
EG UK Computer Graphics & Visual Computing (2019)
G. K. L. Tam and J. C. Roberts (Editors)

Comparing Gestural Interfaces using Kinect and OpenPose

Aminur Rahman, Louis G. Clift and Adrian F. Clark

Computer Science and Electronic Engineering
University of Essex, Colchester CO4 3SQ, UK

Abstract
We describe the implementation of a gesture recognition facility for navigating through virtual reality applications in a shared
VR facility. An implementation based around the Microsoft Kinect is described and the fruits of several years’ experience are
summarized. An alternative implementation based around the OpenPose library is then presented and the two are compared.

CCS Concepts
• Human-centered computing → User interface programming; Virtual reality; Collaborative and social computing systems
and tools;

1. Introduction

One way for a group of people to experience a virtual environ-
ment together is for them to interact with it on a large display. The
question then arises as to the best way to allow them to navigate
through that environment. One attractive choice is to use gestures:
they avoid the user needing to carry a peripheral such as a tablet;
gesturing is reasonably natural for inexperienced users; and when
done well, it allows the users to concentrate on the purpose of the
virtual environment. This paper is concerned with the development
of such an interface by two different mechanisms, describing first
the use of a Microsoft Kinect and then an alternative built using a
simple camera and OpenPose. The two approaches are then com-
pared.

The virtual reality facility in which this work was performed
is approximately 10× 4.2× 2.4 m in size. An entire 4.2× 2.4 m
wall consists of a back-projection screen upon which images can
be displayed by a pair of high-performance projectors, each capa-
ble of displaying 4096× 2400-pixel images and driven by sepa-
rate workstation-class machines. Updates to what is projected are
synchronised to the millisecond using genlock. The projectors are
fitted with wavelength multiplex visualization filters and the im-
ages they produce aligned to under 1 mm on the screen. Observers
within the space wear spectacles that contain dichroic lenses so
that a good stereoscopic impression of depth is achieved. A thin
software layer that wraps around OpenGL and GLUT synchronises
viewpoint updates across a local network.

2. Gestural interface design

At its simplest, motion through a virtual reality model can be
achieved by taking ‘steps’ forward or backward and by turning a
little to the left or to the right. Our aim was to have one of a group

of people navigating them all through the world, so there also needs
to be the ability to take control of the gesture interface and then to
release it — coming to six gestures in total. The gestures for tak-
ing and releasing control need to be unusual, so that they do not
happen accidentally; but when control of the gesture interface has
been obtained, the remaining gestures need to be natural. Finally,
we wanted the gestures to be static body poses rather than dynamic
motions with an update rate of about two per second.

When using a camera-based interface to detect gestures, the ges-
tures need to be gross rather than subtle. Both the Kinect and Open-
Pose identify users’ skeletons, so gestures relative to a subject’s
own skeleton (“hold out your left arm between hip and shoulder
height”) are better than absolute ones (“your left arm needs to
be 1.2–1.8 m above the floor level”). The following gestures were
identified:
Taking control: raising the left hand above the shoulder.
Releasing control: raising the right hand above the shoulder.
Turn left: holding out the left hand between hip and shoulder

height.
Turn right: holding out the right hand between hip and shoulder

height.
Move forward: hold both hands in front between hip and shoul-

der.
Move backward: hold both arms straight backward between hip

and shoulder level.
The gestures are summarized in figure 1; all fall into the category
of symbolic gestures in the taxonomy of [RS91]. About 20% of
users initially try to turn by rotating an imaginary steering wheel,
a pantomime gesture in that taxonomy, but they quickly become
accustomed to using the correct gesture. Further discussion of the
gestures appears below.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

Poster

DOI: 10.2312/cgvc.20191264 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/cgvc.20191264


Rahman et al / Comparing Gestural Interfaces. . .

(a) Take control (b) Release control

(c) Turn left (d) Turn right

(e) Move forward (f) Move backward

Figure 1: Gestures used to control motion through a virtual world

3. Kinect and OpenPose implementations

The Microsoft Kinect was designed as a gaming peripheral. The
original Kinect projects an infra-red pattern into the world and uses
displacements of that pattern as a way of inferring depth. As the
Kinect is also equipped with a visible-waveband camera having the
same field of view, it can yield images whose pixels contain not
only red, green and blue values but also the corresponding depths.
A Kinect was affixed above the back-projection screen and com-
plete program to interface with the Kinect, interpret the gestures
and send the resulting motion commands to the VR system was
written using its Python SDK interface, some 212 lines of code.

This hardware and software have been used for just under 6 years
at the time of writing, and by several hundred people of all ages:
the youngest user was about three years old and the oldest over
ninety. Some shortcomings have been identified over the years and
are discussed in section 4.

OpenPose [CSWS17] is a recently-developed SDK that is able
to identify the pose of many people in an image. Given suit-
able hardware, it is able to run at video rate on live imagery;
and recent developments have brought the computational require-
ments within the reach of a laptop PC graphics card. The 2018 re-
lease [CHS∗18, Kim] of OpenPose introduced a Python-accessible
SDK which was used in this work. OpenPose is inherently 2D, un-
like the Kinect, but 2D joint locations are sufficient for recognising
the gestures of interest. The code is currently about 700 lines of
Python, though it contains more functionality than the Kinect code.

4. Comparing the approaches

Our long experience with the Kinect identified three common fail-
ure modes. Firstly, the user needs to stand a little closer to the
Kinect than other users of the space in order to be distinguished,
we believe because the skeleton location algorithms struggle to
segment the user from the background if this is not the case. Sec-
ondly, motions within the group of participants is quite frequently
recognised as taking control. Somewhat strangely, such motions are
rarely recognised as releasing control. Finally, side to side move-
ment of the person with control can be interpreted as gestures. Be-
yond these, the Kinect-based approach has proven to be reliable.
The cause of all three failure modes can be attributed to shortcom-
ings in the underlying analysis of the RGB-D imagery but the SDK
that implements the skeletonization algorithms is closed-source so
we are not able to improve them; and open-source projects have not
yielded better solutions.

The OpenPose solution requires significantly more processing
power: the underlying algorithms need GPU support in order to
run in real time. Our initial experiments suggest that its robustness
is comparable to the Kinect. The most significant difficulty with
OpenPose is that the skeletons it identifies are identified by a num-
ber, but that number is allocated in a raster scan way, from top left
to bottom right. Hence, a small vertical motion of participants in
the field of view of the camera will often result in the controlling
user being identified differently. We are attempting to overcome
this problem by tracking skeletons across several video frames.

5. Conclusions

The Kinect is an excellent peripheral which has allowed the au-
thors to interact with virtual environments using gestures for sev-
eral years. However, its obsolescence, our identification of its short-
comings, and the emergence of OpenPose have all contributed to
our exploring the latter as an alternative. Our initial experience
is that the OpenPose solution is about as accurate at recognising
gestures as the Kinect and its failure modes are more easily over-
come. Our current gesture recognition algorithm is rule-based but,
for more general applications, we have experimented with fuzzy-
based gesture classification with some success [CLHC18]. Work to
explore this is already under way.

References
[CHS∗18] CAO Z., HIDALGO G., SIMON T., WEI S.-E., SHEIKH Y.:

OpenPose: realtime multi-person 2D pose estimation using Part Affinity
Fields. In arXiv preprint arXiv:1812.08008 (2018).

[CLHC18] CLIFT L. G., LEPLEY J., HAGRAS H., CLARK A. F.: Au-
tonomous computational intelligence-based behaviour recognition in se-
curity and surveillance. In SPIE Proceedings (2018), vol. 10802.

[CSWS17] CAO Z., SIMON T., WEI S.-E., SHEIKH Y.: Realtime multi-
person 2d pose estimation using part affinity fields. In CVPR Proceed-
ings (2017).

[Kim] KIM I.: TF pose estimation. https://github.com/
ildoonet/tf-pose-estimation.

[RS91] RIMÉ B., SCHIARATURA L.: Gesture and speech. In Fundamen-
tals of nonverbal behavior, Feldman R. S., Rimé B., (Eds.). Cambridge
University Press, Jan. 1991, pp. 239–281.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

104

https://github.com/ildoonet/tf-pose-estimation
https://github.com/ildoonet/tf-pose-estimation

	Introduction
	Gestural interface design
	Kinect and OpenPose implementations
	Comparing the approaches
	Conclusions
	References



