
EUROGRAPHICS 2012/ G. Gallo, B. Sousa Santos Education Paper

Teaching a Modern Graphics Pipeline Using a Shader-based
Software Renderer

Heinrich Fink1, Thomas Weber1 and Michael Wimmer1

1Vienna University of Technology, Austria

Abstract
Shaders are a fundamental pattern of the modern graphics pipeline. This paper presents a syllabus for an intro-
ductory computer graphics course that emphasizes the use of programmable shaders while teaching raster-level
algorithms at the same time. We describe a Java-based framework that is used for programming assignments in
this course. This framework implements a shader-enabled software renderer and an interactive 3D editor. We also
show how to create attractive course materials by using COLLADA, an open standard for 3D content exchange.

Categories and Subject Descriptors (according to ACM CCS): K.3.2 [Computers and Education]: Computer and
Information Science Education—Computer Science Education

1. Introduction

The aim of this paper is to present a new framework for the
introductory computer graphics course that we have intro-
duced at the Vienna University of Technology in 2010. We
will start by describing related work and the background of
this course with our motivation of building a new course
framework. We are then going to explain our approach to
teach fundamental aspects of a modern graphics pipeline us-
ing the concept of shaders. We present our course frame-
work, a Java-based 3D editor with a software renderer and
describe how this editor motivates our students during the
course by interacting with their work. We also describe how
we use COLLADA, an open format for 3D authoring, within
our framework and how we solve difficulties in organization
and maintenance of the course system. We conclude with
our experiences of the new course framework and sugges-
tions for future work. The main contributions of this paper
can be summarized as:

• A syllabus for teaching fundamental aspects of a modern
graphics pipeline using shaders

• A course framework with a Java-based didactic software
renderer and an interactive 3D editor

• Using real-world COLLADA assets to motivate and en-
gage students during the course assignments

• Solutions for overcoming difficulties in course organiza-
tion and maintenance

Figure 1: The editor of the course framework. This scene
shows a model that has been exported from the game SPORE
by Maxis using the COLLADA format. The matrix display is
updated while using the widget in the transform panel.

1.1. Related Work

The introduction of computer graphics into computer sci-
ence curricula was first discussed in the late 1980s [Ohl86].
At that time only the most fundamental graphics algorithms
such as line drawing and clipping were taught on expen-
sive equipment with highly specialized software [Wol00].

c© The Eurographics Association 2012.

DOI: 10.2312/conf/EG2012/education/073-080

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/conf/EG2012/education/073-080

H. Fink, T. Weber & M. Wimmer / Teaching a Modern Graphics Pipeline with Shaders

Figure 2: Entries submitted by students for the annual lab course competition. From left to right: A COLLADA-imported chess
scene with custom shaders applied by Philipp Seeböck; Day-and-night shader implementation by Levin Pölser; Cel-shading by
Sascha Wiplinger.

When graphics hardware became available as more afford-
able mainstream consumer products in the 1990s, most uni-
versities started to offer computer graphics courses in a com-
puter science curriculum [Hit00]. At the same time graph-
ics hardware APIs such as OpenGL became widely avail-
able. Users of such APIs didn’t have to deal with low-level
drawing routines anymore. Due to this development, sev-
eral educators therefore proposed to replace the traditional
syllabus of using raster-level algorithms with more practical
approaches using higher-level APIs [Cun00, PG99].

Educators further agreed that teaching introductory com-
puter graphics is inherently about 3D geometry, its visual ap-
pearance and interplay with lighting simulation and should
be taught as interactive projects [HCGW99]. Consequently
some courses strongly based their syllabi on scene graph
concepts and many introduced Java3D, a Java-based scene
graph API that became popular in the late 1990s and early
2000s, to their exercises [PG99,Bou02]. A discussion of how
introductory computer graphics courses could benefit from
teaching scene graphs is given by Cunningham et al. [CB01].

At the 2004 SIGGRAPH education workshop [CHLS04],
the prevalent opinion was that introductory computer graph-
ics courses should be made available to every undergradu-
ate computer science student and not just to those who spe-
cialize in this field during their studies. For students with
a less traditional background it seemed more appropriate to
teach the higher level modules of a graphics application first
(top-down) as opposed to traditionally beginning the course
with raster-level operations and gradually moving towards
higher level concepts (bottom-up). The top-down approach
showed to work well for more mature students who took
only a single computer graphics course during their stud-
ies [SS04]. However, the discussions of the 2006 SIGCSE
panel [ACSS06] suggest that there is no right way to build a
computer graphics curriculum, and that teaching the bottom-

up approach as an introductory course would still be a viable
approach for those students who follow up with a series of
advanced computer graphics courses.

While previous discussions mainly focused on the struc-
ture and content of the syllabus, more recent discussions em-
phasize the importance of the context in which computer
graphics are being taught [CC09, Cun08]. Choosing a con-
text which allows students to work on problems that are also
relevant outside the course environment turned out to highly
boost motivation. For example, Schweppe et al. used the
context of theatre [SG09] for teaching computer graphics.

With the wide availability of programmable graph-
ics hardware, approaches of teaching shaders in com-
puter graphics courses have been increasingly investigated
[OZCP05,BC07,TF07]. As shaders became commonly used
in graphics programming, a shader-based introductory com-
puter graphics course was recently proposed [AS11].

2. Course Background and Motivation

At Vienna UT, the curriculum Visual Computing offers three
main courses focused on computer graphics:

1. An introductory course teaching fundamental aspects of
computer graphics using Java.

2. An intermediate course teaching modern OpenGL with
C++.

3. An advanced course on state-of-the-art optimization
methods and graphics effects.

Each course has lectures covering theoretical aspects that
are applied in lab exercises with programming assignments.
Other advanced electives with related topics such as visual-
ization, virtual and augmented reality or color sciences are
also offered regularly. The outline of the Visual Comput-
ing curriculum is largely based on the ACM recommenda-
tions [REC∗01].

c© The Eurographics Association 2012.

74

H. Fink, T. Weber & M. Wimmer / Teaching a Modern Graphics Pipeline with Shaders

Topics Interaction w. Shader Concepts

Assignment 1
Bresenham line rasterization
Viewport mapping

Assignment 2
3D vector/math operations Execute vertex shading stage
Model transformations Apply model matrix to vertices in vertex shader (VS)

Assignment 3

Polygon clipping Interpolate per-vertex attributes for clipped polygons
View and projection transform Concatenate model-view-projection (MVP) matrix
Linear color interpolation Pass MVP matrix and view matrix to VS

Apply MVP matrix to vertices in VS
Add interpolation of varyings to line rasterizer
Pass vertex color from VS to fragment shader (FS) as varyings
Return interpolated color in FS

Assignment 4
Triangle fill rasterization Interpolate varyings with barycentric coordinates
Back-face culling Call FS with interpolated varyings
Depth test with Z-buffer

Assignment 5

Transforming normals Calculate the inverse-transpose of the model matrix
Shading models Pass inverse-transpose to VS
Illumination models Create shaders for per-vertex and per-fragment lighting

Transform normal, view and light vector to world space using the VS
Calculate Lambert/Blinn-Phong illumination in world space in the FS

Assignment 6
Texturing Use sampler uniforms in FS
Perspective-correct interpolation Pass UV coordinates as varyings between VS and FS

Freely experiment with new custom shaders

Table 1: Overview of our syllabus and how we gradually approach shaders with each graphics topic.

In the European Space of Higher Education (ESHE), cur-
ricula have to be split into two cycles in accordance with
the bologna requirements [FPAA06]. At Vienna UT, the in-
troductory and intermediate computer graphics courses are
compulsory during the first education cycle (the Visual Com-
puting bachelor program). These courses teach the theoreti-
cal foundations that are necessary to continue with advanced
degrees, as well as practical skills such as modern OpenGL
with C++ that are often required for practical work in the
computer industry. This is in line with recommendations
made during a previous education workshop where the con-
sequences of the Bologna process for computer graphics ed-
ucation have been discussed [BCFH06].

This paper describes the first computer graphics course
which is usually taken by second-year full-time computer
science students. The prerequisites for this course are basic
programming skills in Java, object-oriented modeling and
basic linear algebra. In the Visual Computing curriculum,
every student has had courses covering these subjects be-
fore attending the introductory computer graphics course.
Our course is attended by approximately two hundred stu-
dents each year. This comparatively high number of students
poses challenges in distribution and maintenance of course
material. We address these issues in Section 4.3.

For the introductory course we chose the bottom-up ap-
proach where a large amount of time is spent on imple-
menting fundamental graphics operations such as triangle
rasterization, viewing and visibility algorithms. As argued
by Shirley [ACSS06], we believe that this approach is more
effective in communicating the basic computer graphics al-

gorithms. The bottom-up approach has also been consid-
ered [SS04] to work better for courses like ours where the
majority of students is enrolled full-time and where more
than one computer graphics course is offered.

However, it was also our motivation to teach concepts that
are practically relevant. While teaching the second, interme-
diate graphics course, we experienced that many students
had problems adopting the modern approach of shader-based
OpenGL. Shaders are programming patterns that are now
mandatory in any recent real-world graphics API [AS11]
(OpenGL 3.2+, OpenGL ES 2.0, WebGL, etc.). Therefore
they are highly relevant to graphics programming. We de-
cided that the concept of shaders should form a fundamental
part of our syllabus and that they should be included while
teaching the more traditional lower-level algorithms.

3. Course Syllabus

The aim of the introductory laboratory course is for the stu-
dents to apply the concepts described in the lecture. These
topics include raster-level algorithms, polygon clipping, 3D
transformations, hidden surface removal, lighting models
and texturing.

At the beginning of each course, students receive an in-
complete version of a software renderer. We have defined six
programming assignments that incrementally add features to
the graphics pipeline. Students are supposed to solve these
assignments individually.

A summary of the assignments and how we include the

c© The Eurographics Association 2012.

75

H. Fink, T. Weber & M. Wimmer / Teaching a Modern Graphics Pipeline with Shaders

concept of shaders to our syllabus is found in Table 1. We
would also like to refer to the online Wiki of the lab course
[CGLb] that describes the assignments in detail.

What distinguishes our approach from other courses is
that it communicates aspects of a modern graphics API
while still being software-based: instead of a fixed-function
pipeline with a handful of illumination models and shading
modes, a fully programmable shader-based approach is used.
This is motivated by the fact that any current graphics API
requires the use of a vertex and fragment shader [AS11].

Shaders are implemented as classes and interact with the
rasterizer pipeline through polymorphism. The classes im-
plement an interface which defines entry points of the vertex
and fragment shader as abstract methods. Students will im-
plement both the shader classes and parts of the renderer that
interacts with them. This way students learn about shader-
based computer graphics from day one and also get a chance
to see how shaders are employed within a graphics pipeline.
This is not possible with current graphics APIs because these
parts are usually hidden from the programmer.

The typical shader inputs and outputs (vertex attributes,
uniform values, varying values and the final fragment color)
are all included in the software model. Vertex attributes are a
fixed set of per-vertex values: color, normal, tangent, bitan-
gent and uv coordinates. Uniforms are represented by mem-
ber variables of the shader object. The fragment output is
a single RGB color triple. Varying values, which are the
output of the vertex-shader, are interpolated during raster-
ization and then become the input of the fragment-shader.
These are encapsulated in a specialized class which con-
sists of an array of float values and methods for interpolating
them. Perspective-correct interpolation is also supported.

The course is split into six assignments which build upon
each other. This allows students to better understand the big
picture as opposed to isolated assignments that solve only
one particular problem. While we supply a standard solution
after each finished task, many students choose to use their
own solutions from start to end.

The first assignment is a straightforward and simple task:
Students implement Bresenham line rasterization and com-
plete the viewport transform of points from normalized de-
vice coordinates to pixel coordinates. This gives them time
to set up the development environment and get accustomed
to the framework.

In the second assignment, students implement model
transformations and general 3D math operations like the dot-
product and matrix-multiplication. This is also the first time
they use shaders, when calling the vertex-shader and apply-
ing the model-matrix to the input vertices. After complet-
ing this task, students should understand the concept of 3D
transformations, be able to build the inverse for combina-
tions of common transformations and understand the differ-

public class LambertGouraudShader extends SurfaceShader {

@RGBParam(r = 1, g = 1, b = 1)
public Vec3 diffuse;

@Override
public Vertex shadeVertex(Mesh.Vertex v) {

Vec4 pos = Mat4.mul(_modelViewProjectionMatrix,
v.position);

Vec3 P = Mat4.mul(_modelMatrix,
v.position).homogenize3();

Vec3 N = Mat3.mul(_normalMatrix,
v.normal).normalize();

Vec3 C = v.color;
Vec3 surfaceColor = Vec3.mul(diffuse, C);

Vec3 I = IlluminationModels.lambert(P,
N,
surfaceColor,
_lights);

Varyings vr = new Varyings(new float[]{I.r(),
I.g(),
I.b()});

return new Vertex(pos, vr);
}

@Override
public Vec3 shadeFragment(Varyings varyings) {

float values[] = varyings.getValues();

return new Vec3(values[0], values[1], values[2]);
}

}

Listing 1: Shader implementation of Gouraud-shading with
Lambert-illumation

ence between matrix-multiplication from the right and from
the left.

In the third assignment, students implement polygon-
clipping in homogeneous coordinates and complete the
viewing pipeline by adding viewing and projection matri-
ces. They also implement the necessary sections to interpo-
late per-vertex colors using the vertex and fragment shaders.
Upon completion of this task, students have learned about
the complete 3D viewing-pipeline and polygon clipping.

The topic of the fourth assignment is triangle rasteriza-
tion. Students implement a triangle rasterizer based on eval-
uating plane equations. We chose this simple algorithm over
commonly used algorithms like scan-line filling, because
this is similar to how modern graphics hardware imple-
ment rasterization. Varying vertex shader outputs are inter-
polated using barycentric coordinates and passed to the frag-
ment shader. Hidden surface removal using depth testing and
back-face culling is also implemented in this task.

When reaching assignment five, students have completed
a simple, yet flexible rendering system. At this point their
task is to implement different types of lighting using shaders.
Two types of shading (Gouraud and Phong) as well as two

c© The Eurographics Association 2012.

76

H. Fink, T. Weber & M. Wimmer / Teaching a Modern Graphics Pipeline with Shaders

pkg	 render

pkg	 scene

Geometry

Mesh <<interface>>
Shader

Surface

SurfaceShader

LambertGouraudShader

Renderer

Scene

BlinnPhongShader

draws with

contains

implements

is assigned

is-a

Figure 3: A simplified relationship diagram that shows how
classes from the scene package use public interfaces from
the render package.

illumination models (Lambert and Blinn-Phong) have to be
implemented.

In the final assignment, students use textures and im-
plement a shader effect of their choice. They also add
perspective-correct interpolation of varyings. This is neces-
sary to correctly pass UV coordinates between vertex and
fragment shading. The remaining time of this task is an
open assignment to encourage experimenting and to explore
the potential of shaders. We provide a list of examples and
suggestions (e.g. alternate lighting models, normal mapping,
etc...) to assist students in finding a topic.

Students can test and interact with their solution through
a simple 3D editor that uses their solutions as the renderer
backend. For each submission, starting with the second as-
signment, students use this application to create example
scenes. These scenes showcase implemented features of the
particular task. For some assignments we also ask students
to show things like the difference between left- and right-
multiplication in assignment two, or three-point-lighting in
assignment five. The target application is explained in more
detail in the next section.

4. Course Framework

We have built a custom course framework in Java that im-
plements the concepts described by the previous section.
We have chosen Java as the programming language for this
course, because it is taught as the introductory program-
ming language in the first year of our curriculum. Java has
been used many times as the language of choice for intro-
ductory graphics courses [Muk99, TJN06, RY09]. We agree
that garbage collection, boundary checks of array access and
simple debugging facilities help students to focus on more
relevant aspects of their implementation.

The source code of our course framework is organized in
different modules as Java packages. During each assignment

students have to complete sections of code in one or more of
the following packages:

• render: this package contains the implementation of our
graphics pipeline model as described by the previous sec-
tion. The public interfaces in this package correspond to
the API layer of a modern graphics API that is visible to
the application code.

• scene: classes in this package implement a simple data
model of a scene that consists of geometries, cameras and
light sources. A scene uses the render package to store
render data and to draw itself (see Figure 3). User imple-
mentations of shaders are also included in the scene pack-
age, such as the shader showed in Listing 1. Code con-
tained in this module largely represents the client code of
a graphics API, i.e. code that uses a graphics hardware
API to draw a 3D scene.

• math: a collection of classes and methods for linear alge-
bra routines with vectors and matrices.

For a complete description of classes we refer to the online
JavaDoc documentation of our framework [CGLa].

4.1. The target application: a simple 3D Editor

In order for the students to interact with their solution, we
have added a simple and easy-to-use 3D Editor to our frame-
work. This editor is written solely in Java and uses Java
Swing for displaying a graphical user interface (GUI). A
recent version of the application is publicly available on-
line [CGLc].

The application (see Figure 1) creates, loads and saves 3D
scenes. The status message in the lower left corner provides
useful context information and tool-tips. This helps students
to quickly understand the features of the application.

Geometry, light and camera objects that are contained in
a scene are accessible through the scene outliner in the up-
per right corner. These objects can be selected, added or
deleted. Below the scene outliner another panel shows the
properties of the selected object. This panel should motivate
students to play around with parameters of the framework
and their solution. The position and orientation of this object
can be modified by applying a translation, rotation or scaling
through a GUI widget. Alternatively, the values of the trans-
formation matrix can be entered directly. The display of this
matrix is updated interactively each time the object’s trans-
formation has changed (see Figure 1). Any float parameter
in the properties panel can also be modified continuously by
dragging the mouse. The render view to the left is updated
in real time and immediately reflects a parameter change.

Uniforms of shader instances are also editable in the prop-
erties panel. Classes that implement shaders use Java Anno-
tations to mark class members as uniforms and to provide
the GUI with additional information. For example, the dif-
fuse parameter in Listing 1 is annotated by RGBParam

c© The Eurographics Association 2012.

77

H. Fink, T. Weber & M. Wimmer / Teaching a Modern Graphics Pipeline with Shaders

which defines a default color. The GUI then automatically
adds the following panel to the properties display:

Introspection is often used in the implementation of the
framework and ultimately allows students to quickly interact
with the uniforms of their own shaders in the GUI through
automatically generated widgets.

There are multiple ways of navigating within a scene:
tumble mode, dollying, zooming, trackball rotation and
walkthrough mode. While navigating, the transformation
matrix of the active render camera is modified and its ma-
trix display is updated in real time. The GUI thread is asyn-
chronous to the renderer thread of the scene. This results in
a very responsive GUI. Most scenes that are used during the
course render at 30fps or higher on current laptops. In our
opinion, a good user experience with the GUI encourages
students to playfully explore the topics of the course.

The GUI and content pipeline that is described in the fol-
lowing consist of a considerable amount of source code.
However, the six programming assignments of this lab
course are completely independent from their implementa-
tion. We have therefore packaged their classes into a separate
Java Archive (JAR). This hides complex code that might dis-
tract students. It also allows us to easily distribute bug-fixes
of the GUI by posting new versions of this JAR file during
the semester.

4.2. Employing a COLLADA-based content pipeline

We aim to provide our students with good-looking and inter-
esting content for the editor. COLLADA is an open industry-
standard XML format for exchanging 3D content [col]. It
is maintained by the Khronos Group which is also organiz-
ing the OpenGL graphics API standard process. We chose
COLLADA as the primary data format of our framework.
Many popular 3D applications have importers and exporters
available. These include Autodesk Maya, Blender, Google
Sketchup and even games like Maxis SPORE (see Figure 1).
Our application saves, loads and imports COLLADA scenes
directly. This allows us to access an enormous amount of
online 3D assets. Google’s 3D Warehouse [goo], for exam-
ple, hosts thousands of free COLLADA scenes that can be
opened and rendered by our framework.

While the largest part of our scene data model is a sub-
set of the COLLADA standard, scene attributes that are
special to our framework are stored as extra elements with
COLLADA’s extension mechanism. This doesn’t break the
validity of a COLLADA file. Any scene that is saved by
our framework, can still be opened by any COLLADA-
compatible application. We also believe that students might

benefit from the human-readable XML format by looking at
the elements that compose a scene.

At the end of each course we organize a competition that
engages students to build interesting scenes with the edi-
tor and to experiment with custom shaders (see Figure 2).
Importing COLLADA models enables them to incorporate
real-world 3D assets either by downloading online content
or by importing assets from other 3D applications.

4.3. Deployment of assignments

After the deadline of an assignment has passed, we provide
the students with a version of the framework that has the pre-
vious assignments completed while still missing the features
of the upcoming ones. In order to avoid maintaining multiple
source trees, we have created a markup system to tag those
sections of code that we expect our students to implement
(see Listing 2).
1 // Iterate over all vertices
2 for (int i = 0; i < mesh.getVertexCount(); ++i) {
3
4 Mesh.Vertex meshVertex = mesh.getVertex(i);
5
6 //#task 2 "Execute vertex shader stage"
7 // Transform and shade all vertices
8 Vertex v = shader.shadeVertex(meshVertex);
9 vertices[i] = v;
10
11 //#spec
12 /**
13 * TODO 2:
14 * - Transform the vertices by calling the vertex
15 * shader.
16 * - You can access a vertex of a mesh by calling
17 * mesh.getVertex.
18 */
19 // // Delete me
20 // vertices[i] = new Vertex(meshVertex.position,
21 // Varyings.empty);
22 //#endtask
23 }

Listing 2: Excerpt from the Java class Renderer. The
tag #task in line 6 indicates that code from there until
the #spec tag contains the reference solution for a code
snipped of assignment 2. Between line 11 (#spec) and 22
(#endtask) we can see the code that is presented to the
student in the beginning. Line 19 to 21 would automatically
be uncommented by our parser that generates the student’s
version.

The main source tree which is maintained and continu-
ously developed always compiles the full reference solution.
When we build a student version of the framework, a Python
script parses the previously shown #task annotations and -
depending on the number of the assignment - automatically
strips the reference solution, replaces it with the comments
describing the task and placeholder code.

This process allows us to automatically derive a variety of
resources from a single source branch, such as:

• Sources of reference solutions for each assignment;
• Prebuilt executable JARs of each reference solution;

c© The Eurographics Association 2012.

78

H. Fink, T. Weber & M. Wimmer / Teaching a Modern Graphics Pipeline with Shaders

• Internal Wiki pages showing code segments for each as-
signment;

• Reference renderings of solutions for each task;
• Web resources such as Java Webstart wrappers, download

packages, and many more.

Our course is attended by approximately two hundred stu-
dents per year. Each student has to discuss the solved assign-
ments with a member of the faculty for evaluation of grades.
More than 15 members of the faculty help out to hold these
evaluations. Documentation that is updated regularly helps
to organize this process more efficiently.

5. Discussion

Rhodes et al. implemented a similar course with EASEL, a
didactic software-based rasterizer in Java [RY09]. They rec-
ommend to avoid small allocations on the heap in favor of
allocating larger blocks and to re-use objects whenever pos-
sible. In our design we have decided to favor code clarity
and modularization over code-level optimizations. In many
situations we trust Java’s HotSpot optimizing compiler to
avoid potential performance impacts because of a higher-
level class design. One feature of this just-in-time compiler
is escape analysis [CGS∗99] where local allocations are op-
timized to stack memory. Escape analysis is enabled by de-
fault in Java SE 6u23 and later. The shader shown in Listing
1, for example, allocates new instances of Mat4 classes for
each matrix multiplication. This shader renders the Stanford
Bunny consisting of 69451 triangles with approximately 11
fps on a Core 2 Duo processor at 2.53 Ghz using single-
threaded rasterization. The EASEL framework reports a per-
formance of 11.3 fps with a slightly faster processor [RY09].
This suggests that our choice of using easier-to-read and
small classes does not result in a significant impact on per-
formance.

The framework has been used in two iterations of the
course. In the first iteration of the new framework we have
experienced that students tend to implement the code snip-
pets only by following the instructions without actually
spending time experimenting with the topic at hand. Our dy-
namic markup system as described in section 4.3, allowed
us to quickly change the assignments and to adapt to this
problem for the second iteration. We have changed later as-
signments to be more open (e.g. by adding custom shaders).

The content competition held each semester turned out to
be very successful and we believe that we could also mo-
tivate those students who had no previous experience with
computer graphics to participate. Figure 2 shows submis-
sions by students for the competition.

An anonymous evaluation by students held each semester
showed above average ratings of our course. We have also
received very positive feedback from students during the dis-
cussions of the assignments. However, the framework is still
very young and while we think that our students are better

prepared for our advanced computer graphics courses, it is
too early to actually measure the impact of the new frame-
work.

We think that our framework covers a broad range of fun-
damental topics in computer graphics. There are, however,
features that we haven’t implemented. Hierarchical transfor-
mations have been shown to be valuable to an introductory
computer graphics course [CB01]. We have decided to leave
out this feature in favor of simpler data structures in code
used by students. We also don’t support alpha blending in the
framebuffer. This limits the framework to opaque materials
only. We use multiple threads for each primitive during the
rasterization stage to reach interactive frame rates on recent
multi-core CPUs. We think that this approach is not optimal
and that we should rather implement true pipelining of each
stage in the renderer. This would also provide our students
with a more useful lesson in parallel programming.

6. Conclusion

We presented a syllabus that teaches the concept of shaders
while still employing raster-level algorithms of the graph-
ics pipeline. Our framework implements this concept effec-
tively and has shown to be successful in providing students
with an interactive learning environment. The integration of
the COLLADA format proved to increase the quality of our
course materials and to heighten the motivation of our stu-
dents. We believe that our students are well prepared for ad-
vanced courses in computer graphics after completing this
course.

In the future we would like to use our framework for
demonstration purposes during the lecture of this course, and
we would like to evaluate its use for other related courses.
We will also submit the complete course framework to the
CGEMS [CGE] repository in order to share our resources
with other educators.

7. Acknowledgments

We would like to thank our admin Stephan Plepelits for
creating the web-based submission system for this course
and for always helping us out with last-minute requests. We
would also like to thank our students who constantly give
us feedback to improve the course and its framework. For
the second iteration of our course, Dominik Rauch, a former
student, has added texturing to our software renderer which
greatly improved the possibilities of our framework. Finally,
we would like to thank the head of our group, Prof. Werner
Purgathofer for trusting us with the laboratory course of his
introductory computer graphics lecture and for encouraging
us in our work.

c© The Eurographics Association 2012.

79

H. Fink, T. Weber & M. Wimmer / Teaching a Modern Graphics Pipeline with Shaders

References

[ACSS06] ANGEL E., CUNNINGHAM S., SHIRLEY P., SUNG
K.: Teaching computer graphics without raster-level algorithms.
ACM SIGCSE Bulletin 38, 1 (Mar. 2006), 266. 2, 3

[AS11] ANGEL E., SHREINER D.: Teaching a Shader-Based In-
troduction to Computer Graphics. Computer Graphics and Ap-
plications, IEEE 31, 2 (2011), 9–13. 2, 3, 4

[BC07] BAILEY M., CUNNINGHAM S.: A hands-on environment
for teaching GPU programming. In SIGCSE ’07: Proceedings
of the 38th SIGCSE technical symposium on Computer science
education (Mar. 2007), ACM Request Permissions. 2

[BCFH06] BOURDIN J., CUNNINGHAM S., FAIRÉN M., HANS-
MANN W.: Report of the cge 06 computer graphics education
workshop. Vienna, Austria (2006). 3

[Bou02] BOUVIER D.: From pixels to scene graphs in introduc-
tory computer graphics courses. Computers & Graphics 26, 4
(2002), 603–608. 2

[CB01] CUNNINGHAM S., BAILEY M. J.: Lessons from scene
graphs: using scene graphs to teach hierarchical modeling. Com-
puters & Graphics 25, 4 (Aug. 2001), 703–711. 2, 7

[CC09] CASE C., CUNNINGHAM S.: Teaching computer graph-
ics in context. Computer Graphics Education 9 (2009), 29–30.
2

[CGE] Cgems educational resources. http://cgems.
inesc.pt. 7

[CGLa] Course framework javadoc documentation. https://
lva.cg.tuwien.ac.at/cg1/javadoc. 5

[CGLb] Lab course wiki documentation, available online:
https://lva.cg.tuwien.ac.at/cg1/wiki. 4

[CGLc] Webstart launcher of the 3d editor, available online:
https://lva.cg.tuwien.ac.at/cg1/go. 5

[CGS∗99] CHOI J.-D., GUPTA M., SERRANO M., SREEDHAR
V. C., MIDKIFF S.: Escape analysis for Java. In OOPSLA
’99: Proceedings of the 14th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applica-
tions (Oct. 1999), ACM Request Permissions. 7

[CHLS04] CUNNINGHAM S., HANSMANN W., LAXER C., SHI
J.: The beginning computer graphics course in computer science.
SIGGRAPH Computer Graphics 38, 4 (2004). 2

[col] Collada: a standard for digital content authoring. http://
www.khronos.org/collada/. 6

[Cun00] CUNNINGHAM S.: Powers of 10: the case for changing
the first course in computer graphics. In SIGCSE ’00: Proceed-
ings of the thirty-first SIGCSE technical symposium on Computer
science education (Mar. 2000), ACM Request Permissions. 2

[Cun08] CUNNINGHAM S.: Computer graphics in context: an ap-
proach to a first course in computer graphics. ACM SIGGRAPH
ASIA 2008 educators programme (2008), 1. 2

[FPAA06] FULLER U., PEARS A., AMILLO J., AVRAM C.: A
computing perspective on the Bologna process. ACM SIGCSE
Bulletin (2006). 3

[goo] Google warehouse. http://sketchup.google.
com/3dwarehouse/. 6

[HCGW99] HITCHNER L., CUNNINGHAM S., GRISSOM S.,
WOLFE R.: Computer graphics: the introductory course grows
up. In SIGCSE ’99: The proceedings of the thirtieth SIGCSE
technical symposium on Computer science education (Mar.
1999), ACM Request Permissions. 2

[Hit00] HITCHNER L.: Adapting computer graphics curricula to
changes in graphics. Computers & Graphics 24, 2 (Apr. 2000),
283–288. 2

[Muk99] MUKUNDAN R.: Teaching computer graphics using
Java. ITiCSE-WGR ’99: Working group reports from ITiCSE
on Innovation and technology in computer science education
(1999). 5

[Ohl86] OHLSON M. R.: The role and position of graphics in
computer science education. In SIGCSE ’86: Proceedings of the
seventeenth SIGCSE technical symposium on Computer science
education (Feb. 1986), ACM Request Permissions. 1

[OZCP05] OWEN G. S., ZHU Y., CHASTINE J., PAYNE B. R.:
Teaching programmable shaders: lightweight versus heavy-
weight approach. SIGGRAPH ’05: SIGGRAPH 2005 Educators
program (July 2005). 2

[PG99] PETER I., GUMHOLD S.: Teaching computer graphics
with java 3d. Advances in Multimedia and Distance Education
(Proceedings of ISIMADE’99) (1999). 2

[REC∗01] ROBERTS E., ENGEL G., CHANG C., CROSS J.,
SHACKELFORD R., SLOAN R., CARVER D., ECKHOUSE R.,
KING W., LAU F.: Computing Curricula 2001: Computer Sci-
ence. Los Angeles/New York: IEEE Computer Society/Associa-
tion for Computing Machinery [URL: http://www. acm. org/sigc-
se/cc2001/cc2001. pdf] (2001). 2

[RY09] RHODES P. J., YAN B.: Easel: A Java Based Top-Down
Approach to 3D Graphics Education. In EG 2008 - Eduaction
Papers (Dec. 2009), pp. 29–36. 5, 7

[SG09] SCHWEPPE M. K., GEIGEL J.: Teaching Computer
Graphics in the Context of Theatre. In EG 2009 - Education
Papers (2009), pp. 67–72. 2

[SS04] SUNG K., SHIRLEY P.: A top-down approach to teaching
introductory computer graphics. Computers & Graphics 28, 3
(2004), 383–391. 2, 3

[TF07] TALTON J. O., FITZPATRICK D.: Teaching graphics with
the openGL shading language. In SIGCSE ’07: Proceedings of
the 38th SIGCSE technical symposium on Computer science ed-
ucation (Mar. 2007), ACM Request Permissions. 2

[TJN06] TORI R., JOÃO JR, NAKAMURA R.: Teaching intro-
ductory computer graphics using java 3D, games and customized
software: a Brazilian experience. SIGGRAPH ’06: SIGGRAPH
2006 Educators program (2006). 5

[Wol00] WOLFE R.: Bringing the introductory computer graphics
course into the 21st century. Computers & Graphics 24, 1 (2000),
151–155. 1

c© The Eurographics Association 2012.

80

http://cgems.inesc.pt
http://cgems.inesc.pt
https://lva.cg.tuwien.ac.at/cg1/javadoc
https://lva.cg.tuwien.ac.at/cg1/javadoc
https://lva.cg.tuwien.ac.at/cg1/wiki
https://lva.cg.tuwien.ac.at/cg1/go
http://www.khronos.org/collada/
http://www.khronos.org/collada/
http://sketchup.google.com/3dwarehouse/
http://sketchup.google.com/3dwarehouse/

