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Abstract

We present three new ways of looking at tensor volumes. All three methods are based on the interaction of simulated
light and the tensor field. Conceptually, rays are shot from a certain direction into the tensor volume. These rays are
influenced by the surrounding tensor field and bent as they traverse through the volume. The tensor is visualized by
both the nature of the bent rays and by the collection of rays deposited on a receiving plate. The former is similar
to streamlines, but shows paths of greatest influence by the tensor field. The latter is similar to caustic effects from
photon maps, but shows the convergence or divergence of the rays through the tensor volume. We also use the con-
cept of treating the tensor volume as a special lens that distorts an image. Using backward ray tracing through the
tensor volume, we generate image distortions that also show internal properties of the tensor field. A key advan-
tage of these techniques is that they can work directly with non-symmetric tensor fields without first decomposing
them into components. Color images can also be found in www.soe.ucsc.edu/research/avis/tensorray.html.

Key Words and Phrases: ray casting, caustics, photon
mapping, distortion, deformation, refraction, non-symmetric
tensor fields

1. INTRODUCTION

Tensor data is more common than you think. It can be found
in a number of fields such as: medical imaging 19, fluid flow
5, mechanics 13, and tectonics !7. Although scientists often
have to deal with tensor data sets, the tools available for vi-
sualizing them are quite limited. In this paper, we restrict our
discussion to second order 3D tensor fields. Visualizing such
tensor fields is difficult because each tensor in the field con-
tains nine unique quantities. To incorporate this much infor-
mation in a single representation is a challenging task. Cur-
rent methods either show detailed information about the ten-
sor field but only at a few local, discrete points using glyph,
or show information about the tensor field in some particular
directions.

In this paper, we present three new algorithms for visu-
alizing tensor fields based on interaction of simulated light
with the tensor volume. The first is based on ray casting.
A set of parallel rays are issued toward the tensor field. As
the rays travel through the volume, they are influenced and
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bent by the tensor field just as light is bent by a gravitational
field. In this case, the tensor field is treated as a transform-
ing force, and can be visualized by observing its effects on
the rays. That is, the manner in which the rays are bent and
deformed reveal the underlying nature of the tensor volume.
We refer to this method as path tracing. The second method
is based on observing the image formed by these bent rays on
a receiving plate. Just as caustic effects are observed when
light either gets dispersed or concentrated on the bottom of a
pool, we can generate similar images of light going through
a tensor volume. However, instead of caustics forming due to
the undulations on the water surface, caustic effects of ten-
sor fields are produced by how the tensor volume disperses
or concentrates the light rays. Thus, these tensor caustic im-
ages do reveal the internal convergent or divergent properties
of the tensor volume. We refer to this method as photon dis-
tribution because we are essentially calculating the image
based on the distribution of these rays on a receiving plate.
The third method assumes that the tensor volume is some
kind of lens that distorts an image. It is akin to looking at
objects with known shapes using lenses of different shapes
and thickness, and then guessing the properties of the lenses.
Backward tracing is used to produce the desired effects, and
we refer to this method as lens simulation. Together, these
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three methods offer additional ways of allowing us to ana-
lyze the complex nature of tensor fields.

The rest of this paper is organized as follows: Section 2
reviews some previous tensor visualization techniques; Sec-
tion 3 reviews some tensor transformation techniques to aid
with the visualization task; Section 4 presents the three new
techniques; Section 5 discusses some implementation issues;
Section 6 illustrates the methods and analyzes the results;
Section 7 draws conclusions for the new tensor visualization
techniques and proposes some future work for tensor visual-
ization.

2. PREVIOUS WORK

There are a few methods for visualizing tensors such as
pseudo-coloring, tensor glyphs 39, hyperstreamlines *, and
deformation 2 1215,

A straightforward method is the use of glyphs. The sim-
plest one is the tensor ellipsoid. Here, the tensor is decom-
posed into three orthogonal eigenvectors, with their corre-
sponding eigenvalues indicating the magnitude along each
eigenvector. An ellipsoid is then constructed and oriented ac-
cording to the 3 eigenvectors and scaled according to the 3
eigenvalues. This works for symmetric tensor fields. More
complex glyphs are constructed to show additional features
in the tensor fields using flow probes 3. Another interesting
use is in conjunction with other geometric primitives. Hagen
et al. 7 proposed the use of generalized focal surfaces to visu-
alize information derived from real, symmetric deformation
tensor fields. Directional information is displayed separately
by elliptical glyphs placed over characteristic curves. The
general drawback of glyphs is their discrete nature. They do
not capture the global or continuous nature of tensor fields.
And they also require judicious placement to avoid clutter.

Another well known tensor visualization approach is with
hyperstreamlines and topology based method 4 ¢. For sym-
metric tensor fields, the 3 eigenvectors at each point are
sorted by their eigenvalues and classified as the major,
medium, and minor eigenvectors. For non-symmetric tensor
fields, where the 3 eigenvectors are not necessarily orthog-
onal to each other, the tensor field is first decomposed into
a symmetric and an axial component. Hyperstreamlines are
then generated by integrating along one of these eigenvector
fields, and letting the two other eigenvector and eigenvalue
fields modify the shape of a primitive that is swept along
the principal hyperstreamline. Because one of the eigenvec-
tor field is used for integrating the hyperstreamline, there are
two other possible hyperstreamlines that can be generated
from each seed location. The understanding of the tensor
field is therefore not complete without these two. The draw-
back of this approach then is that users have to integrate the
3 different views.

Topology based methods use a set carefully selected
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points, lines and surfaces to divide the tensor field into sev-
eral small sub-fields, each of which has relatively homoge-
neous tensors ®. Trained users can reconstruct the rest of the
tensor field by looking at the critical topology. A drawback
of this method is that it only uses isotropic tensor as the crit-
ical point, which is often less interesting in applications like
diffusion tensors.

Direct volume rendering approach applies different trans-
fer function and shading models on the tensor field 8. The
hue-ball and lit-tensor map the tensor anisotropy into view-
dependent material. Users can understand the anisotropic
tensors by looking at the field from different view points.
Because this method is specially designed for diffusion ten-
sor, how it works on other data set is still unknown.

Noise filtering method uses the tensor field to control the
filtering process to produce a volumetric scalar field which
is then volume rendered !°. Essentially, the tensor volume
is decomposed into a scalar volume by iteratively applying
filters that are multiplied with the tensors. Additional post-
processing steps are performed to further enhance the direc-
tionality of areas with strong eigendirections. The technique
works quite well with synthetic data but was less convincing
with real data sets.

An important application of tensor visualization is in the
medical field. Tensor reconstruction approach rebuilds the
neural pathway along the principal eigenvector of the dif-
fusion tensor !. In this method, moving least squares reg-
ularization successfully overcomes the noise and relatively
coarse grid problem in the data set. The tensor tracing is es-
sentially a streamline integration along the principal eigen-
vector, hence hyperstreamlines. One interesting point is how
they chose the locations for seeding the hyperstreamlines.

An alternative approach is to use deformation. Simple ob-
jects such as polygons !5 or cubes !2 are advected by a flow
field. The deformations on the objects along the advected
path show the local stretch, shear, and rigid body rotation at
a point. This is generalized by Boring and Pang 2 to include
idealized objects such as lines, planes, and sub-volumes. It
allows users to interactively modify an interrogation vector
to see how the tensor field would deform the object. While
the user can now see the continuity over the field, the main
drawback of this approach is that users can only see the in-
formation in one direction at a time. This was further im-
proved by Zheng and Pang '8 in two ways: (a) allow the
normal vectors to change dynamically as the object is be-
ing deformed, and (b) allow entire volumes to be deformed
by solving a system of linear equations that minimize the
energy across a spring system connecting all the cells in the
tensor volume. However, one drawback that persisted is that
the techniques apply only to symmetric tensor fields. Our
goal in this paper is to overcome that constraint. The meth-
ods presented in this paper is also in line with our general
idea of using deformation to visualize tensor fields. This
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time we use the idea of deforming simulated light rays, or
idealized line segments 2.

3. TENSOR BACKGROUND

A tensor field is a field that contains a tensor at each point.
We assume that the tensor resides in a structured grid and
also assume that it is basically continuous.

Given a tensor 7 and a vector W, W will be transformed
into another vector U.

U=T-W €))
So, a tensor can be considered as a linear transformation

from one vector to another vector. This is a key idea in the

development of the approach described in this paper.

Decomposition

A general strategy for tensor field visualization is to de-
compose the field into meaningful components. Visualiza-
tion is then performed based on the components. For exam-
ple, decomposing a 3 dimensional second order tensor into
symmetric and anti-symmetric components results in 6 inde-
pendent components for the former and 3 independent com-
ponents for the latter. Other decomposition methods also ex-
ist that isolate different properties of the general tensor. The
methods presented in this paper can work directly with the
general tensors and hence a decomposition step is not nec-
essary.

Iterative method for finding principal eigenvectors

The principal eigenvectors in a general tensor field may
be obtained in an iterative fashion !4. Starting from an ini-
tial vector A, the tensor is used to transform it to a different
vector. If this process is repeated a few times using:

T-An

L n 2
7 Al @

Apt1 =

until there is very little change in the new vector, then the
resulting vector would tend towards the eigenvector with the
largest eigenvalue. This is because the difference between
the coefficient of the major eigenvector and those of the oth-
ers are amplified exponentially during each time step. Al-
though it may start with a relative small value, it becomes
dominant after a few iterations. This conclusion is impor-
tant when we compare our path tracing algorithm to hyper-
streamlines.

4. APPROACH

We focus on presenting a visualization technique that shows
the full information of a tensor field. We do this by treating
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the tensor field as a transforming force. Objects that enter
the tensor space are transformed. In this paper, we introduce
simulated light rays into the tensor space. These are bent by
the tensor field according to a bending rule described be-
low. These rays represent simulated light rays and may be
of different wavelengths, and hence are affected by different
amounts.

Bending rule

Initially, a set of rays are cast toward the tensor field. As
the rays advance through the volume, their directions are al-
tered by a bending force equal to the product of the ray di-
rection and the local tensor value. The net bending force is
used to incrementally bend the direction of the ray as it pro-
gresses through the volume. The new direction is normalized
at the end of each step.

Assume Dy is the direction of a ray at time step t, P is
its position, V is its normalized velocity, T'(P) is the tensor
value at P. We use the following formula to update the ray
direction.

Di +s(\) - AD; At
Dy = — TR A 4
1= 11Dy + 5(A) - AD A @
Vi) = sV - Ay )
vT.y
where V(t) = P'(¢) and s(A) is a scaling parameter as a

function of the wavelength, A, of the ray. It determines the
degree to which a tensor field can affect the ray’s new direc-
tion, and can be expressed in a simple linear form:

s(A) =a+Dbr (6)
where a and b are two constants specified by the users. We
also refer to this scaling parameter as the flexibility of the
rays, and is directly related to how easily the rays are influ-
enced by the tensor field. The direction of the ray and the
local tensor value are combined by taking their product. A
fraction of this product is added to the ray direction to get
the new direction vector. The new direction is then normal-
ized to produce the true direction. From Equation 4, we see
that this transformation rule gradually drags the ray direc-
tion towards the major eigenvector after each time step. This
property is useful when interpreting the result. Equation 5
expresses the same idea in differential form.

Compare the bending rule to the iterative method for
eigenvectors, we know that when s(A) — oo, the normalized
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version of P'(¢) is the principle eigenvector of T(P(t)). So
the major hyperstreamline is a special case of the path trac-
ing algorithm when s(A) is very large. As s(A) decreases, we
see influences from the weaker tensor directions. In general,
path tracing gives users the flexibility to choose between the
tensor eigenvector streamlines and integration and compari-
son of tensors from different components of the field.

The path of a ray is sensitive to the property of the bending
rule. In particular, the scaling parameter, s(A), in our algo-
rithm. A slight change in the A may cause noticeable varia-
tions in the result. The advantage of this property is that we
can explore different parts of the data using this ray tracing
scheme. However, the drawback is also obvious: the results
need to be interpreted in conjunction with the choice of A.

Path Tracing

The bending rule defined on the tensors changes the ray
direction in each time step. We can understand the nature
of the underlying tensor field by looking at these bent rays
from different perspectives. But for a particular set of in-
cident parallel rays, how to present these rays is still a hard
task. The most straightforward method is to draw all the bent
rays within the tensor field simultaneously. This is similar
to the streamline algorithms in vector visualization. To en-
code the information in the other eigendirections along the
ray trajectory, we use elliptical cross sections. These ellipses
can be rendered individually or assembled to form a tube for
visualization.

Within a symmetric tensor field, where the eigenvectors
are all perpendicular to each other, the path tracing algorithm
can reproduce hyperstreamlines. Using highly flexible rays,
the current ray direction will align with the major eigenvec-
tor within a short distance from the seed point. Likewise, the
plane of the cross sectional ellipses will be perpendicular to
this direction as well. And its shape is determined by their
eigenvalues. This is exactly the same as hyperstreamlines.
With this method, we can see how the tensor field bends and
affects the rays’ paths and cross sectional shapes.

While the path tracing algorithm can reproduce hyper-
streamlines, it is different from that algorithm as described
by Hesselink 4. First, we do not need the tensors to be sym-
metric. The bending rules can be applied directly on any
tensor fields to show the shearing, converging and rotating
properties. Secondly, even in symmetric tensor fields, the
algorithm gives users more flexibility to control the path
traces. When the rays are getting closer, we can claim the
tensors have higher convergent components, which is rarely
shown by the hyperstreamline algorithm. The path tracing
algorithm clearly shows the convergent and divergent prop-
erties of the tensor field. When the tensors are convergent in
a local area, we find the path traces are also convergent.

Unlike the streamline algorithm in vector visualization,
the bent rays in the path tracing visualization may cross each
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other. That is, there is no inherent guarantee in the formula-
tion that the rays cannot intersect itself or one another. As the
number of rays increases, the visual clutter also increases.
Thus, some experimentation and interaction is necessary to
find an acceptable balance in analyzing a particular data set.
We also provide alternative methods that does not have the
problem of visual clutter to complement this technique.

Photon Distribution

Using the same bending rule, we define another rendering
algorithm, photon distribution, to visualize the effect of the
tensor field upon the rays. Aside from the clutter problem,
we also note that in the path tracing algorithm, the paths
are different when we change the ray flexibility. This photon
distribution algorithm takes advantages of the continuity in
the ray paths and combine the photons from different wave-
lengths together.

This algorithm is inspired by the mechanism of a prism.
A prism can produce colorful patterns from a beam of white
light. White light is composed of lights of different wave-
lengths. Although incoming rays may have the same incident
angle, light of different wavelengths have different paths
within the prism. When they exit out of the prism and hit
the receiving plane, they generate a colorful pattern.

The photon distribution algorithm is analogous to the
mechanism of light being separated and bent as it goes
through a prism. We position the tensor volume, which acts
as a “prism”, between a receiving plane and where the rays
are shot from. The receiving plane is used to collect infor-
mation about where the rays or photons land after traversing
through the tensor volume. We then shoot beams of white
light, each of which is represented as having equal amounts
of red, green and blue components, to the tensor field. Since
lights of different wavelengths have different indices of re-
fraction, their bent paths will be slightly different. When the
rays leave the tensor field, the three color components that
came from the same direction and issuing position end up
with different positions on the receiving plane. These inter-
sections are deposits of photons in much the same fashion
as photon mapping and form a distribution pattern on the re-
ceiving plane. By combining these distribution patterns, we
get an image that represents the nature of the underlying ten-
sor field, especially the converging and diverging properties.

Lens Simulation

Another method to visualize the bent rays is analogous to
the mechanism of lenses. We assume that the tensor field is
some kind of lens and we are looking at an image through
this lens. The image that we see will depend on the shape and
internal properties of the lens, and will generally produce
some distortions into our image. By looking at the distorted
images from different perspectives, we gain an understand-
ing of the properties of the lens, and hence the underlying
tensor volume.

(© The Eurographics Association 2003.
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To simulate this process, a set of parallel rays is cast from
the image toward the viewer and through the tensor fields.
This is analogous to the backward ray tracing algorithm.
While the rays are within the tensor field, their directions
are altered by the bending force defined on the tensors. They
leave the field in different locations and orientations. These
rays eventually hit a receiving plane, from where we gener-
ate a distorted image. The pixels on the distorted image are
colored according to the color of the corresponding pixels
from the original image. In our implementation, the texture
coordinate of each point is assigned to the original pixel, and
neighborhood information is preserved.

In lens simulation, although we have no prior knowledge
of the inner structure and surface shape of the lens, we can
understand its nature by looking at the distorted picture. The
way that the picture is transformed under the effect of the
lens reveals the nature of the underlying lens. An enlarged
area of the picture corresponds to a convex part of the sur-
face or a high mass area; a reduced or compressed area cor-
responds to a concave part or a low mass area. By looking
at the picture through the lens from different angles, we can
get a better idea of both the inner mass distribution and the
surface shape of the lens.

The lens simulation algorithm does not have the problem
of visual clutter. However, one must be careful when inter-
preting the picture because each ray is the integrated sum of
the effects of the tensors along the path of the ray. We need
to use several images from different angles to determine the
tensor properties of a local area.

The advantage of this algorithm is that it shows a spatially
continuous depiction of the properties of the tensor field. Un-
like the path tracing algorithm, which uses 1D line glyphs to
represent the tensors, the lens simulation uses an image to
reveal the 2D features of the same field. Users can observe
the continuous changes through the image deformation.

The three algorithms just described can explore different
parts of the data at the same time. They use the same bending
rule on the rays. The paths of the rays are the integral of the
bending forces along each path. So it is sensitive to the pa-
rameters used in the bending rule. All of the three rendering
algorithms, path tracing, photon distribution and lens simu-
lation are able to show the convergent and divergent proper-
ties of the tensor field.

5. IMPLEMENTATION ISSUES

In this section, we discuss some implementation details re-
lated to the three algorithms in the paper

Preprocessing

One of the most important properties of path tracing is
that it is very close to the major hyperstreamlines when the
ray flexibility, s(A) is very large. We get this conclusion from
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the bending rule and the iterative method for eigenvectors.
Because of sign indeterminacy of eigenvectors, the integral
along a path may changes signs. This problem can be ad-
dressed in at least two ways. One way is to ensure that all
the eigenvalues are positive by flipping the signs of all neg-
ative eigenvalues during a preprocessing pass. Another way
is to check the dot product between the current direction of
a path and its new direction as the path is being traced out.
If the new direction is not consistent with the current direc-
tion, the sign of the new direction is reversed to maintain
integration consistency. Both methods produce very similar
results. Because the sign flipping is done only once during
the data loading, we employ it for efficiency. Assume T is a
tensor, and its eigenvectors and eigenvalues are e; and A; re-
spectively and i = 1,2, 3. The tensor, T), after preprocessing
is:

Pl 00
T,=E-[ 0 A © E7!
0 0yl -
€lx €2x €3y
E=| ey ey e3
€1z € €3

Note that because we are using only positive eigenvalues, the
hyperstreamlines we obtain are slightly different than those
obtained by Hesselink #. Using very large ray flexibility, our
hyperstreamlines are very similar to those of Hesselink’s but
may have a slight shift in positions.

Elliptical cross section

In the path tracing algorithm, the trajectory of the path
encodes the major eigendirection. The tensor information of
the other two directions can be encoded in the shape of the
cross section of the path. For this, the ellipse is used. First,
we get an ellipsoidal tensor glyph G obtained by transform-
ing the unit sphere S by the tensor 7. Then, we calculate the
cross section of G with respect to a plane perpendicular to
the path of the ray, N. Let this cross section by E. It can be
obtained by transforming the cross section of the unit sphere
C by T. This process can be summarized by:

0=N-E=N-(TC)=(N"T)C=(T"N)-C ()
It is easy to get the cross section of the unit sphere, C, with
the normal vector of 77 N. In our algorithm, we sample from
the point set of C, then transform them by 7 to E, to produce
the cross section of the tensor ellipsoid glyph, G.

Stability

In the updating rule, we set the step length small enough
so as that changes are relatively small in any given time step.
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The step length and ray flexibility satisfy the following in-
equality:

G(P)

1 .
s(M)Ar < 5 min 0P|

©))
where P is a point, G(P) is the length of any of its neigh-
boring grid lines, e(P) is the magnitude of any of its eigen-
values. From equation (9), we can see that if s(A) is a very
large number, the time step must be very small to make the
integration stable. Using implicit methods could address this
problem specially when large ray flexibility for complicated
data set is necessary.

Photon distribution density

In the photon distribution algorithm, one can get a more
accurate picture of the photon distributions by shooting more
rays. However, this is rather expensive and not always prac-
tical. Instead, we treat all the photons as samples from a
probability distribution. Different density estimators are em-
ployed to approximate the photon density of a local area.
The more rays land on a local area of the receiving plane,
the higher its density. The intensity of each wavelength in
a local area is then mapped to the density of the photons in
that area.

The density estimator we used is based on Gaussian dis-
tribution. With Gaussian estimators, each photon in the sam-
ple set has an effect on its local neighborhood. Its effect de-
creases as the distance increases. Assume we have a point
P, and its magnitude is M(P), R is the set of points on the
receiving plane.

_ _ 2
1Pl
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M(P) = (10)

gER

where 7T is the standard deviation of the distribution and is
related to the radius of influence.

Although this formula is defined on a global scope, the
Gaussian function has a conceivable effect only in an area
where the distance from P is less than 3t. So, we only do
the magnitude computation in a local area around the points
hit by the rays on the receiving plane. This algorithm is fast
and stable. Its drawback is that it is undefined in some areas
with very sparse ray hits. For the area not covered by any
photon hit, we simply set its magnitude as 0. In our exper-
iments, we choose T = 6 as a compromise between quality
and computation time.

Color mapping

The color of the path traces can be mapped to a number
of parameters. In our experiments, we map the color of the
path traces to the magnitude of the bending force as follows:
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Color(P) = ||T(P)-Ds|| (11)

6. RESULTS

We tested the three algorithms on two data sets. The first
one is the well known single point load Boussinesq data set.
This is a standard stress tensor data set on a regular grid. It
is simple and thoroughly studied, so it can be used to verify
the correctness and usefulness of our algorithms. The second
data set is a velocity gradient tensor field derived from the
flow past a cylinder with a hemispherical cap. For brevity,
we refer to this as the hemisphere data set. This is the same
data set used in an earlier paper on tensor visualization !,
and is a good benchmark for comparison as well.

Path tracing results

Figure 1 shows three images from the path tracing algo-
rithm, with rays entering the tensor volume from different
directions. In Figure 1(a), the rays enter the volume from
the point load direction. In Figure 1(b), the rays are cast op-
posite the point load direction. In Figure 1(c), the rays are
coming from the right side of the image. Note that in both
the left and the middle images, the trajectories are divergent
when they have the same heading as the point load direc-
tion. Conversely, the rays are converging towards the point
load when they are heading against the point load direction.
On the right, rays are bent upward the most in the central
part. This shows that tensor field has large vertical compo-
nents in that vicinity. Further away from the central area, the
effects of the tensor field are not as prominent because the
tensor magnitude is quite low. Hence, the rays tend to stay
in the same direction that they were cast.

Figure 2 shows three images from the hemisphere data
set. The rays integrate all the high shear components of the
tensors along their paths, and thereby reveal the detachment
of the flow above the hemisphere. The paths can be rendered
in a number of ways: shaded tubes, wireframe tubes, and
disconnected cross sectional ellipses. The wireframe tubes
seem to be effective in showing details of the path and cross
sectional shapes in a medium density field of rays. We see
the rays get over the hemispherical cap and converge at the
other end. It shows that the compressing force also gets
around the geometry at the same time. The sudden change
in color and shape on the tubes also marks out the change of
homogeneous sub-region.

Figure 3 shows two images from the hemisphere data set
but with much larger ray flexibility. Figure 3(a) is taken from
the side view, while Figure 3(b) is taken from the top view.
Rays are cast into the field from the right side of the images.
We can observe that these lines are very close to the major
hyperstreamlines found in Hesselink’s work.

(© The Eurographics Association 2003.
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Photon distribution results

Figure 4 illustrates the result from the photon distribu-
tion algorithm. In Figure 4(a), an array of photons of differ-
ent wavelengths are cast toward the tensor field. Their loca-
tions on the receiving plane are treated as samples from a
spatial probability distribution. We then use a 2D Gaussian
density estimator to map the photon density to color magni-
tude. The ray flexibilities for red, green and blue color are
(0.1,0.2,0.3) respectively. The blue color is most affected
by the tensor fields, while the red color is relatively unaf-
fected and is therefore more “directly” projected to the re-
ceiving plane.

From the hole in the center area of Figure 4(a), we can
easily identify the divergence of the tensors along the point
load direction. Figure 4(b) shows the view from the bottom
of the point load data. Note the brighter area in the middle
which corresponds to a higher density of rays. This is be-
cause the photons along the rays are deflected towards the
central axis. This deflection is greater for rays that are closer
to the central axis. These two images correspond directly to
the path tracing images Figure 1(a) and Figure 1(b) respec-
tively. Figure 4(c) illustrates the result from the RGB ray
tracing synthesis. We note that the blue light, which is af-
fected the most by the tensor field, is concentrated near the
point load, while the rest of the point load volume is gray
signifying a low photon density because they move more or
less straight through the volume rather than converging or
diverging. This is consistent with the observation made in
Figure 1(c).

Figure 5 illustrates the same photon distribution algorithm
for the hemisphere data set. Figure 5(a) is imaged from a
view looking directly at the cap (front view). We see a white
spot on top of the cylinder, which corresponds to the critical
point observed in topology based tensor visualization meth-
ods. The blue color in the outer layer reveals the divergence
in that area. Figure 5(b) is imaged from the top view look-
ing down toward the cylindrical body. We can see the shock
wave pattern around the hemisphere, and the brighter spots
closer to the cylinder which correspond to highly convergent
areas. Figure 5(c) is imaged from the side view; The overall
color in this image is darker. But we still see several bright
areas. These areas reveal where the tensor field is forcing the
photons to converge.

Lens simulation results

Figure 6 illustrates the results from the lens simulation al-
gorithm on the point load data. Figure 6(a) is taken from the
point load view and Figure 6(b) is taken from the direction
opposite to the point load. They clearly show the divergence
and convergence of the tensors along the central axis from
opposing view points. Because the lens simulation works as
an inverse method to the photon distribution algorithm, the
results also look reversed. Figure 6(c) is taken from the side

(© The Eurographics Association 2003.
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of the tensor field. We note that most areas in this image are
not twisted, and do not self intersect.

Figure 7 illustrates the results from the lens simulation al-
gorithm applied to the hemisphere data set. Again the origi-
nal image is a regular checkerboard pattern, while the image
through the tensor volume lens is registered as a distorted
image on the receiving plane. The relationship of the receiv-
ing plane with respect to the placement of the original image
is illustrated in Figure 7(a). Note that the placement of the
original image acts as a cutting plane that can be used to
slice through the volume and control the portion of the ten-
sor volume that can affect the distorted image. Figure 7(b)
is taken from the top view where a bit of the compressive
shock wave is visible. Figures 7(c) is taken from the side.
The original texture is placed halfway through the geome-
try. The vertical profile of the compressive shock is visible
in these two images.

7. CONCLUSIONS

Several methods based on path tracing for visualizing ten-
sors are presented in this paper. The path tracing algorithm
is good at showing the detailed directional information of
the tensors. But it suffers from the same disadvantage as the
other 3D streamline algorithms in that it produces heavy vi-
sual clutter. It is difficult for users to understand the tensor
field when the number of rays is high. The lens simulation
and photon distribution algorithms present the visualization
results in a manner similar to lenses and prisms. We can
identify the direction information of the tensors by observ-
ing several images taken from different view points around
the tensor field. In the immediate future, we will evaluate
these methods on more complex data sets.
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Figure 4: Photon mapping algorithm on point load data.
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(a) Using front half of data as lens
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Figure 7: Lens simulation algorithm on hemisphere data.
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(a) side view (b) top view (d) wireframe tubes

Figure 2: Path tracing algorithm on the hemisphere dataset.

(a) side view (b) top view

Figure 3: Path tracing algorithm on hemisphere dataset using large ray flexibility.

(a) front view (b) top view (c) side view

Figure 5: Photon mapping algorithm on hemisphere data.
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