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Abstract

Figure 1: RBF reconstruction of unstructured CFD data. (a) Volume rendering of 1,943,383 tetrahedral shock data set using
2,932 RBF functions. (b) Volume rendering of a 156,642 tetrahedral oil reservoir data set using 222 RBF functions organized
in a hierarchy of 49 cells.

While interactive visualization of rectilinear gridded volume data sets can now be accomplished using texture
mapping hardware on commodity PCs, interactive rendering and exploration of large scattered or unstructured
data sets is still a challenging problem. We have developed a new approach that allows the interactive render-
ing and navigation of procedurally-encoded 3D scalar fields by reconstructing these fields on PC class graphics
processing units. Since the radial basis functions (RBFs) we use for encoding can provide a compact representa-
tion of volumetric scalar fields, the large grid/mesh traditionally needed for rendering is no longer required and
ceases to be a data transfer and computational bottleneck during rendering. Our new approach will interactively
render RBF encoded data obtained from arbitrary volume data sets, including both structured volume models and
unstructured scattered volume models. This procedural reconstruction of large data sets is flexible, extensible, and
can take advantage of the Moore’s Law cubed increase in performance of graphics hardware.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Interactive Rendering,
Scientific Visualization, Radial Basis Functions

1. Introduction

Most visualization applications are faced with a data deluge:
scanners, sensors, and scientific simulations are now gener-
ating enormous amounts of data that must be rendered, visu-
alized, interactively manipulated and explored. These mas-

sive data sets can have arbitrary structure and organization,
ranging from easily rendered, rectilinear 3D grids, to tetrahe-
dral and hexahedral grids, to arbitrary scattered data with no
topological connectivity. Generating accurate and effective
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visual representations of the information contained within
these large data sets is the primary focus during the visual-
ization process, and should therefore drive the computational
and rendering efforts.

For many applications, however, data transfer bandwidth
has replaced computational power as the bottleneck. For-
tunately, the flexibility and speed of commodity computer
graphics hardware has also increased tremendously, provid-
ing a super fast, programmable, vectorized, multiprocessor
for rendering. Taking advantage of this Graphics Processing
Unit (GPU) creates a unique set of challenges when visual-
izing, interacting with, and rendering these enormous data
sets. These challenges are:

1. Transferring data from the CPU and main memory to the
GPU.

2. Adapting the structure of the data to the capabilities of
the graphics hardware.

We have taken a new approach to solve these two problems
for volumetric scalar data sets. To eliminate the data transfer
bottleneck from the CPU’s main memory to the GPU, we are
procedurally encoding the volumetric data using a small set
of Radial Basis Functions (RBFs). This allows us to provide
a unified representation for arbitrary volumetric data sets in-
dependent of the underlying topology, thus eliminating the
dependence on the computational grid. The RBF representa-
tion allows us to fully represent the original data within an
acceptable error tolerance, and enables us to solve the sec-
ond problem of adapting the structure of the underlying data
to the capabilities of the graphics hardware. The capability
of commodity PC graphics hardware to interactively recon-
struct and render data from this functional representation
provides a very powerful tool for visualizing procedurally
encoded volumes. Additionally, the entire functional repre-
sentation can reside in texture memory, local to the GPU, al-
most eliminating the need for data transfer between the CPU
and the GPU.

We first review related work and describe the use of RBFs
for encoding volume data. We then discuss our interactive
rendering and reconstruction system in detail and, finally,
present some results achievable by our system.

2. Related Work

RBFs are simply one choice for encoding data. Com-
pared to other data compression techniques like wavelets
[NS01, BDHJ00] or iterated function systems [BJM∗], com-
pact RBFs are advantageous because of their limited spatial
extent, first and second derivative smoothing of noisy data,
and ease of evaluation.

A significant amount of work on RBFs
[FN91, Fra82, FH99, Har90, Har71] has been done to
reconstruct surfaces by approximating scattered data sets.
The multiquadric function [FH99, Har90, Har71] has been

used with many applications, and knot selection [MF92] is
typically used for the approximation function. This work
has been shown to be successful for surface reconstruction.
In particular, Carr et al. showed nice results in their paper for
surface objects [CBC∗01]. In addition, Co et al. [CHH∗03]
showed a hierarchical representation of volumetric datasets
based on a clustering computed by PCA, but they resample
their data to a full uniform grid for visualization.

Interactive rendering is a crucial feature for the visualiza-
tion of volumetric data. The ability to interact with trans-
fer functions and viewpoint orientation provides powerful
visual cues that would be difficult to reproduce in off-line
volume rendering. Most interactive volume visualization al-
gorithms for uniform grids utilize the texture mapping hard-
ware of general-purpose graphics adapters.

These latter algorithms fundamentally represent the vol-
ume data as a 3D texture and resample it by rendering tex-
tured planes orthogonal to the viewing direction [CCF94].
The same technique also allows for the rendering of non-
polygonally represented shaded isosurfaces [WE98]. The
advent of 3D texture mapping, multi-texturing, and pro-
grammable graphics pipelines on PC graphics cards allows
interactive high-quality volume rendering of these voxel
data sets [RSEB∗00, EKE, KPHE02]. However, the limited
amount of texture memory is a serious constraint for visu-
alizing large data sets. When data size exceeds the limits of
physical texture memory, texture paging is necessary, which
severely hampers the interactivity of the rendering. Adaptive
multi-resolution representations can alleviate this problem
[LHJ99, WWH∗00]. However, the requirement for artifact-
free consistent interpolation leads to a large amount of topo-
logical information and a higher rendering and reconstruc-
tion overhead. Moreover, even with this multiresolution rep-
resentation, the sampling of a single plane still requires ac-
cessing large amounts of data. As this data may be widely
spread across the texture memory, the rasterizer can hardly
benefit from texture caching.

Interactive rendering for unstructured volumes is almost
entirely based on the Projected Tetrahedra (PT) algorithm
[ST91]. This algorithm exploits hardware-accelerated trian-
gle scan conversion by decomposing projected tetrahedra
into triangles and rasterizing these triangles with the cor-
rect color and opacity computed at the triangle vertices by
ray integration. Improvements of the basic PT algorithm in-
clude improved rendering quality [SBM94, RKE00] and ex-
ploiting today’s programmable vertex and fragment units by
mapping the tetrahedra decomposition to standard graphics
hardware [WKFC02, WKE02], thus freeing CPU resources.

Unstructured grids can provide an adaptive representation
of the volume data. However, the rendering performance for
unstructured grids is still inferior to that of texture based
volume rendering of structured grids. The main bottleneck
is processing the tetrahedra in the correct visibility order
[MHC90, Wil92].
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The RBF approach provides a superior uniform solution
for the visualization of structured and unstructured volume
data, especially for large data sets. Compared to a multires-
olution hierarchy of a structured volume, a radial basis func-
tion representation of the same data can achieve high com-
pression ratios since no topological information is required.
The relatively small number of basis functions required to
reconstruct a single fragment leads to local memory access
schemes that can benefit from texture caching.

By exploiting radial basis functions that are reconstructed
via per-fragment operations during rasterization, we can
combine the slice-based rendering approach with a compact
volume representation and apply all rendering techniques
that are well established for texture based volume rendering.

As our encoding approach uses radial basis functions,
splatting [HSMC00] could be a valid alternative to per-
fragment reconstruction. However, splatting with footprints
of different sizes does not work well with hierarchy decom-
position. Since the influence regions of different RBFs will
overlap significantly, a global ordering of the RBFs is not
possible, and, therefore, a slice based approach has to be
taken.

3. Radial Basis Functions

Radial basis functions (RBFs) [SPOK95, TO99, MYR∗01]
are circularly-symmetric functions centered at a single
point. Possible basis functions include thin-plate splines,
multiquadrics, and Gaussians. RBFs are widely used in
many fields (e.g., image processing and medical applica-
tions). Within computer graphics, RBFs are most commonly
used for representing surface models and for mesh reduc-
tion [SPOK95, TO99, CBC∗01, MYR∗01, TO02]. RBFs
have also been used for surface construction and rendering
of large scattered data sets [CBC∗01, Gos00]. The main ad-
vantages of RBFs include their compact description, ability
to interpolate and approximate sparse, non-uniformly spaced
data, and analytical gradient calculation.

With radial basis functions, the functional representation
f (x) can be expressed as linear combinations of the chosen
basis functions as follows [GN01]:

f (x) =
N

∑
i=1

wiφi (‖x−µi‖) (1)

N Number of input
x d-dimensional input vector
wi RBF weight
φi Basis function
µi RBF center
‖x−µi‖ Vector norm of x to µi

In order to interpolate a function with N points, the simple
form of an RBF places basis function centers at each of the
N points and then solves for the weights of each RBF. For
data compression and smoothing, a reduction of the number

of basis functions is typically performed given some opti-
mization criteria, thus providing a compact representation of
the input data. Some reduction schemes introduce a constant
(or linear) error term which has to be compensated for in the
reconstruction equation.

4. RBF Encoding of Volume Data

As previously mentioned, there are many basis functions
that may be used in RBF encoding. Biharmonic and tri-
harmonic splines are well-suited for surface representation
and can provide better results than compactly supported
RBFs [CBC∗01]. In this work, however, we use truncated
Gaussians for the reconstruction. Their limited spatial sup-
port, in turn, translates to a small set of functions that must
be evaluated at any given spatial location to produce a re-
constructed scalar value. This small set of functions can be
reconstructed at interactive frame rates.

Although any RBF with non-infinite influence will work
with our real-time reconstruction method, we have chosen
the truncated Gaussian function as our basis function be-
cause the functional value converges to zero exponentially,
not polynomially like other basis functions. Moreover, by
specifying the widths for each of the truncated Gaussian
RBFs, we can make spatially isolated functions that accu-
rately represent local features. With Gaussian basis func-
tions, the RBF functional representation is defined as fol-
lows:

f (x) = w0 +
M

∑
i=1

wie
−

‖x−µi‖
2

2σ2
i (2)

M Number of basis functions
wi RBF weight
µi RBF center
‖x−µi‖ 3D-space distance of x to µi
σ2

i RBF width
w0 Bias

Therefore, to effectively encode a scalar data set, we need
to determine the center location, weight, and width of each
basis function.

There are many different methods to choose RBF cen-
ters, including random subset selection, clustering algo-
rithm, and mixture models[GN01]. In this work we use
PCA analysis[Jol86] to cluster the data points and in each
cluster, the RBF center is selected as either the value-
weighted cluster average point or the maximum error point
as chosen by the user. The RBF width is determined by
a hybrid gradient-descent nonlinear optimization technique
(Levenberg-Marquardt method) as stated in [PFTV92]. The
cost function for optimization uses the mean square error
over all data points The individual RBF weight and global
bias are computed by minimizing the sum squared error for
all data points (e.g., Pseudo-inverse method[Alb72]). Using
this method, RBFs are repeatedly added in clusters with the
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largest errors until the user specified error criteria is satisfied.
Encoding errors are calculated as the difference between the
original value and the evaluated RBF representation at each
input data point.

Once the original volume data is encoded as a weighted
sum of RBFs, the computational grid can be discarded. The
series of RBFs will reproduce the original scalar field within
the accuracy tolerance specified during encoding.

5. Spatial Data Structure

In an effort to reduce the number of basis functions that must
be evaluated at a given location, we create an adaptive octree
to store the list of relevant basis functions in a given region
of space. We use non-uniform spatial subdivision based on
basis function center locations. For each cell in the tree, the
list of contributing basis functions is calculated by determin-
ing if their radius of influence ri intersects the cell. For the
Gaussian basis function, solving Equation (2) yields the fol-
lowing formula for ri:

ri = σi ·

√

2 · ln
(

|wi|

ε

)

(3)

where ε is a user defined error tolerance.

Our subdivision terminates when the number of basis
functions per cell is less than a threshold n (maximum RBFs
per cell) or when further subdivision does not significantly
reduce the number of basis functions for the eight children
cells.

If very high accuracy is needed, the user may choose to
still render all the basis functions at the cost of interactiv-
ity. To account for error while supporting more interactive
rendering, we use the following approach. First, the error
introduced by only evaluating the n most significant basis
functions per fragment is calculated. We then store the error
at each cell corner point in the cell data structure and these
values are interpolated by the graphics processor during ras-
terization. From our initial experiments, this linear approxi-
mation provides good results. However, with very small val-
ues of n, linear artifacts may be introduced.

6. Interactive Reconstruction

For the visualization of the RBF encoded volume data we
adopt the texture based volume slicing approach mentioned
earlier. This method is well established for the visualization
of volume data on regular grids. Slice polygons are com-
puted by intersecting a plane with the bounding box of the
desired volume domain and a set of these slices oriented
orthogonal to the viewing direction is placed equidistantly
within the volume domain, rendered with texture mapped
volume data, and finally composited back to front.

Our approach, however, eliminates the need to store the

volume data in a three-dimensional texture map. Only the
RBF parameters reside in two-dimensional textures. Based
on our compact RBF representation, we exploit the pro-
grammability of the GPU fragment processor to perform
an on-the-fly reconstruction of the RBF encoded volumet-
ric data during the rasterization of each slice as depicted in
Figure 2.

Texture 1

Fragment
Program

iσ

iwµ i

RBF Parameters

Texture 0

Figure 2: Our interactive reconstruction is based on a vol-
ume slicing approach with a fragment program evaluating,
for each rendered fragment, the RBF encoding stored in two-
dimensional textures on the fly.

Since the RBFs are evaluated by the GPU for each ren-
dered fragment, the encoding of the data is hidden from the
rendering and, therefore, our approach extends to a variety of
visualization algorithms, such as arbitrarily oriented cutting
planes, and volume-rendered non-polygonal isosurfaces as
in [WE98]. This volume rendering is also achieved by ren-
dering slices, but the reconstructed volume data is mapped
to the alpha channel of the fragment color and the OpenGL
alpha test is used to simulate the first-hit semantics of a vol-
ume ray caster. Further possibilities include the mapping of
the reconstructed data onto the surface of a related geometry,
e.g., color coded pressure on the body of an airplane.

6.1. High Level Rendering

As mentioned previously, we use a spatial decomposition of
the data domain in order to reduce the number of RBF cen-
ters that have to be considered for a single fragment. Because
each cell of the decomposition can have different sets of cen-
ters, separate rendering states per cell are required.

This situation is quite similar to the bricking approach
taken in texture-based volume rendering when the size of
the data set exceeds the physical texture memory [GHY98].
There, the data set is decomposed into a set of blocks or
bricks, and each brick is rendered with a separate three-
dimensional texture. The bricks are sliced independently in
back-to-front order to minimize state changes.

In our approach, the costs for switching between cells
are comparatively small—mostly not even a texture switch.
We do, however, have to deal with multipass rendering, be-
cause a cell may contain more RBFs than can be handled
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for (all slices)
{
activeCellList = createActiveCellList();
intersectedCellList = copy(activeCellList);

// Phase I
while (cells in activeCellList)
{
setupRenderingPass();

for (each cell c in activeCellList)
{
if (c contains only ONE chunk of unrendered RBF’s)
removeFromActiveCells(c);

else
renderIntersectionPolygon(c);

}
}

// Phase II
setupFinalRenderingPass();

for (each cell c in intersectedCellList)
renderIntersectionPolygon(c);

}

Figure 3: Traversal algorithm for slice-based RBF-
Rendering.

by the fragment processor in one step. Therefore, we utilize
a traversal order, which iterates over all slices in the outer
loop and for each slice processes the intersected cells. We
clip all slices at the boundaries of a given cell and render
the resulting polygons (multiple times). Figure 3 shows the
corresponding pseudocode.

Multipass rendering is performed in two phases using a
set of two hardware accelerated floating point p-buffers: In
the first phase the fragment program partially evaluates the
RBF sum and writes the intermediate result into one of the
buffers. This result is then used as an input for the next ren-
dering pass by binding the p-buffer to a texture map. We
need two p-buffers since the GeForce FX does not support
simultaneous read and write operations on the same buffer.
The final pass (Phase II) directly writes to the graphics con-
text of the program window.

We utilize an active cell list in order to minimize the cell
traversal costs. For each slice, the list is initialized with all
cells intersected by the the current slice. For each cell we
render all but one of the multiple passes during the first
phase. The last rendering pass is performed in the second
phase, guaranteeing that the intersected slice area for each
cell is finally rasterized into the framebuffer. Therefore, we
remove the cell from the active cell list as soon as only one
additional pass would be required. A second list is main-
tained to store all cells which must be traversed during the
last rendering pass. It is initialized with all intersected cells
as well.

If our hierarchy contains only cells that can be rendered
in a single pass, we switch to a cell-based traversal in or-
der to minimize the traversal costs. In this case we process
all slices for a given cell first, before switching to the next
cell. Visibility sorting of the cells is then required to achieve
proper semi-transparent volume rendering. We apply a re-
cursive sorting algorithm at each level of our spatial decom-

position that sorts the eight children using the distance of
their centers from the viewer’s position and descends in a
depth-first manner based on the level-wise ordering of the
children. The sorted cell list can also be used in multipass
rendering for faster access to all cells that are intersected by
a particular slice.

6.2. Texture Encoding

During rendering, the fragment processor has to be able to
access the basis functions that are selected for function value
reconstruction inside the current cell. We exploit the high
memory bandwidth of the graphics adapter by storing the
RBF data at full precision in a set of two floating point tex-
ture maps (see Figure 2). The required textures reside within
the local memory of the graphics adapter, since the total
amount of RBF data is small. Thus, the bottleneck of trans-
ferring data from the CPU to the GPU is avoided.

Our first texture is an RGBA map holding the positions µi
of the RBF centers and the weights wi of the RBF functions
in the RGB and alpha components, respectively. The second
map consists of only one color component storing the widths
σi of the RBF functions. In order to reduce the number of
fragment operations required for the reconstruction, we do
not store the actual widths, but instead store (2σ2

i )
−1.

We arrange all the parameters for a single cell consec-
utively in the texture maps allowing the fragment proces-
sor to access the required list of RBFs for each fragment
by applying an increasing offset to the texture coordinates,
which point to the first RBF of each cell. Texture wrapping is
avoided since branching instructions introduce performance
penalties in the fragment processing. Figure 4 demonstrates
an example of the applied texture packing. Whenever a cell
requires more basis functions than can be processed in a sin-
gle rendering pass, we split the list of RBFs into chunks that
can be handled in one pass. The multipass rendering allows
for a tight packing of the cells’ data, since we only have to
guarantee that the RBF parameters needed for one pass are
stored consecutively. Even several texture sets can be used if
the RBF data exceeds the maximum size of one texture map.

The number of RBFs to be evaluated per cell may vary
throughout the spatial decomposition. Therefore, since cur-
rent graphics hardware does not support dynamic loops in
fragment processing and branching instructions significantly
degenerate the rendering performance, we provide special-
ized programs for different numbers of RBFs. However, we
avoid extensive program switching and reduce performance
penalties by restricting ourselves to a rather small set of dif-
ferent programs. Cells that require an intermediate number
of RBFs, therefore, pad their RBF data in the texture maps
with zero values up to the next available fragment program
size.
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Figure 4: The RBF data for all cells is tightly packed into a
single set of texture maps. In this example, two different frag-
ment programs for 4 and 8 RBF evaluations are available.

6.3. Per-Fragment Reconstruction

We use a high-level shading language for programming the
fragment processor since current graphics hardware, such as
the GeForce FX, has the ability to run fragment programs
with over 1000 operations in a single pass, and long assem-
bler programs are hard to code and to debug. Our implemen-
tation is based on NVidia’s Cg [nVi02], which supports both
graphics APIs, DirectX and OpenGL, by providing different
compiler profiles.

Our visualization system loads pre-compiled fragment
programs instead of using Cg’s on-the-fly compilation to re-
duce start-up overhead. Additionally, this approach easily al-
lows for adding support for other basis function types and
writing hand optimized assembler code.

Based on the RBF encoding in the texture maps, we apply
the fragment program presented in Figure 5 for the single
pass RBF reconstruction. We removed the multipass related
parts, since we consider the presented version to be more
readable and the multipass code is straightforward. The pro-
gram uses the Gaussian radial basis function introduced in
Section 4. We also implemented programs for inverse multi-
quadric RBFs and for different visualization modes, in par-
ticular isosurface rendering. The latter additionally performs
lighting calculations based on the data gradient that is ana-
lytically evaluated in parallel to the data value as:

∇ f (x) = −
M

∑
i=1

x−µi

σ2
i

wie
−

‖x−µi‖
2

2σ2
i (4)

The number of RBF functions to be evaluated is encoded
as a fixed preprocessor constant, since current graphics hard-
ware does not support dynamic loops in fragment process-
ing.

The program straightforwardly accumulates the RBF
functions in a local variable. The iteration over the number
of RBFs include the lookup of the RBF center coordinates,
the RBF weight and width from the texture maps, the com-
putation of the center’s distance to the current fragment posi-

// Maximum number of basis functions for loop unrolling
#define CONST_NUMFUNCS 36

float4 main ( // Current world coordinates and RBF textures
float4 inpos : TEXCOORD0,
float error : TEXCOORD1,
uniform samplerRECT rbfcenter: TEXTUREUNIT1,
uniform samplerRECT rbfwidth : TEXTUREUNIT2,
// Texture adressing: offset + increment
uniform float4 texstart : C0,
uniform float4 texinc : C1,
// Bias for RBF reconstruction
uniform float bias : C2,
// Color table, scale + bias, alpha scale
uniform sampler1D map : TEXTUREUNIT0,
uniform float4 mapSBA : C20,

) : COLOR
{

float val = 0.0;
float4 texpos = texstart, output;

for (float i = 0; i < CONST_NUMFUNCS; i++) {
// texpos.z counts how many RBFs still have to be evaluated in this cell
float4 tmp = texRECT (rbfcenter, texpos.xy);
float w_inv = texRECT (rbfwidth, texpos.xy);
float3 vec = tmp.rgb - inpos.xyz;
float expval = - dot (vec, vec) * w_inv;
val += tmp.a * ex2 (expval);
texpos += texinc;

}
// Add bias and interpolated error
val += bias + error;
// Color table lookup after scale + bias
output.rbga = tex1D (map, (val + mapSBA.r) * mapSBA.g);
// Transparency correction for volmue slicing
output.a *= mapSBA.a;
return output;

}

Figure 5: The fragment program for reconstructing Gaus-
sian radial basis functions.

tion, and the evaluation of the RBF function. Due to perfor-
mance issues we use the base-two exponential which is com-
pensated with a correction factor multiplied to σi-entries in
the texture maps. As mentioned previously, we require two
lookups per-fragment since the five RBF parameters could
not be stored in only one texel. By combining four RBF
widths in one RGBA texel and performing the width lookup
only every fourth RBFs, we would have been able to reduce
the number of lookups to an average of 1.25. However, the
more complicated data handling and the computation of the
different texture coordinates resulted in very little perfor-
mance increase.

We use the interpolated texture coordinates inpos to
provide the model space coordinates for each fragment. Af-
ter evaluating all RBF functions, the constant bias is added.
If the spatial data structure includes error values at the cor-
ner of each cell, we add the linearly interpolated error that is
encoded in the secondary texture coordinates. After an addi-
tional scale and bias operation, which allows us to account
for the relevant data range, the resulting scalar value is fi-
nally mapped to an output color by a 1D texture lookup.

7. Results

We have implemented our system on a Pentium 4 2800MHz
processor with an Nvidia GeForce FX 5900 Ultra graphics
processor and tested it on a variety of data sets. These data
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Figure 6: Volume rendering of the RBF encoded X38 shock
data set.

sets include a computationally simulated X38 configuration,
a natural convection simulation, a black oil reservoir simu-
lation, the negative potential iron protein voxel data set, and
the bluntfin data set. Unless stated differently we achieved
our timings on a viewport of 400×400 pixels using a set of
fragment programs for 20, 40, 60, 80, and 100 basis func-
tions. In the following, we discuss the results obtained from
encoding each of these data sets using the previously de-
scribed radial basis functions.

7.1. X38 Crew Return Vehicle

The X38 data set that we used is based on a tetrahedral finite
element viscous calculation computed on geometry config-
ured to emulate the X38 Crew Return Vehicle. The geom-
etry and the simulation were computed at the Engineering
Research Center at Mississippi State University by the Sim-
ulation and Design Center. This data set represents a single
time step in the reentry process into the atmosphere. The
simulation was computed on an unstructured grid contain-
ing 1,943,483 tetrahedra at a 30 degree angle of attack.

We computed the normal Mach number and extracted data
values greater than 0.6, as the shock is created due to the
transition from sub-sonic speeds (< Mach 1) to super-sonic
speeds (> Mach 1). The actual shock volume has a normal
Mach number very close to 1.0. We clipped the values in the
shock data at 0.6 to reduce the datasize for RBF encoding.
This clipped data set was then encoded with 2,932 Gaussian
RBFs. The images in Figure 1(a) and Figure 6 show volume
renderings of a tight bound on the shock volume, with data
between 0.9 and 1.1. Figure 7 shows an interactive cutting
plane rendering of the shock values ranging from 0.6 (blue)
to 1.7 (white). Figure 8 shows a comparison of encoding
the shock data with both 855 and 1,147 RBFs for the more
limited range of values 0.7 to 1.7. For the important narrow
shock data range shown, 0.8 - 1.02, the overall structure of
the shock is the same, with details of the bow shock missing
in Figure 8(a). The additional RBFs used in Figure 8(b) are
needed to capture the finer structures of the shock. These cut-
ting plane images render at approximately 15 fps, while the
volume rendering rate for the shock data is approximately

Figure 7: RBF reconstruction of the X 38 shock data set.

0.33 fps. Better spatial locality during the encoding of this
dataset will increase the performance of the rendering. We
have also encoded the density data set from this simulation
where the most interesting values are density values less than
0.5. The data set was encoded using only 1,611 RBFs since
the density variation doesn’t have the sharp discontinuities
of the shock data. The average encoding error was just un-
der 2%. A volumetric isosurface rendering of the low density
region of the data can be seen in Figure 9.

Figure 8: RBF reconstruction of the X 38 shock data set. (a)
855 RBFs are used for reconstruction. (b) 1,147 RBFs are
used for reconstruction.

Figure 9: Volume isosurface rendering of the X38 density
data reconstructed with 1,611 RBFs.
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7.2. Natural Convection in a Box

Figure 10 shows a semi-transparent volume rendering and an
isosurface rendering (isovalue 0.5) of the 80th time step of
temperature generated from a natural convection simulation
of a non-Newtonian fluid in a cube. The domain is heated
from below, cooled from above, and has a fixed linear tem-
perature profile imposed on the sidewalls. The simulation
was developed by the Computational Fluid Dynamics Lab-
oratory at The University of Texas at Austin and was run
for 6000 time steps on a mesh consisting of 48000 tetrahe-
dral elements. The semi-transparent volume rendering runs
at approximately 1.8 fps using 32 slices. In isosurface mode
the performance drops to 0.4 fps, since the isosurface frag-
ment program is more expensive, and we could not use our
most optimized program version here.

Figure 10: Volume and isosurface rendering of temperature
generated from a natural convection simulation.

7.3. Black Oil Reservoir Simulation

Figure 1(b) and 11 show volume renderings of the recon-
structed oil reservoir data set computed by the Center for
Subsurface Modeling at The University of Texas at Austin.
The data set is a simulation of a black-oil reservoir model
used to predict placement of water injection wells to max-
imize oil from production wells. The data set has 156,642
tetrahedra containing water pressure values for the injec-
tion well. The data set renders at approximately 1.8 fps on a
GeForceFX 5900 Ultra graphics adapter using 64 slices.

Figure 11: Volume rendering of water pressure for an in-
jection well. The 156,642 tetradra data set is encoded using
458 RBFs.

7.4. Negative Potential Iron Protein Data

We also encoded the 32× 32× 32 neghip data set from the
University of Tübingen which shows the spatial probability
distribution of the electrons in a negative potential protein
molecule. Figure 12 shows a volumetric rendering of the
RBF encoded data set using 812 basis functions on a four
level spatial hierarchy consisting of 126 cells with a maxi-
mum of 100 basis functions per cell. The data set renders at
approximately 2.6 fps on the test system using 32 slices.

Figure 12: Semi-transparent volume rendering of the neghip
data set using 812 basis functions. The rendering is per-
formed on a spatial decomposition comprised of four sub-
division levels.

7.5. Blunt Fin Data

The bluntfin data set displayed in Figure 13 has been en-
coded hierarchically with 695 RBFs, with 238 cells and a
maximum of 60 RBFs per cell. Again, we used a set of frag-
ment programs with up to 60 basis functions for rendering
the data set at interactive rates. Using 64 slices the data set
renders at approximately 3.7 fps on a GeForceFX 5900 Ultra
graphics adapter.

All of the above Figures were generated with our hard-
ware accelerated reconstruction program. For slice plane
rendering, we achieve performance of 7 to 75 fps on a
4002 viewport due to a comparatively high amount of RBFs
per cell. Exploiting the half-float register type of Cg, led to a
performance improvement between 30% and 300% depend-
ing on the rendering mode. However, we could not apply
this program to all tested data sets, due to the limited 16 bit
precision.

The 1024 fragment program instruction limit of the
GeForce FX allowed us to evaluate 59 to 126 RBFs per pass,
depending on data encoding and the rendering mode. When
multipass rendering is needed, we experience increased per-
formance for larger fragment programs, which need to write
intermediate results to the frame buffer less often. For our
adaptive octree encoding, the addition of cells in the hi-
erarchy causes overhead for rendering. However, we have
found that the reduction in wasted Gaussian RBF evaluation
outweighs this overhead and significantly increases perfor-
mance.
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Figure 13: Volume rendering of the bluntfin data set with its
subdivision hierarchy.

8. Conclusion and Future Direction

We have demonstrated a novel, unified approach for the
interactive reconstruction and visualization of arbitrary 3D
scalar fields, including voxel data and unstructured data.
By combining a compact functional encoding, hardware-
accelerated functional reconstruction, and domain knowl-
edge of data importance, we have developed a system that
avoids the traditional data transfer bottleneck of hardware
accelerated rendering of large scalar fields. This approach
can take advantage of the rapid performance increase of
PC class graphics hardware. The flexibility and extensibil-
ity of functional encoding and interactive reconstruction al-
lows the interactive exploration of very large data sets from
a variety of sources. We can visualize data sets with a few
million tetrahedra at interactive rates using slicing planes
and preview-quality slice-based volume rendering. Our fu-
ture work will include further optimization of our interac-
tive reconstruction in terms of performance, e.g., removing
bottlenecks of the current implementation by balancing the
reconstruction efforts between vertex and fragment process-
ing. Image quality could also be improved by incorporating
pre-integrated volume rendering. We will also improve our
RBF encoding techniques for volumetric scalar fields to pro-
vide more limited spatial support, significantly reducing the
the number of RBFs required per fragment and, therefore,
speeding up the performance.
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