
EUROGRAPHICS 2012/ A. Fusiello, M. Wimmer Poster

Revision Control Framework for 3D Assets

J. Doboš and A. Steed

Department of Computer Science, University College London, United Kingdom

*.3D

MongoDB

Binary
JSON

3D RCViewer

3D Diff

(a) System Overview (b) 3D RCViewer

3D Editors
(Max, Maya, Blender...)

Figure 1: In (a), 3D files from various modelling packages are uploaded into our viewer which stores scenes in a NoSQL
database. (b) 3-way 3D diff supports selective merging from two different revisions (top) when combining into the common
origin (bottom). Conflicts are highlighted in red, modifications in blue and current selection in orange.

Abstract
We propose a non-linear concurrent revision control for centralised management of 3D assets and a novel ap-
proach to mesh differencing. Large models are decomposed into individual scene graph (SG) nodes through an
asset import library and become versioned as collections of polymorphic documents in a NoSQL database (DB).
Well-known operations such as 2- and 3-way diff and merging are supported via a custom DB front-end. By not
relying on the knowledge of user edits, we make sure our system works with a range of editing software. We
demonstrate the feasibility of our proposal on concurrent 3D editing and conflict resolution.

Categories and Subject Descriptors (according to ACM CCS): I.3.4 [Computer Graphics]: Graphics Utilities—
Graphics editors

1. Introduction

Storing 3D assets as files on a filesystem poses several draw-
backs. Most of the time, the user loads a model into an editor,
performs changes and saves it as a file again. When devel-
oping large models, it has to be decided how to spread the
scene across various files and how to support collaborative
editing. Either the scene is a single file limited by machine
memory or the meshes are stored independently. The latter,
however, introduces additional problems especially if edits
involve distinct objects.

VisTrails Provenance Explorer for Maya [Vis12] is a
commercial plug-in with a side-by-side differencing of se-
lected 3D revisions. Despite capturing the edit history in its
MySQL database, the 3D models have to be stored locally.
Similarly, Denning et al. [DKP11] log edits in Blender. By

label clustering via layers of regex, they create an interac-
tive playback of modelling history. This, however, deals with
single-user mesh edits only and tracks a subset of modelling
techniques. Likewise, for images, Chen et al. [CWC11] pro-
pose an integrated revision control by logging actions in a
graphical editor. Roupé and Johansson [RJ10], on the other
hand, tackle a city wide 3D modelling via a hierarchical file
structure stored in a Subversion repository.

We exploit the recent developments in database tech-
nology. Our non-linear revision control is built using a
NoSQL database (MongoDB, http://mongodb.org)
that stores SG nodes as well as their hierarchy. In addition,
our DB front-end offers a conflict resolution interface that
facilitates 2- and 3-way diff for meshes that enables the user
to quickly select individual changes from any two revisions.
We believe that, initially, the framework should not rely on

c© The Eurographics Association 2012.

DOI: 10.2312/conf/EG2012/posters/001-002

http://mongodb.org
http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/conf/EG2012/posters/001-002


J. Doboš & A. Steed / Revision Control Framework for 3D Assets

any specific modeling tool but rather deal with 3D files exter-
nal to the editor. We do not restrict the types of 3D models
tracked and therefore a unified representation of scenes is
stored.

2. 3D Database

To our advantage, large models tend to encompass several
meshes with their related semantic meaning. We exploit this
natural partitioning and treat each part of an asset as a bi-
nary “blob” with its associated relationships. Zeleznik et
al. [ZHC∗00] use scene graph as a data format to inter-
mediate between different applications. Following this ex-
ample we convert files into SG components using the Open
Asset Import Library (Assimp) [GSKN12] which can import
and export various common 3D formats. These are subse-
quently encoded as Binary JSON (BSON) objects for stor-
age and revision tracking in MongoDB.

To be non-restrictive, a scene graph is best described as
a directed acyclic graph (DAG) where objects are stored in
local coordinates with their associated global transforma-
tions. Non-linear history that allows for branching and merg-
ing is effectively a DAG, too. Hence, these DAGs reside
in their respective collections (tables) inside DB. To iden-
tify SG nodes, we assign each a universally unique identifier
(UUID). Even though NoSQL is schemaless, the UUID to-
gether with the revision number can be best described,
in relational DB terms, as a composite primary key on the SG
collection. Each SG node has to preserve this revision meta-
data during the round-trip from the modelling software to
the DB and back. To retrieve a revision from the DB, the lat-
est versions of each node are queried. On deletion, a node is
replaced by BSON NULL document in the next revision and
all of its children are recursively checked. If no other par-
ents exist, these are also deleted. Implemented in C++, our
revision control interface (3D RCViewer) facilitates afore-
mentioned model handling and versioning, see Figure 1.

3. 3D Diff

In order to detect conflicts during commit and merging, we
perform an early reject byte-by-byte memory comparison on
BSON objects that share the same UUID. If, for example, the
counts of vertices differ, such meshes are already flagged as
modified. Without a dedicated diff tool, conflicts would have
to be exported into modelling software to be fixed and up-
loaded back to our 3D RCViewer. However, such packages
do not support conflict resolution in similar 3D models, usu-
ally presenting the user with superimposed meshes and a list
of reoccurring SG node names.

Our novel 3D diff tool allows the user to selectively
choose one or the other revision for each conflicting SG
node. As shown in Table 1, discrepancies (⊕,⊗) in any two
nodes (2-way) cannot be resolved automatically. However,
adding extra information about a common origin based

on the same UUIDs (3-way) can further aid automated con-
flict resolution. Implemented within the 3D RCViewer, we
present the user with either 2 or 3 model views and color-
code conflicts, modifications and node selections. By using a
change list (Figure 1b), the user can quickly decide on which
modifications to preserve.

Origin Head Local Result

conflict

Head Local Result

conflict

Table 1: Schematic representation of a 2-way (left) vs. a 3-
way (right) diff with suggested merge results. Each SG node
can be modified in head or local/branch revisions.

4. Discussion

We believe that our unification of versioning and storage can
provide significant benefits over the common practice today.
The smallest revision unit is a BSON document so if a sin-
gle vertex has been changed, the whole mesh would need to
be resaved. Nevertheless, we consider this a delta revision as
it is only a subset of a larger scene. Also, it is possible that
modelling software might not preserve our revision meta-
data. In such a case, nodes based on similar size, number of
vertices etc. can be compared. We plan to make this work
open source in the near future although it remains an open
research question as to how to improve the user interaction in
3D diff. Possible avenues include automated camera naviga-
tion for better context understanding, bounding box conflict
detection and vertex-level merging. Access to the DB as well
as an independent 3D diff could be implemented via plug-in
frameworks of many 3D modelling packages. What is more,
MongoDB offers built-in geospatial indexing which would
support spatial queries for large urban models.

References
[CWC11] CHEN H.-T., WEI L.-Y., CHANG C.-F.: Nonlinear

revision control for images. In ACM SIGGRAPH 2011 papers
(2011), pp. 105:1–105:10.

[DKP11] DENNING J. D., KERR W. B., PELLACINI F.: Mesh-
flow: interactive visualization of mesh construction sequences.
ACM Trans. Graph. 30 (Aug. 2011), 66:1–66:8.

[GSKN12] GESSLER A., SCHULZE T., KULLING K.,
NADLINGER D.: Open asset import library (assimp), Jan-
uary 2012. http://assimp.sourceforge.net.

[RJ10] ROUPÉ M., JOHANSSON M.: Supporting 3d city mod-
elling, collaboration and maintenance through an open-source
revision control system. In CAADRIA New Frontiers (2010),
pp. 347–356.

[Vis12] VISTRAILS, INC.: Vistrails for maya, January 2012.
http://www.vistrails.com/maya.html.

[ZHC∗00] ZELEZNIK B., HOLDEN L., CAPPS M., ABRAMS H.,
MILLER T.: Scene-graph-as-bus: Collaboration between hetero-
geneous stand-alone 3-d graphical applications. In Eurographics
(2000).

c© The Eurographics Association 2012.

2

http://assimp.sourceforge.net
http://www.vistrails.com/maya.html

