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Abstract
This paper addresses the automatic segmentation of teeth in volumetric Computed Tomography (CT) scans of the human skull.
Our approach is based on a convolutional neural network employing 3D volumetric convolutions. To tackle data scale issues,
we apply a hierarchical coarse-to fine approach combining two CNNs, one for low-resolution detection and one for high-
resolution refinement. In quantitative experiments on 40 CT scans with manually acquired ground truth, we demonstrate that our
approach displays remarkable robustness across different patients and device vendors. Furthermore, our hierarchical extension
outperforms a single-scale segmentation, and network size can be reduced compared to previous architectures without loss of
accuracy.

CCS Concepts
•Computer Graphics → Image processing; •Computing / Technology Policy → Medical technologies; •Machine Learning
→ Neural networks;

1. Introduction

Recent progress in Deep Learning has given us vastly improved
models for various image analysis tasks such as categorization, ob-
ject detection or the estimation of scene structure and motion. Par-
ticularly, Convolutional Neural Networks (CNNs) – which learn
stacked image filters tailored to the task and data at hand – have suc-
cessfully been used for semantic segmentation in various domains
such as street scenes [COR∗16] or medical imagery [OPT15].
There are many 2D approaches [OPT15, ASM17, MMH∗17,
LBBH98, KSH12, NHH15, BKC17, MSH∗17, SLD17], as well as
approaches directly segmenting volumes in 3D [MNA16,ÇAL∗16,
CSA00,GFJ16,LDS∗17,ZKZ∗18]. This is of particular interest for
volumetric imaging in the medical domain such as Computed To-
mography (CT), which is commonly used for a wide range of tasks.
The challenge addressed in this paper is to segment teeth in a CT
volume as shown in Figure 1. We present a CNN-based model that
applies 3D convolutions, following a commonly used bottleneck
architecture with skip connections [MNA16] that has been applied
to volumetric prostate scans before [LTvdV∗14]. Our contributions
are:

• Our study is – to the best of our knowledge – the first one on
CNNs for a 3D volumetric segmentation of teeth. Our model
is an extension of V-Net [MNA16] that addresses scale prob-
lems by a simple coarse-to-fine hierarchical extension, which
first roughly localizes and then refines the teeth region.
• We present quantitative experiments on a set of 40 CT scans

with different patients and devices, which show that our model

displays strong robustness for uncalibrated devices and yields
strong improvements over a thresholding baseline. We also in-
vestigate the influence of network size, data scaling and training
data volume.

2. Related Work

CNNs: Despite early work in the 1990s [LBBH98], CNNs have
become popular quite recently with AlexNet’s outstanding ob-
ject category recognition performance [KSH12] in the 2012 Im-
ageNet Challenge [RDS∗15]. Since SegNet [BHC15], CNNs
have also been studied intensely for semantic image segmenta-
tion [COR∗16].

Medical Imaging: CNNs have been applied in medical imaging
for the classification of teeth based on CT slices [MMH∗17] or for
supervised 2D segmentation. Here, U-Net [OPT15] demonstrates
the benefit of data augmentation for small datasets. Sekuboyina et
al. [ASM17] use deep networks for a localization and segmentation
of lumbar vertebrae in CT-scans, which is treated as a non-linear re-
gression problem to determine bounding boxes in the volume. The
corresponding multi-class segmentation is done by a modified 2D
U-Net [OPT15] trained on sagittal slices. In [MRAG08] a segmen-
tation of teeth in CT data is performed by using panoramic resam-
pling of 2D coronal slices and variational level set to determine the
teeth contour.

CNNs for Volumetric Data: Recently, first deep learning mod-
els have been demonstrated to deal with 3D data directly. Advan-

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

DOI: 10.2312/cgvc.20181213 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/cgvc.20181213


P. Macho, et.al. / Segmenting Teeth from CT with CNNs

Figure 1: The overall workflow of our model (numbered left to right): The input volume is (1) rescaled to 1283, processed by the low-res
model and refined, obtaining an ROI R (2). An isotropic 1283 high-resolution volume containing R (3) is then segmented by the high-res
model, obtaining a fine-grain segmentation. Pictures (4)+(5) show the result (red) overlayed with ground truth / transparent input volume. A
dental root missed in the ground truth is detected.

tages of this approach (as opposed to stacking 2D slices) are em-
phasized in the survey by Ioannidou et al. [ICNK17]. For example,
VoxNet [MS15] uses a 3D CNN for real time object recognition
using three different 3D data sources (LiDAR point clouds, RGBD
point clouds, and CAD models) and achieved state-of-the-art accu-
racy. Closest to our work is Milletari et al.’s V-Net model [MNA16],
which applies a CNN approach in the domain of 3D medical image
segmentation and has proven successful in segmenting prostates
within MRI scans.

3. Approach

Following internal ethical review board approval, head CT scans
were collected from the PACS system of the University Medical
Center Mainz. We only used existing CT data (from four different
CT devices) from the DICOM database.

No subject was exposed to ionizing radiation for this research.
The local ethical approval board [Eth] has approved the processing
of the pseudonymized existing CTs.

Our model processes volumetric inputs of size 512× 512× 512
(or 5123). In this context, scale poses a challenge: While 1283 in-
puts were found to fit an 8 GB GPU memory, the full 5123 volume
cannot be processed with standard GPUs simultaneously. There-
fore, we choose a hierarchical approach similar to Sekuboyina et
al.’s [ASM17], in which a coarse localization of a region of inter-
est (ROI) within the downscaled volume is followed by a fine-grain
segmentation at full resolution. Unlike Sekuboyina et al., who ap-
ply different approaches for both steps, we use two similar 3D-
CNN segmenters trained on different resolutions: The first (called
the low-res model) localizes the region of interest, of which the sec-
ond (the high-res model) produces a fine-grain segmentation. By
combining both networks, our model yields a fine-grain segmenta-
tion of the full 5123 input volume. The workflow of our model is
also illustrated in Figure 1.

Base Model: Both low-res and high-res model are 3D-CNN seg-
menters, i.e. they process volumetric input data and output voxel-
wise posteriors, which we threshold to obtain binary segmentation
masks. Both models are based on V-Net [MNA16], a fully convo-
lutional 3D-CNN that combines a bottleneck architecture with skip
connections, where bottom layers compress the input by applying
stacked convolutions, and top layers use de-convolutions to com-
bine the compressed data with the extracted feature maps from ear-

lier layers to preserve fine details. This results in voxel-wise class
labels. The network’s parameters (convolution and de-convolution
maps) are trained on labeled volumes using backpropagation. We
increased the input shape from the original 128×128×64 to 1283

and investigated the influence of channel reduction (see Section
4). Our implementation is based on the deep learning framework
Caffe [JSD∗14] with Milletari’s 3D extension [Fau].

Low-res Model and ROI Localization: The low-res model
aims at roughly localizing the dental region. To do so, we down-
sample the input volume to 1283 voxels by trilinear interpolation,
such that the network can process the volume at once. The result is
a 3D segmentation map containing voxel-wise posteriors between
0% and 100%. By thresholding at t1 = 50%, we obtain a foreground
(tooth) region of interestR (see Figure 1, second plot). We refineR
by applying connected component labeling and dropping all com-
ponents except the largest, which removes spurious false positives.
The refinedR serves as the input for further processing.

ROI Normalization and High-res Model: The second model
takes the ROI R as input and produces a fine-grain segmentation.
Note that – like for the low-res model – input data of 1283 vox-
els are required. Also, the real-world voxel size is anisotropic and
differs vastly between CT devices and vendors (see Table 1). There-
fore, the input volume is resampled to high-resolution isotropic
voxels. Afterwards, we select a 1283 subregion containing the tooth
region. IfR is too big to fit 1283 voxels (e.g., due to connected ar-
tifacts), we increase the probability threshold t1 beyond 50% to re-
duceR until it fits. From this input, the high-res model produces a
3D foreground posterior map. Finally we apply a second threshold
t2 = 50% to obtain the final segmentation.

Training Procedure: Both models are trained from scratch on
40 CT volumes by maximizing the dice loss

L=
2∑i piri

∑i pi +∑i ri

between ground truth ri and voxel-wise posteriors pi using SGD
(Stochastic Gradient Decent). For the low-res model, we use data
augmentation – namely histogram matching across different vol-
umes, deformation and translation in x,y,z direction – to increase
the number of training samples. Additionally, we apply linear stan-
dardization to all volumes’ voxel values, with means and standard
deviations estimated over the whole set.
For the high-res model, we apply data augmentation by cropping
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randomly shifted patches containing the ground truth ROI out of a
volume which is resampled to isotropic spacing. We trained both
models for around 36,000 iterations, where training was found em-
pirically to have converged. Just like for the low-res model, we used
linear standardization.

4. Experiments

We systematically studied the impact of reducing the number of
channels on the segmentation results. We also compared our results
to a threshold method that serves as a baseline. Our experiments are
based on 40 CT cephalic samples captured by four different devices
from two different manufacturers. All data have size 5123 but differ
in spatial dimensions, spacing and dynamic range. Table 1 gives an
overview of the properties of our dataset.

Device # Spacing [x,y,z]
Toshiba Aquilion 20 [0.41–0.64, 0.41–0.64, 0.30–0.30]
Philips iCT 256 17 [0.37–0.82, 0.37–0.82, 0.50–0.65]
Philips Brilliance 64 2 [0.60–0.68, 0.60–0.68, 0.80–0.80]
Philips Mx8000 IDT 16 1 [0.57–0.57, 0.57–0.57, 1.00–1.00]

Table 1: Characteristics of our dataset

To acquire ground truth we implemented an application espe-
cially designed to support the manual labeling of teeth in volumet-
ric data. Our implementation first determines an individual thresh-
old for each dataset used to separate soft tissue and artifacts from
bony structures and teeth. Since some artifacts persist and bones
and teeth cannot be perfectly separated, the remaining data is la-
beled manually.

Training Data Size: To ensure that our approach does not de-
pend on the characteristics of a particular vendor, we trained our
network several times with different training and validation sets.
Each time, the data are split into a training set using 90% and a
validation set using 10% of the samples, each set containing sam-
ples from every manufacturer. After approximately 12,000 training
steps, we achieved a dice loss between 0.83 and 0.87 on the valida-
tion data. This shows that the proposed approach is working even
across various manufacturers.

Network Size: Volumetric data is far more complex than 2D im-
age data. Thus, a neural network that works with volumes usually is
much larger and therefore requires much more memory compared
to a network that works with images. As memory (especially GPU
memory) is a limited resource, this can be problematic. To cope
with this problem we reduced the size of the network by reducing
the number channels as much as possible without reducing the ac-
curacy on the data. A beneficial side effect of a smaller network
is a reduction in overall training time, since the network has fewer
parameters that need training.

We decreased the size of the network relative to the original V-
Net [MNA16] by reducing the number of channels in each inner
layer by the same fixed factor, while the outer layers kept their
original shape. This was done on both the low-res model and the
high-res model with similar results. Figure 2 shows the dice loss
during the training with a reduced number of channels on the high-
res model. As can be seen, the network performs quite well for

all reduction factors without significantly affecting accuracy on the
data. Only the reduction by a factor of 8 appears to be problematic.
These results are also confirmed by Table 2 which shows the final
loss on the low-res model. The table also shows that a smaller net-
work can lead to a higher dice loss on our data, while reducing the
time needed per training iteration. The best results were achieved
by a channel reduction by a factor of 2 and 4, which leads to a high
dice loss while simultaneously reducing training time and memory
consumption considerably.

#Channels div by Final dice loss Time Memory Usage
1 0.7986 12 s 7987 MiB
2 0.8017 10 s 6436 MiB
4 0.7849 9 s 5792 MiB
8 0.7689 9 s 5504 MiB

16 0.0183 9 s 5368 MiB

Table 2: The impact of the channel reduction on loss, training time
per iteration, and total memory usage of the low-res model.

Comparison with Baseline: The segmentation of bones or soft
tissue in CT data is often done via simple thresholding. Especially
with teeth this poses a challenge, since the density of teeth is close
to or even equal to the density of bones. In addition, it is prob-
lematic to compare data from different (sometimes uncalibrated)
devices with different gray scale quantizations and resolutions (see
e.g. [PJSM15]).

We compare our approach with a baseline that maximizes the
dice loss of a thresholded input volume. To get this baseline,
we increased the segmentation threshold from 1,000 to 5,000
Hounsfield Units (HU) with step size 1 and calculate the cor-
responding dice loss between ground truth and the result of the
threshold-based segmentation. Figure 3 shows the worst and best
case result of the threshold based segmentation for our 40 scans.
The diagram on the right side of Figure 2 shows the relationship
between the threshold used and the corresponding dice loss. It can
be clearly seen that different CT devices lead to different optimal
thresholds. Even for the same manufacturer it is not possible to
define one fixed threshold to get the best results. The plot also in-
cludes the averaged results of our models (dashed lines).

Table 3 gives an overview of different approaches. We confirm
again that the threshold baseline fails (43.3%). Also, our hierar-
chical approach gives significant improvements over a single-scale
segmentation at low resolution (low-res model, 81.3%). The best
result (93.4%) is obtained when applying the high-res model at the
finest voxel spacing of 0.85 mm (which is supported by 38 of the
40 scans). Increasing the voxel spacing to 1 mm comes with a slight
decrease in accuracy (but is supported by all scans).

Figure 4 illustrates the results of our full hierarchical model for
test data unseen in training, comparing model outputs (left, red)
with the corresponding ground truth (white, right). High-res seg-
mentation was applied at 0.853 voxel spacing. The top row shows
the worst result from our dataset with a dice loss of 88%. The sec-
ond row shows an average dice loss around 92% and the last row
our best result of 94%.
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Figure 2: Left: Averaged dice loss of the low-res model (blue) and the high-res model (red) for each epoch. Middle: Different channel
reduction factors on the high-res model. Right: Result of the threshold baseline approach. Each color identifies a device. Dashed lines are
averaged results of the low-res model, high-res model and threshold baseline respectively.

Figure 3: Threshold baseline result. The worst result is on the left,
the best result on the right.

Figure 4: Results of our full hierarchical model for scans unseen in
training. The output of the model is on the left (red), ground truth
on the right (white). The dice loss of the results ranges from 88%
(top) to 94% (bottom).

Approach Spacing avg. dice loss (%) avg. tooth ROI
low-res model original×4 81.26 31×26×30
hierarchical 1.03 92.22 64×55×47
hierarchical 0.853 93.42 75×65×55
threshold baseline original 43.33 125×107×123

Table 3: Quantitative results of different approaches. The last col-
umn shows the average size of the teeth region in relation to the
used approach and resolution.

5. Conclusions

We have applied 3D CNNs for the segmentation of teeth in CT
volumes, and demonstrated that a simple hierarchical extension to
V-Net [MNA16] can tackle data scale issues effectively. Our ap-
proach shows remarkable robustness: The ROI resulting from the
low-res model contains the correct dental region in 100% of cases,
and the high-res model yields a stable segmentation of the teeth
themselves, even detecting false negatives in the ground truth (see
Figure 1, Picture 4+5). According to visual verification and the dice
loss measure, our approach performs a stable result comparable
to the ground truth. From a broader perspective, our hierarchical
coarse-to-fine approach – which trains resolution-specific CNNs
for detection of an ROI and its fine-grain segmentation – can be
adapted to a wide range of tasks dedicated to region based seg-
mentation within large-scale volumes, where limited hardware is
an issue.
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