

pn(νk)

φ2k(x)

pi (ν) = exp

(
−(log ei − log ν)2

σ2

)
Aubry et al., CVPR’11
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Wave kernel signature

Better spatial feature localization

Lower discriminativity

Aubry et al., CVPR’11; B, PAMI’11
Alex Bronstein, Michael Bronstein, Umberto Castellani Spectral methods in shape analysis



Waves vs Heat
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WKS has higher sensitivity than HKS (better at low FPR)

Yet has lower specificity (worse at low FNR)

WKS is better for correspondence problems

HKS is better for shape retrieval problems

B, PAMI’11
Alex Bronstein, Michael Bronstein, Umberto Castellani Spectral methods in shape analysis
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An ideal descriptor

Localization: changes a lot under a small displacement on
the surface.

Sensitivity: a small set of best matches should contain a
correct match with high probability.

Discriminativity: distinguish between shapes belonging to
different classes.

Invariance: invariant (insensitive) to a class of
transformations.

Efficiency: maximum information per number of dimensions.

B, PAMI’11
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Optimal spectral descriptors

Build optimal spectral descriptor of the form

p(x) =
∑
k≥0

 f1(νk)
...

fn(νk)

φ2k(x)

Parametrized by family of frequency responses fi (ν).

Similar in spirit to Wiener filter:

attenuate frequencies with large noise content (deformation)
pass frequencies with large signal content (discriminative
geometric features)

Hard to model axiomatically

...yet easy to learn from examples!

B, PAMI’11
Alex Bronstein, Michael Bronstein, Umberto Castellani Spectral methods in shape analysis
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Parametrization

To do learning, we need a finite set of parameters

Problem: each shape has distinct eigen-frequencies {νi}.
Independent parametrization: select basis functions

{b1(ν), . . . , bm(ν)}

spanning a sufficiently wide interval of frequencies [0, νmax]

Represent responses as f1(ν)
...

fn(ν)

 = A

 b1(ν)
...

bm(ν)


with the matrix of parameters A
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Parametrization

Select sufficiently large s for which νs ≥ νmax

Represent the point descriptor

p(x) =
∑
k≥0

 f1(νk)
...

fn(νk)

φ2k(x)

≈ A

 b1(ν1) · · · b1(νs)
...

. . .
...

bm(ν1) · · · bm(νs)


 φ21(x)

...
φ2s (x)

 = Ag(x)

Geometry vector g consistently represents all geometric
information at point x .
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Learning

x a point, x+ a knowingly similar point (positive), x− a
knowingly dissimilar point (negative).

g, g+, g− – corresponding geometry vectors.

p,p+,p− – corresponding descriptors.

Simultaneously maximize d(p,p−) and minimize d(p,p+).

Using Euclidean distance on descriptor space

d2
± = ‖p− p±‖2 = ‖A(g − g±)‖2

= (g − g±)TATA(g − g±).

Mahalanobis distance on geometry vectors space.

Mahalanobis metric learning problem.
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Learning

Taking expectation over positive/negative pairs

E{d2
±} = E

{
‖p− p±‖2

}
= E

{
(g − g±)TATA(g − g±)

}
= tr

{
AE((g − g±)(g − g±)T)AT

}
= tr

{
AC±AT

}

C± is the covariance matrix of positives/negatives g − g±.

Minimize weighted difference

α controls tradeoff between sensitivity (α→ 1) and specificity
(α→ 0).

Strecha,Fua,BB, PAMI’11; B, PAMI’11
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Learning

Scale of A is arbitrary!

Recall efficiency: dimensions of p should be

Minimization problem

min
A

tr {ADαAT} s.t. ACAT = I

Solution: A = UT
n C−1/2 where Un are the n smallest

eigenvectors of C−1/2DαC−1/2.
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Learning
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I = E(ppT) = AE(ggT)AT = ACAT
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Optimal spectral descriptor
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Better specificity and sensitivity than HKS and WKS
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Optimal spectral descriptor

Better spatial feature localization than WKS

Better discriminativity than HKS
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Optimal spectral descriptor
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Intrinsic shape contexts

Spectral descriptors lack
orientation information

Given a vector field p on
surface, compute its
distribution over a local
polar system of coordinate

Intrinsic shape context (ISC)
– a meta-descriptor

Kokkinos,Litman,BB, CVPR’12
Alex Bronstein, Michael Bronstein, Umberto Castellani Spectral methods in shape analysis
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Intrinsic shape contexts

Tangent plane map Inward shooting Outward shooting

Problem I: no global coordinate system

Local chart has to be created

Problem II: arbitrary angular coordinate

Undone using Fourier transform modulus
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Intrinsic shape contexts

Scale Invariant HKS Intrinsic Shape Context
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Intrinsic shape contexts
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Glocal structure

Global structure
Metric space

Glocal structure
Stable regions

Local structure
Point descriptors

Alex Bronstein, Michael Bronstein, Umberto Castellani Spectral methods in shape analysis



Component trees

Measure proximity d(x , y) in some local neighborhood
y ∈ N (x)

t = 0: start with single points forming disjoint clusters

For increasing t merge clusters C1 and C2 if

d(C1,C2) = min
x∈C1

y∈C2

d(x , y) ≤ t

Single-linkage agglomerative clustering

Hierarchy described as component tree
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Component trees
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Maximally stable components

Stability of a component

σ(Ct) =
A(Ct)
dA(Ct)

dt

Measures relative change of area as function
of change of threshold

(Better stability functions are available)

Maximally stable components: local
maximizers of σ
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Maximally stable components
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Volumetric diffusion geometry

Boundary isometry does not always represent a realistic
deformation

May change volume of the solid

Solution: volumetric diffusion geometry

(image: Sumner)
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Volumetric diffusion geometry
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Volumetric maximally stable components
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Affine invariance

Let C (p) be a curve on manifold X

Demand det (x1, x2,Cpp) = 1 and obtain equi-affine invariant
arclength

dp2 = det (x1, x2, x11du2
1 + 2x12du1du2 + x22du2

2)

= g̃11du2
1 + 2g̃12du1du2 + g̃22du2

2

where g̃ij = det (x1, x2, xij)

Construct invariant pre-metric tensor

ĝij = g̃ij |det g̃ |−1/4

where |det g̃ |−1/4 guarantees reparametrization invariance

Positive definite only on convex surfaces

Construct g from ĝ enforcing positivity of eigenvalues

g is a valid metric on manifolds with non-vanishing curvature
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Construct g from ĝ enforcing positivity of eigenvalues

g is a valid metric on manifolds with non-vanishing curvature

Alex Bronstein, Michael Bronstein, Umberto Castellani Spectral methods in shape analysis



Affine invariance

Let C (p) be a curve on manifold X

Demand det (x1, x2,Cpp) = 1 and obtain equi-affine invariant
arclength

dp2 = det (x1, x2, x11du2
1 + 2x12du1du2 + x22du2

2)

= g̃11du2
1 + 2g̃12du1du2 + g̃22du2

2

where g̃ij = det (x1, x2, xij)

Construct invariant pre-metric tensor
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ĝij = g̃ij |det g̃ |−1/4

where |det g̃ |−1/4 guarantees reparametrization invariance

Positive definite only on convex surfaces
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Affine invariance

Define equi-affine Laplacian ∆g

Equi-affine Laplacian + scale-invariance =
affine-invariance
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Conclusion

Diffusion processes on manifolds

Spectrum of the Laplacian

Global structure: diffusion geometry

Local structure: diffusion kernel signatures

Semi-local structure: maximally stable components

Extensions
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