
Organized Order in Ornamentation
Lena Gieseke

Film University Babelsberg Konrad Wolf
Paul Asente
Adobe Research

Jingwan Lu
Adobe Research

Martin Fuchs
Stuttgart Media University

Paul Asente

Organized Order in Ornamentation

Adobe Research

Adobe Research

Film University Babelsberg Konrad Wolf

Stuttgart Media University

Lena Gieseke

Jingwan Lu Martin Fuchs

ABSTRACT
Decorative ornamentation involves a careful balance between ac-
cent and order. Existing techniques leave artists either with te-
dious manual processes or the uncontrolled automatic generation
of rather homogeneous patterns that lack creatively-placed visual
highlights. We present a method to close this gap, o�ering the
control and quality of manual creation, and the e�ciency and ac-
curacy of computation. At the core of our system, customizable
and modularly combinable element placement functions �ll a space
automatically under global design constraints. We provide a set
of example placement functions that implement order based on
design principles for ornamentation such as balanced element dis-
tribution and symmetry. To create structural hierarchies and to
guide an ornament to the space it �lls, we allow artists to direct the
connectivity of elements with drawn strokes. Artists can also draw
guides to create vector �elds, which organize the ornament along
streamlines. Path planning automatically routes around obstacles
while aligning the ornament to their borders. Our method combines
high-level control mechanisms like taking guidance from example
images to low-level control like placing single elements as visual
accents and making local edits within the computed ornament. By
automating tedious tasks and o�ering familiar input mechanisms
like drawing, we enable artists to focus on the creative intent.

CCS CONCEPTS
• Computing methodologies → Non-photorealistic render-
ing; • Applied computing→ Media arts;

KEYWORDS
Paint Systems, Interaction Techniques, Modeling Interfaces, Proce-
dural Modeling

ACM Reference format:
Lena Gieseke, Paul Asente, Jingwan Lu, and Martin Fuchs. 2017. Organized
Order in Ornamentation. In Proceedings of CAe’17, Los Angeles, CA, USA,
July 28-29, 2017, 9 pages.
DOI: 10.1145/3092912.3092913

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CAe’17, Los Angeles, CA, USA
© 2017 ACM. 978-1-4503-5080-8/17/07. . . $15.00
DOI: 10.1145/3092912.3092913

1 INTRODUCTION
Throughout all cultures and times artists have used ornaments to
embellish the world around them. One common class of decorative
ornaments, as discussed byWong et al. [1998], creates an underlying
perception of order by placing individual components repetitively
and in a balanced way. But ornaments also include hierarchical
structures with visually dominant elements and connections as
accents. These often do not follow the underlying order of the
ornament, breaking an otherwise too-homogeneous appearance.
Additionally, ornaments adapt to the space they �ll by aligning to
its boundaries.

It takes an experienced artist to balance the contrast between
carefully chosen visual accents and creating a sense of order by
applying compositional rules and complementing the space, as
shown in the examples in Figure 1.

While artists are indispensable for the creative task of creating
an overall layout and placing accents, executing structuring rules
and completing the ornament to a cohesive whole is tedious and
worth automating. We propose a hybrid technique that gives artists
artistic control through familiar tools like sketching, while com-
puting ordered structures automatically, unburdening the artists
from tiresome tasks. We aim to o�er both the control and quality of
manual creation, and the e�ciency and accuracy of computation.

Our contributions are:

• an optimization strategy that incorporates customizable
and modularly combinable placement functions putting
global design constraints explicitly under artist control,

• a ready-made set of placement functions that ful�ll design
principles for ornamentation [Wong et al. 1998] with a
balanced element distribution and symmetry constraints,

• the control of element connections through the transla-
tion of visual input into connection strategies under the
given global design constraints, combining elements and
connections into a cohesive whole,

• the use of path planning to e�ciently route the ornament
around obstacles

• the incorporation and combination of control mechanisms
at all scales, ranging from taking high-level guidance from
example images down to placing single elements and mak-
ing local edits within the computed ornament while main-
taining its procedural nature.

The feedback of designers using our system con�rms the appeal,
e�ciency and further potential of our methods.

CAe’17, July 28-29, 2017, Los Angeles, CA, USA Lena Gieseke, Paul Asente, Jingwan Lu, and Martin Fuchs

Figure 1: The top row shows historic and the bottom row
commercial examples of hierarchically ordered ornaments.
They balance accent and order and complement the space
they �ll. See end note for image sources [A - J].

2 RELATEDWORK
We focus the following discussion of related work on procedural
methods, as the core aspect of our system is its procedural nature.

The pioneering work of Prusinkiewicz and Lindenmayer [1990]
applies L-systems to algorithmically model plant growth. Vari-
ous extensions [Parish and Müller 2001; Prusinkiewicz et al. 2003]
demonstrate their expressiveness for di�erent applications. How-
ever, since the execution process is inherently hierarchical, L-systems
have di�culty supporting artistic control mechanisms that range
from global to local scale.

Wong et al. [1998] introduced a programmatically controllable
procedural system that employed a greedy rule-based strategy to
generate �oral ornaments. We take inspiration from their work
but focus on enabling a usable tool by adding artist-friendly con-
trol mechanisms in a uni�ed way. We generalize and technically
improve their space-�nding algorithm, enabling the explicit en-
forcement of ornamental principles and unburdening artists from
implementing them for each pattern individually. Their method can
only control the connections of elements by writing code; we add
to their work by giving intuitive design options for directing con-
nectivity. This, combined with the option to place single elements
freely, enables ornamentations with hierarchical structures that go
beyond repetitive patterning. Anderson et al. [2008] adapted Wong
et al.’s work by placing discrete elements along a user-given curve.
However, they solely decorate the regions adjacent to the curves, of-
fering only limited control and design options. Etemad et al. [2008]
pick up a rule-based strategy for a dynamic recreation of Persian
�oral patterns, focusing on animation, not on controllability.

Beneš et al. [2011] o�er certain global control on the procedural
process by dividing a target space into user editable guide shapes.
The shapes determine what types of patterns grow in di�erent
areas. The connections between the shapes are manually speci�ed
by the user and in turn guide the connections between elements.
In our approach, element connections are automatically derived
from visual guides. Other systems provide global control on the
procedural process by interpreting the modeling task as a proba-
bilistic inference problem [Ritchie et al. 2015, 2016; Št’ava et al. 2014;
Talton et al. 2011], or optimize a packing problem under speci�c

constraints [Chen et al. 2016]. They all control the overall shape
of the resulting ornaments, but do not permit the hierarchical or
element-level local controls we support, such as specifying the
locations of individual elements.

Various example-based approaches [Bradley et al. 2013; Ijiri et al.
2008; Ma et al. 2013, 2011] give artists indirect control over the
resulting pattern by de�ning an exemplary element arrangement a
priori. They extract the spatial relationship between elements and
attempt to reproduce the relationship in their synthesis results. But
their methods do not allow placing accents with single elements,
which can break up the perception of a homogeneous texture and
helps to create a compelling ornament.

Ijiri et al. [2008] use sketch-based user input to create global
control structures such as an underlying vector �eld to guide pro-
cedural growth. We also make use of vector �elds generated from
artists’ sketches, but we use them to establish element connectivity
and to guide to growth of a model. Vector �elds are further em-
ployed in the speci�c context of procedural street modeling [Chen
et al. 2008a] and micrography [Maharik et al. 2011]. They have
been integrated into formalized grammars, such as a vector-�eld
guided shape grammar [Yuanyuan Li et al. 2011] and L-system
rules [Št’ava et al. 2010]. These systems produce patterns that are
more homogeneous than the decorative ornaments that we aim
for. Xu and Mould [2015] trace shortest paths in vector �elds to
generate branches for botanic tree modeling. Aiming for a di�erent
application, we support global design goals and, in addition, plan
growth paths of ornaments around layout obstacles.

Our di�erent types of user input are inspired by painting-tool-
like methods in procedural modeling [Chen et al. 2008b, 2012; Em-
ilien et al. 2015; Měch and Miller 2012; Palubicki et al. 2009], in
particular by the �exible Deco procedural engine [Měch and Miller
2012] upon which we constructed our implementation. We extend
these methods by combining the ability to follow input curves while
taking the whole environment into consideration, applying the cho-
sen design principles when placing elements on the paths as well
as when automatically �lling the remaining space.

None of the work discussed so far integrates artist control on
an element and connection level once the pattern is computed.
There are procedural techniques that enable low-level control on
the results themselves, developed in the context of architectural
designs [2008], tree modeling [Pirk et al. 2012] and the creation of
natural scenes [2015]. The move operator from the latter is similar
to ours but their system is optimized for chaotic arrangements,
which contrasts to our organized design goals for ornaments.

3 SYSTEM OVERVIEW
Since our approach extends the technique introduced by Wong
et al. [1998], we brie�y summarize their approach. A procedural
model is created with artist-de�ned elements and a set of growth
rules that handle the selection of elements, their appearance and
connections. Their technique �nds tentative places for elements
by testing them against constraints in the procedural model, and,
where suitable, placing elements in the found spaces, optionally
connecting them to existing elements. Possible ornament designs
are technically restricted only by this iterative creation logic. Wong
et al. �nd the next space to �ll by computing the medial axis of a

Organized Order in Ornamentation CAe’17, July 28-29, 2017, Los Angeles, CA, USA

shape stencil using the Manhattan distance, then in�ating circles
centered on points on the axis until they collide with geometry
proxies or the stencil shape. The new element is placed at one of
the circles of maximal radius (Figure 3, top row) and connected to
the closest existing element. The system then iterates.

Our approach performs a similar greedy iterative process but
generalizes it by using placement functions. Wong et al.’s technique
of placing the next element into the largest possible space is one
possible placement function, but there are many others. As we aim
for direct interactions, performance is crucial, so we furthermore
modi�ed their implementation to allow interactive performance
(see Section 9).

Figure 2 shows an overview of our technique. As a �rst step,
the system can be con�gured to express global design goals by
using algebraic placement functions. Higher values of the functions
indicate preferred locations for element placement (see Section 4).
Placement functions have a variety of potential inputs, such as a
stencil de�ning the areas to �ll, or a desired type of symmetry.

The artist speci�es these design constraints through our interface
and can also provide other input such as sketched paths to guide
the connections between placed elements (see Section 5). Based
upon the input, we con�gure and combine a set of ready-made
placement functions that implement the artist’s intent. The artist
can also specify exact locations for certain elements by directly
placing them in the space to be �lled.

Our automated placement system then repeatedly evaluates the
placement functions to �nd the locations with maximal values,
and inserts elements into the output ornament accordingly. The
artist can at any time interrupt the process and make changes using
editing techniques like moving or deleting existing elements. The
system immediately adapts to these local changes.

The following sections give more details on our process. For
coherency, all our models were designed by the same artist and
thus share visual traits speci�c to the artist’s individual style. By
presenting comparable models with similar growth rules, we aim
to highlight the variety of possible designs implemented by the
system, not the model’s hard-coded rules.

4 PLACEMENT STRATEGY
Artists start by specifying global design goals for the automatic
placement of elements. Some of these goals, like desired growth
direction, take additional input through lower-level mechanisms
like sketching.

Our set of supplied global designs aims to ful�ll more explic-
itly underlying aesthetic principles of ornamentation. Wong et
al. [1998] thoroughly discuss these but their method only indi-
rectly and uncontrolledly implements them. They summarize the
aesthetic principles of ornamentation as repetition, balance and
conformation to geometric constraints. We support balance and
repetition through symmetry constraints and facilitate conforma-
tion to geometric constraints by element connection strategies (see
Section 5).

4.1 Placement Functions
We strive to support a wide variety of design goals with few lim-
itations. For this, we modularize the creation of global order for

Path Finding

Placement Map Connectivity MapPl
ac

em
en

t S
tra

te
gy

Co
nn

ec
tio

n
St

ra
te

gySymmetry StencilDistance

Local Editing
Ornament

Local Editing

StrokesElements

In
te

ra
ct

io
n

Placement FunctionsConfiguration

Input Placement Functions ...
Symmetry AxisStencil

[]

Image

Figure 2: Our technique can be con�gured to incorporate
global design goals such as symmetry. The artist can option-
ally place speci�c elements and draw desired connectivity.
At any time during the process, the artist can insert, delete
and move elements on the canvas and the system adapts to
the change.

placing elements through the de�nition of placement functions. A
placement function p : R2 ! R takes higher values at preferred
locations.p is updated after every placement and its values decrease.
Once max{p} reaches or falls below 0, the ornament is completed.

We provide a number of fundamental placement functions, and
the system combines them into one overall placement function
based on the user-speci�ed design goals. The functions can make
use of user-supplied input like shapes, images, and paths. They can
also use internal data structures like the locations of the centers of
placed elements, and a map of rasterized proxies for them.

Our supplied placement functions implement:
• A stencil function accepting a binary stencil that de�nes

the area to be �lled.
• Symmetry functions for di�erent types of symmetry.
• Image data functions accepting a grayscale image that

controls the desired element placement based upon image
brightness.

• Path functions supporting element placement along paths.
In addition, users with scripting experience can readily extend

the system by adding new placement functions. We provide a num-
ber of functional building blocks like min(),max (), translate(), and
rotate(), which can be combined using the usual mathematical func-
tion operations and can be extended with custom code. These new

CAe’17, July 28-29, 2017, Los Angeles, CA, USA Lena Gieseke, Paul Asente, Jingwan Lu, and Martin Fuchs

Figure 3: The evolution of the placement function with an
initial manually-placed element. The placed element prox-
ies are in blue and the green dot indicates the proposed next
location, with the permissible maximal radius in yellow.
The gray levels in the map correspond to placement prefer-
ences, with brighter values corresponding to preferred posi-
tions. The top row shows a placement without explicit sym-
metry, the bottom row with explicit four-way symmetry.

functions have the same access to user input and internal data
structures as our supplied placement functions.

While placement functions provide the framework for unifying
and combining many sorts of design constraints, their presence is
completely invisible to the end users, who specify constraints and
guidance in conventional ways like sketching and choosing among
options. The system feeds their input to the placement functions
and combines them to implement the desired constraints.

The following subsections brie�y discuss the construction of the
ready-made placement functions and how they interact to support
design goals. For a complete formal description of the functions
please refer to the supplemental materials.

The Stencil: The stencil function is a simple function that takes
as input the value 1 for areas to be �lled and 0 elsewhere.

Symmetry: Wong et al. place elements by maximizing the dis-
tance between the new element to both the stencil border and
previously placed elements. Figure 4, left, shows that this strat-
egy when applied to a symmetrical stencil can lead to an ordered,
highly symmetric ornament. In the example, the algorithm places
elements on the symmetry axes of the rectangular stencil shape.
The elements partition the space so that following insertions main-
tain the symmetry. As a result of the greedy search for maximal
spaces, larger elements are placed before smaller elements, creating
a visible order hierarchy that is characteristic for many ornamental
styles.

However, if the artist pre-places an element o�-center, or a non-
symmetrical stencil is used, or models contain randomized char-
acteristics, applying this strategy without modi�cation leads to
unorganized patterns, as shown in Figure 4, center. Figure 3, top
row, shows the sequence of element insertions for this case. To
solve the issue, we allow the artist to explicitly express symmetry
in a way that can integrate pre-placed elements for any stencil, as
shown in Figure 4, right, and Figure 3, bottom.

The desired symmetry is supported by a placement function that
implements a set of heuristics that work as follows:

Figure 4: Greedily placing elements to maximize the dis-
tance to the frame and previously placed elements can some-
times generate tilings with high symmetry (left). With a sin-
gle artist-placed �rst element, marked in red, this approach
breaks down (center). By making the desired symmetry ex-
plicit, we can give artists the option to manually place ele-
ments while maintaining the symmetry (right). Unless oth-
erwise noted, none of our results were edited locally after
the computation.

Figure 5: Symmetry generation examples for di�erent sym-
metry types with the same pre-placed elements (red). From
left to right, re�ection across an axis, re�ection across the
center point, three-way rotational symmetry using a three-
way symmetric stencil, four-way rotational symmetry.

(1) If an element was placed at some location (x ,�), we pre-
fer �lling its transpositions under the symmetry transfor-
mation, placing the new elements in mirror or rotational
symmetry. Hence, the placement function should have
the highest values at transformed locations of previously
placed elements.

(2) If the placement at such a location is impossible (e.g., be-
cause the symmetry set is already complete), we have some
freedom. In addition to keeping a maximal distance to the
stencil, we prefer placing the next element at a location that
permits future elements to be placed at symmetry-creating
locations without collisions with existing elements.

(3) Finally, we exclude placements that are too close to existing
elements or outside the stencil.

The bottom row of Figure 3 shows the mechanism working for
four-way mirror symmetry. With the chosen settings, the �rst three
insertions ful�ll symmetries of the pre-placed circle according to
heuristic 1 and the next two circles are placed following heuristic 2.
Our interface allows the user to choose among various symmetry
types; Figure 5 shows several results.

Controlling Placements with Image Data: To show the �exibility
of our system, we provide a placement function controlled by an
artist-speci�ed example image, as shown in Figure 6. This function
uses the brightness of the image to prioritize placement order and

Organized Order in Ornamentation CAe’17, July 28-29, 2017, Los Angeles, CA, USA

+

+

Figure 6: Demonstrating the versatility of placement func-
tions, gradient images in the middle are used to guide the
ornaments, with the size and type of placed elements deter-
mined by the gradient’s brightness.

also uses it to guide the selection of elements. A cut-o� for the size
leaves the black parts of the example empty.

Paths: To place elements along an artist-speci�ed path we inter-
pret it as a stencil that sets all points o� the path to 0. This forces
the greedy placement process to put elements along the path ac-
cording to all other given global design constraints, for example
with symmetry constraints, as shown in Figure 7, center and right.
After the potential positions on the path are exhausted, our algo-
rithm completes the remaining background. These paths also a�ect
element connections, as described in the following section.

5 CONNECTION STRATEGY
Spatial relationships between elements are often expressed by geo-
metric curves or patterns that connect nearby elements. These
interconnections add additional levels of order to an ornament
in a structured way. Furthermore, global layouts, such as a frame
around a text box, can be achieved by appropriate interconnections.
In addition to singular global structures, such as speci�c frames
(see Figure 7, center), many complex real-world ornaments adapt
themselves in their entirety to global designs, such as in Figure 8,
left, where the whole space is structured with multiple lines.

In the work of Wong et al. [1998], the connections between
elements arise from individual, model-speci�c growth rules. Our
method also includes these programmatic growth rules but we add
direct visual controls to de�ne connectivity by drawn paths or
sketched vector �elds. This approach permits greater control than
related techniques, as the artist-de�ned placement functions also
guide the positioning of the elements on the paths.

5.1 Placement on a Single Path
Once all elements have been placed along an artist-speci�ed path
according to the global design constraints, we sort the elements
according to their distance to the path’s starting point and connect
neighboring elements to express the path. This connection strategy
also works for self-intersecting paths as shown in Figure 7, right,
where a simple proximity-based strategy might fail.

5.2 Connecting Elements using Vector Fields
A single user-de�ned path is not su�cient to enforce the connectiv-
ity in a large area. While artists could carefully �ll the entire space

with paths by hand, we resolve this tedious task by letting them
sketch a vector �eld, which structures a plane by storing orientation
information at each plane position. The �eld can be created from a
rough sketch or from an example image. We extrapolate sketched
guides to dense vector �elds by applying the method of Maharik
et al. [2011]. For images, we compute the gradient and rotate it by
90� to �nd the orientation of its isolines. The streamlines of the
vector �eld form a natural, dense and connected organization of
the ornament space. Streamlines are found by picking a seed point
and tracing out a path with vector �eld integration.

In order to construct the ornament, we either pick a maximal-
length streamline or start at an artist-given seed point. The elements
are placed on the traced streamline as if it were a user-speci�ed
path (see Section 5.1). Then, we mask the area around it with a
stencil (see Section 4.1) and zero out the corresponding areas in the
vector �eld. We repeat this process with the next-longest streamline,
or the next seed, and iterate. Similarly to placing larger elements
earlier than smaller elements, following longer stream lines before
shorter ones contributes to the hierarchical space organization.

Figure 8, left and right, show the synthesis results guided by
vector �elds constructed from sketched input and from an example
image, center. A vector �eld can also be applied, if so desired by
artists, to guide model speci�c growth characteristics. Figure 8,
right, shows background elements that are only allowed to grow in
the direction of the underlying vector �eld.

6 RESOLVING COLLISIONS
As ornament designs are often part of a complex layout, an artist
can specify geometric constraints either with stencils or by drawing
obstacles. This might lead to an intersection of the de�ned paths
and obstacles. To enforce the perception of an ornament adapting
to the space it �lls, we guide element paths around intersecting
obstacles. We interpret this as the classical shortest-path problem
between the start and the end of the path with the image pixels
as nodes and 8-connections to non-obstacle pixels as edges. Using
Euclidean distance between the adjacent pixels as edge weights
leads to a short path. However, this path may not follow the user-
intended shape (see Figure 9, left). Therefore, we add the distance
between each node and the direct path, which ignores obstacles,
to the movement costs from that node to the goal; see Figure 9,
center and right. While the result may not be smooth, the size of the
elements of the ornament in comparison to the jaggedness of the
path at the pixel level empirically compensates for the roughness.

7 LOCAL EDITING
At any time during the computation process, or after the ornament
is completed, the artist can directly interact with the elements of
the pattern and their connections. Artists are familiar with manual
interactions such as placing an element and moving it around on
the canvas as part of their everyday work�ow. By adopting these
methods we narrow the gap between procedural modeling and
manual creation. For a demonstration of local editing, please refer
to the supplemental video.

Internally, we keep a directed graph of the ornament in which
nodes represent elements and directed edges their connections. Af-
ter each interaction the graph structures are updated. Connections

CAe’17, July 28-29, 2017, Los Angeles, CA, USA Lena Gieseke, Paul Asente, Jingwan Lu, and Martin Fuchs

Figure 7: Space is �lled in an ornamental manner to complement an artist’s input. Stencils are indicated in gray, drawn
obstacles in red and paths in blue. Left, the red �owers were manually placed. Center and right, elements are connected along
artist-speci�ed paths, shown in blue. Note that the paths were drawn quickly by hand or with a rectangle tool and the spacings
are not optimized.

Figure 8: These examples demonstrate the application of vector �elds, the directions of which are indicated by the green
arrows. Left, the streamline of the �eld are traced iteratively. Center, a complex vector �eld is computed based upon con-
tours from an input image. Right, drawn paths de�ne the connectivity of the foreground elements, but the vector �eld guides
connections in the background, not with streamlines but by only allowing limited growth in the direction of the �eld.

Figure 9: Path planning around obstacles. Minimizing just
the geometric path lengthmakes the ornament avoid the ob-
stacle (black line), but the path follows the obstacle’s shape
only on the upper side (left).We prefer it to follow it on both
sides, which we achieve with modi�ed edge costs that pull
the path towards the straight line between the endpoints
(center). The path is pulled in between the lower obstacles,
aligning the path better to the obstacles (right).

that violate rules and orphaned elements are detected and recon�g-
ured. Therefore the model adapts itself to the changes and keeps
itself consistent with the growth rules of the model. This retains
the powerful interaction capabilities of a procedural model, such
as changing speci�c element characteristics for all samples at once.

Speci�cally, for the local editing we o�er deleting elements
and/or their connections and picking up and moving single el-
ements. New elements can also be added. Artists can move or add
elements freely without in�uence from the underlying placement
function, and we eliminate overlaps by deleting any elements or
connections that intersect. As the artist moves or inserts an element
we adapt the ornament to the changes interactively, recomputing
its connections according to the rules of the model — for example
connecting to the currently closest element. If elements are deleted
the space remains empty, but to keep the model intact connec-
tions between remaining elements and the now deleted element
are reconnected according to the connections rules (Figure 10, left).

8 DESIGNER FEEDBACK
To validate our approach, we performed a study to collect high-level
feedback on our methods and evaluated their general strength and
weaknesses. Because design tasks take considerable expertise, we
sought primarily qualitative feedback from designers, in accordance
with evaluations of similar techniques [Kazi et al. 2012; Nakagaki
and Kakehi 2014].

Eight self-identi�ed professionals took part in the study. Six
were students with a course of study in audio-visual media. Four

Organized Order in Ornamentation CAe’17, July 28-29, 2017, Los Angeles, CA, USA

Figure 10: After themanual deletion of the red�ower in the
middle, the stems that were connected to it are re-connected
and aligned to the new connections. This is the only�gure in
which our results were edited locally after the computation.

of the participants rated their design knowledge as Intermediate,
three as Advanced and one as Expert.

The study took about an hour and consisted of a brief explana-
tion of ornaments, a task comparing our results to related work,
a tutorial session with our tool, three tasks to complete with our
method, and an optional task with Illustrator for the participants
that rated their Adobe Illustrator knowledge at least Intermediate.

8.1 Evaluation
Before knowing about our methods we had the participants com-
pare three ornaments computed with our technique with three of
Wong et al.’s [1998] as baseline (Figure 11). For the computation we
used Wong et al.’s original implementation to embed the algorithm
in our framework. We chose to compare visual quality and not the
usability of the methods, as most designers, having no or little pro-
gramming skills, would not be enable to use Wong et al.’s system.
Instead we compared the use of our system to Adobe Illustrator,
which is a preferred tool for designers practicing the art.

For the visual comparison, our results were generated with un-
derlying horizontal and vertical symmetry and had no local editing
applied. Six of the eight participants preferred our results based
upon their more symmetrical appearance and more ordered struc-
ture. The explanations for favoring Wong et al.’s [1998] results were
“...more balanced in terms of the colours” and “I prefer result set 1
[Wong et al.’s], as there is less order”. Neither method speci�cally
handles color, so for both the color distribution is uncontrolled. The
second comment indicates that it might be worthwhile to make
the degree of order adjustable – another participant later said, in
contrast to this, “More symmetry would have been great...”.

The survey included 17 Likert-scale questions about our tool
in general, speci�c methods, and a comparison to Illustrator (an-
swered by the 6 of the 8 participants who had su�cient Illustrator
knowledge). The quantitative evaluation shows an overall approval
of our system (Figure 12) but its results are less expressive due
to the limited number of participants. The Likert-scale questions
were mainly intended to motivate further comments on the topics
in an open-ended fashion. Additionally, we asked the participants
“What did you like about the tool?”, “What did you dislike about
the tool?”, “Any ideas for new/missing features?”, and “Any further

Figure 11: In the top row three results computed with the
technique fromWong et al., in the bottom three results from
our technique with a fourway-symmetry and nomanual ad-
justments. The images in each set di�er because this model
has many randomized features, such as the shape of the
�owers or the stems. This randomization leads to drastically
di�erent results for Wong et al.’s technique. As they o�er
no control mechanisms, the only option an artist has is to
execute the algorithm until an favorable design is archived.
During the feedback session, 6 out of 8 designers preferred
our results.

comments?”. We clustered the answers by the number of times that
a speci�c topic was mentioned.

For positive feedback the most common comments were that
our methods save time (6 times) and are easy to use (4 times). There
was praise for the general concept (2) and that it enabled an artist
to explore designs (2). For speci�c methods, local editing (2) and the
application of a vector �eld (2) were mentioned, with one comment
saying “In particular I enjoyed the �ow �elds as it felt that they
allow me to orchestrate the picture on a higher level.”

In terms of negative feedback, most arose from missing feature
implementations (6) and the consequential lack of control (4). For
missing features there were many requests for convenience features
(6) such as undo functionality, grid alignment or better previews of
actions. Further control of element and path characteristics, such
as their size, was also desired (4).

From our analysis of the Likert-scale numbers and the open-
end answers, we conclude that our methods were well-received
overall. They are e�ective at saving creation time and e�ort, and
the participants all agreed that they are fun to use, even more so
than the known tool Illustrator. Our results hold up well in terms of
visual quality when compared to Illustrator, with the mean of the
responses slightly preferring the tool’s results to their Illustrator
work. All negative comments were in regard to missing feature
implementations; no one questioned our overall concepts. Adding
more speci�c functionalities would also improve the controllability
of the results. Nonetheless, one participant even said “I also liked
that it gave results that probably would not have been my �rst
choice, but might serve as inspiration for further exploration. Like
looking at nature, processes out of our control can give new input
into our own designs.”

Please �nd the full study and the responses in the supplementals.

CAe’17, July 28-29, 2017, Los Angeles, CA, USA Lena Gieseke, Paul Asente, Jingwan Lu, and Martin Fuchs

Figure 12: Quantitative evaluation of the Likert-scale ques-
tions. A box represents the �rst to third quartiles, with the
red line indicating the median and the whiskers including
a range of [(Q1-1.5 IQR), (Q3+1.5 IQR)], with IQR being the
interquartile range. Values outside of that margin are indi-
cated with blue + markers. The questions are categorized
as applying to the tool in general, shown in red, to speci�c
methods, shown in blue, and in comparison to Illustrator,
shown in green.

9 PERFORMANCE DISCUSSION
Our placement strategy has an innermost loop that repeatedly �nds
the next optimal insertion location after each element has been
placed. To accelerate the process, we keep a rasterized version of
the placement cost in memory and store it as an image pyramid P ,
in which each pixel stores the maximum value of four pixels on the
next-lower layer as well as the coordinate of the maximum pixel
on the source layer. Thus, its single pixel at the top equals max{p},
with p being the placement function.

Whenever one of the building blocks of p needs updating, we
identify the changed region, track it through all its transformations,
and recompute p only for the a�ected area A. Then, we update P ,
starting from the bottom with the pixels in A, and recursively work
our way to the top until no more updates are required ormaxp has
been recomputed.

With this strategy, placing the �rst few elements is slow, as the
entire function changes, potentially changing the location of the
maximum. Subsequent elements are placed faster and faster, result-
ing in a total runtime of a few hundred millisectonds to �ll 5122
pixels without symmetry constraints, a few seconds with symmetry,
and up to several minutes for the most complex examples. A discus-
sion of the asymptotic runtime is provided in the supplementals.

10 LIMITATIONS
Element groups in symmetric locations are occasionally constructed
from di�erent element types, especially if the elements are rather

small. This limitation arises from our placement functions being
processed on a discretized pixel grid. Accordingly, elements can
not be placed at exact locations in the plane, but only at integer
pixel coordinates. The example of three-way-rotational symmetry
in Figure 5 shows the limitation: some of the smallest elements
are not in perfect symmetry to copies of the same type, but to
smaller elements. The reason for this lies in the way the placed
element groups are constructed: while the �rst element may �t
well into a particular place, the next may be partially occluded
due to rasterization artifacts, and therefore a smaller element takes
its place instead. The same problem arises from models including
variability, such as the strawberry model, in which the leaves’ types
and sizes are randomized (Figure 7, right).

Aesthetics, even in the special case of ornaments, are subjec-
tive. We de�ne our set of example placement functions to create
ornamentation based on design principles found in related work.
Nonetheless, perceptions di�er and, as mentioned in the analysis
of the expert feedback, while one participant prefers less ordered
results, another one strives for absolute uniformity. Resolving this
issue would require even more controllability, ultimately for all
characteristics at all times during the process. This would have to
be balanced against decreasing the ease of usage.

11 FUTUREWORK
In this work, we addressed the problem of placing elements ac-
cording to global design constraints on their position and size. As
future work, further visual properties could be constrained, such as
the orientation of individual elements to better satisfy symmetry.
Controlling the overall color distribution would also be worthwhile.

Our greedy method of placing the next element based on the
placement function does not consider connections when computing
the next space to �ll. Here a global optimization or distribution strat-
egy, taking the connections of the elements also into consideration,
might be an alternative, but possibly at the cost of the interactive
performance we aim for. Further research on this is called for, but
beyond the scope of our paper.

After thorough testing of the local editing feature and a pre-
liminary run-through with a designer, we deliberately chose the
’what you see is what you get’ principle, as changes, for example to
element positions, that were not directly triggered by the artist are
hard to anticipate and the system would lose controllability. Explor-
ing this trade-o� is future work. We also would like to explore an
idea proposed by one study participant regarding moving elements:
rather than deleting elements that overlap the new location, push
the elements around as with a mass-spring system. This would
be interesting in combination with our global design constraints
and could be especially promising with an underlying vector �eld,
letting the elements be pushed in a meaningful direction.

The implementation of the procedural ornaments themselves
requires programming skills. Hand in hand with our contributions
regarding the usability of the models, it would be equally worth-
while to investigate a more artist friendly creation processes for
the underlying procedural models.

Lastly, Li et al.’s work [Yuanyuan Li et al. 2011] applies their
grammar in 3D space, a desirable extension for which we are aiming
in the future.

Organized Order in Ornamentation CAe’17, July 28-29, 2017, Los Angeles, CA, USA

12 CONCLUSION
Our technique de�nes a general ornamentation framework that
brings user interaction to a task that is currently either fully auto-
mated or fully manual. Our uniform approach supports control on
various abstraction levels. It puts global design constraints such as
symmetry explicitly under artist control, interrelated with visually
speci�ed input such as strokes, down to control at the individual
element level.

Our technique con�rms the great potential of integrating the
artistic control mechanisms that artists use every day into a proce-
dural system. We hope it will inspire others to explore this direction
further for example for the creation of the procedural models them-
selves.

IMAGE REFERENCES
[A] Manuscripts and Archives Division, The New York Public Library.

1450 - 1475. Historiated initial and another coat of arms. (1450 -
1475). http://digitalcollections.nypl.org/items/510d47da-e47a-a3d9-e040-
e00a18064a99

[B] Owen Jones. 1867. Examples of Chinese ornament selected from objects in
the South Kensington museum and other collections. London: S. & T. Gilbert.
http://archive.org/details/examplesofchines00jone

[C] The Miriam and Ira D. Wallach Division of Art, Prints and Pho-
tographs, The New York Public Library. 1882. Valentine cards utiliz-
ing decorative design, depicting fowers, hearts, butter�ies and a tree.
(1882). https://digitalcollections.nypl.org/items/510d47db-bc92-a3d9-e040-
e00a18064a99

[D] Spencer Collection, The New York Public Library. 1910. Front doubleur. (1910).
http://digitalcollections.nypl.org/items/8a6be0f9-3d78-b15e-e040-e00a180602c7

[E] William Morris. 1883. Strawberry Thief Printed Textile. (1883).
https://commons.wikimedia.org/wiki/File:Morris_Strawberry_Thief_1883_detail
Source: Planet Art CD of royalty-free PD images - William Morris.

[F] Colourbox. 2011. Frame with roses, Vector. (2011).
https://www.colourbox.com/vector/frame-with-roses-vector-1286656

[G] Colourbox. 2016. Big set of hand drawn oral elements, Vector. (2016).
https://www.colourbox.com/vector/oral-elements-vector-14556631

[H] Colourbox. 2013. Illustration of frame in Ukrainian folk style, Vector. (2013).
https://www.colourbox.com/vector/frame-vector-6826661

[I] Izabela Rejke. 2011. Traditional Polish Folk Design. (2011).
http://rejke.deviantart.com/art/Traditional-Polish-Folk-Design-192417774

[J] Colourbox. 2013. Ornamental khokhloma oral postcard with seamless stripe,
Vector. (2013). https://www.colourbox.com/vector/ornamental-khokhloma-oral-
postcard-vector-8445572

REFERENCES
Dustin Anderson and Zoë Wood. 2008. User driven two-dimensional computer-

generated ornamentation. In Advances in Visual Computing. Springer, 604–613.
http://link.springer.com/chapter/10.1007/978-3-540-89639-5_58

B. Beneš, O. Št’ava, R.Měch, andG.Miller. 2011. Guided ProceduralModeling. Computer
Graphics Forum 30, 2 (2011), 325–334. DOI:https://doi.org/10.1111/j.1467-8659.2011.
01886.x

Derek Bradley, Derek Nowrouzezahrai, and Paul Beardsley. 2013. Image-based Re-
construction and Synthesis of Dense Foliage. ACM Transactions on Graphics 32, 4,
Article 74 (2013), 10 pages. DOI:https://doi.org/10.1145/2461912.2461952

Guoning Chen, Gregory Esch, Peter Wonka, Pascal Mueller, and Eugene Zhang. 2008a.
Interactive Procedural Street Modeling. ACM Transactions on Graphics 27, 3 (2008),
Article 103: 1–10.

Weikai Chen, Xiaolong Zhang, Shiqing Xin, Yang Xia, Sylvain Lefebvre, and Wenping
Wang. 2016. Synthesis of �ligrees for digital fabrication. ACM Transactions on
Graphics 35, 4 (2016), 98.

Xuejin Chen, Boris Neubert, Ying-Qing Xu, Oliver Deussen, and Sing Bing Kang. 2008b.
Sketch-based Tree Modeling Using Markov Random Field. ACM Transactions on
Graphics 27, 5 (2008), 109:1–109:9. DOI:https://doi.org/10.1145/1409060.1409062

Yu-Sheng Chen, Jie Shie, and Lieu-Hen Chen. 2012. A NPR System for Generating
Floral Patterns based on L-System. Bulletin of Networking, Computing, Systems, and
Software 1, 1 (2012). http://bncss.org/index.php/bncss/article/view/7

Arnaud Emilien, Ulysse Vimont, Marie-Paule Cani, Pierre Poulin, and Bedrich Benes.
2015. WorldBrush: Interactive Example-based Synthesis of Procedural Virtual
Worlds. ACM Transactions on Graphics 34, 4, Article 106 (2015), 11 pages. DOI:
https://doi.org/10.1145/2766975

Katayoon Etemad, Faramarz F. Samavati, and Przemyslaw Prusinkiewicz. 2008. Ani-
mating Persian Floral Patterns. In Proceedings of the Fourth Eurographics Confer-
ence on Computational Aesthetics in Graphics, Visualization and Imaging (CA’08).
Eurographics Association, 25–32. DOI:https://doi.org/10.2312/COMPAESTH/
COMPAESTH08/025-032

Takashi Ijiri, Radomír Mêch, Takeo Igarashi, and Gavin Miller. 2008. An Example-
based Procedural System for Element Arrangement. Computer Graphics Forum 27,
2 (2008), 429–436. DOI:https://doi.org/10.1111/j.1467-8659.2008.01140.x

Rubaiat Habib Kazi, Takeo Igarashi, Shengdong Zhao, and Richard Davis. 2012. Vi-
gnette: Interactive Texture Design and Manipulation with Freeform Gestures for
Pen-and-ink Illustration. In Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems (CHI ’12). ACM, New York, NY, USA, 1727–1736. DOI:
https://doi.org/10.1145/2207676.2208302

Markus Lipp, Peter Wonka, and Michael Wimmer. 2008. Interactive Visual Editing
of Grammars for Procedural Architecture. ACM Transactions on Graphics 27, 3,
Article 102 (2008), 10 pages. DOI:https://doi.org/10.1145/1360612.1360701

Chongyang Ma, Li-Yi Wei, Sylvain Lefebvre, and Xin Tong. 2013. Dynamic Element
Textures. ACM Transactions on Graphics 32, 4, Article 90 (2013), 10 pages. DOI:
https://doi.org/10.1145/2461912.2461921

Chongyang Ma, Li-Yi Wei, and Xin Tong. 2011. Discrete Element Textures. ACM
Transactions on Graphics 30, 4, Article 62 (2011), 10 pages. DOI:https://doi.org/10.
1145/2010324.1964957

Ron Maharik, Mikhail Bessmeltsev, Alla She�er, Ariel Shamir, and Nathan Carr. 2011.
Digital Micrography. ACM Transactions on Graphics 30, 4, Article 100 (2011),
12 pages. DOI:https://doi.org/10.1145/2010324.1964995

Radomír Měch and Gavin Miller. 2012. The Deco framework for interactive pro-
cedural modeling. Journal of Computer Graphics Techniques (JCGT) 1, 1 (2012),
43–99. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.6752&rep=
rep1&type=pdf

Ken Nakagaki and Yasuaki Kakehi. 2014. Comp*Pass: A Compass-based Drawing
Interface. In CHI ’14 Extended Abstracts on Human Factors in Computing Systems
(CHI EA ’14). ACM, New York, NY, USA, 447–450. DOI:https://doi.org/10.1145/
2559206.2574766

Wojciech Palubicki, Kipp Horel, Steven Longay, Adam Runions, Brendan Lane, Radomír
Měch, and Przemyslaw Prusinkiewicz. 2009. Self-organizing Tree Models for Image
Synthesis. ACM Transactions on Graphics 28, 3, Article 58 (2009), 10 pages. DOI:
https://doi.org/10.1145/1531326.1531364

Yoav I. H. Parish and Pascal Müller. 2001. Procedural Modeling of Cities. In Proceedings
of the 28th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’01). ACM, New York, NY, USA, 301–308. DOI:https://doi.org/10.1145/
383259.383292

Sören Pirk, Ondrej Stava, Julian Kratt, Michel Abdul Massih Said, Boris Neubert,
Radomír Měch, Bedrich Beneš, and Oliver Deussen. 2012. Plastic trees: interactive
self-adapting botanical tree models. ACM Transactions on Graphics 31, 4 (2012),
1–10. DOI:https://doi.org/10.1145/2185520.2185546

Przemyslaw Prusinkiewicz. 1990. The algorithmic beauty of plants. Springer-Verlag,
New York.

Przemyslaw Prusinkiewicz, Faramarz Samavati, Colin Smith, and Radoslaw Karwowski.
2003. L-system Description Of Subdivision Curves. International Journal of Shape
Modeling 09, 01 (2003), 41–59. DOI:https://doi.org/10.1142/S0218654303000048

Daniel Ritchie, BenMildenhall, NoahD. Goodman, and Pat Hanrahan. 2015. Controlling
Procedural Modeling Programs with Stochastically-ordered Sequential Monte Carlo.
ACM Transactions on Graphics 34, 4, Article 105 (2015), 11 pages. DOI:https://doi.
org/10.1145/2766895

Daniel Ritchie, Anna Thomas, Pat Hanrahan, and Noah D. Goodman. 2016. Neurally-
Guided Procedural Models: Learning to Guide Procedural Models with Deep Neural
Networks. arXiv preprint arXiv:1603.06143 (2016).

O. Št’ava, B. Beneš, R. Měch, D. G. Aliaga, and P. Krištof. 2010. Inverse Procedural
Modeling by Automatic Generation of L-systems. Computer Graphics Forum 29, 2
(2010), 665–674. DOI:https://doi.org/10.1111/j.1467-8659.2009.01636.x

O. Št’ava, S. Pirk, J. Kratt, B. Chen, R. Měch, O. Deussen, and B. Beneš. 2014. Inverse
Procedural Modelling of Trees. Computer Graphics Forum 33, 6 (2014), 118–131.
DOI:https://doi.org/10.1111/cgf.12282

Jerry O. Talton, Yu Lou, Steve Lesser, Jared Duke, Radomír Měch, and Vladlen Koltun.
2011. Metropolis procedural modeling. ACM Transactions on Graphics 30, 2 (2011),
1–14. DOI:https://doi.org/10.1145/1944846.1944851

Michael T.Wong, Douglas E. Zongker, and David H. Salesin. 1998. Computer-generated
Floral Ornament. In Proceedings of the 25th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’98). ACM, New York, NY, USA, 423–434.
DOI:https://doi.org/10.1145/280814.280948

Ling Xu and David Mould. 2015. Procedural Tree Modeling with Guiding Vectors.
Computer Graphics Forum 34, 7 (2015), 47–56. DOI:https://doi.org/10.1111/cgf.12744

Yuanyuan Li, Fan Bao, Eugene Zhang, Yoshihiro Kobayashi, and Peter Wonka. 2011.
Geometry Synthesis on Surfaces Using Field-Guided Shape Grammars. IEEE
Transactions on Visualization and Computer Graphics 17, 2 (2011), 231–243. DOI:
https://doi.org/10.1109/TVCG.2010.36

http://link.springer.com/chapter/10.1007/978-3-540-89639-5_58
https://doi.org/10.1111/j.1467-8659.2011.01886.x
https://doi.org/10.1111/j.1467-8659.2011.01886.x
https://doi.org/10.1145/2461912.2461952
https://doi.org/10.1145/1409060.1409062
http://bncss.org/index.php/bncss/article/view/7
https://doi.org/10.1145/2766975
https://doi.org/10.2312/COMPAESTH/COMPAESTH08/025-032
https://doi.org/10.2312/COMPAESTH/COMPAESTH08/025-032
https://doi.org/10.1111/j.1467-8659.2008.01140.x
https://doi.org/10.1145/2207676.2208302
https://doi.org/10.1145/1360612.1360701
https://doi.org/10.1145/2461912.2461921
https://doi.org/10.1145/2010324.1964957
https://doi.org/10.1145/2010324.1964957
https://doi.org/10.1145/2010324.1964995
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.6752&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.6752&rep=rep1&type=pdf
https://doi.org/10.1145/2559206.2574766
https://doi.org/10.1145/2559206.2574766
https://doi.org/10.1145/1531326.1531364
https://doi.org/10.1145/383259.383292
https://doi.org/10.1145/383259.383292
https://doi.org/10.1145/2185520.2185546
https://doi.org/10.1142/S0218654303000048
https://doi.org/10.1145/2766895
https://doi.org/10.1145/2766895
https://doi.org/10.1111/j.1467-8659.2009.01636.x
https://doi.org/10.1111/cgf.12282
https://doi.org/10.1145/1944846.1944851
https://doi.org/10.1145/280814.280948
https://doi.org/10.1111/cgf.12744
https://doi.org/10.1109/TVCG.2010.36

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	4 Placement Strategy
	4.1 Placement Functions

	5 Connection Strategy
	5.1 Placement on a Single Path
	5.2 Connecting Elements using Vector Fields

	6 Resolving Collisions
	7 Local Editing
	8 Designer Feedback
	8.1 Evaluation

	9 Performance Discussion
	10 Limitations
	11 Future Work
	12 Conclusion
	Image References
	References

