Detecting Critical Regions in Scalar Fields

Gunther H. Weber, Gerik Scheuermann and Bernd Hamann

1 AG Graphische Datenverarbeitung und Computergeometrie, FB Informatik, Universität Kaiserslautern, Germany
2 Center for Image Processing and Integrated Computing, Department of Computer Science, University of California, Davis, U.S.A.

Abstract

Trivariate data is commonly visualized using isosurfaces or direct volume rendering. When exploring scalar fields by isosurface extraction it is often difficult to choose isovalue that convey "useful" information. The significance of visualizations using direct volume rendering depends on the choice of good transfer functions. Understanding and using isosurface topology can help in identifying "relevant" isovalue for visualization via isosurfaces and can be used to automatically generate transfer functions.

Critical isovalue indicate changes in topology of an isosurface: the creation of new surface components, merging of surface components or the formation of holes in a surface component. Interesting isosurface behavior is likely to occur at and around critical isovalue. Current approaches to detect critical isovalue are usually limited to isolated critical points. Data sets often contain regions of constant value (i.e., mesh edges, mesh faces, or entire mesh cells). We present a method that detects critical points, critical regions and corresponding critical isovalue for a scalar field defined by piecewise trilinear interpolation over a uniform rectilinear grid. We describe how to use the resulting list of critical regions/points and associated values to examine trivariate data.

1. Introduction

An isosurface is the set of all points in three-dimensional (3D) space where a trivariate scalar field has a certain isovalue. By varying this isovalue it is possible to visualize an entire scalar field indirectly. Determining isovalue where interesting isosurface behavior occurs is difficult. Features of a scalar data set can easily be missed when certain isovalue are not considered.

Direct volume rendering visualizes a scalar field by mapping scalar values to optical properties using a transfer function and rendering images. The value of resulting visualizations highly depends on the transfer function. Transfer functions are commonly chosen in a cumbersome process based on trial-and-error. Automatic transfer function design is an area of ongoing research, see, for example, Pfister et al. [20] or Fujishiro et al. [9, 11].

Isosurface topology provides insight into the fundamental structure of isosurface behavior across isovalue. Topological changes occur at critical points with an associated critical isovalue. Three types of critical points exist. At a local minimum a closed surface component is created. At a saddle either the genus of an isosurface changes, i.e., holes appear/disappear in a surface component, or surface components separate or merge. At a maximum a closed surface component vanishes. Traditionally, critical points and values are the subject of Morse theory [15]. Any given position of a data set can be classified by considering a small neighborhood around it. Considering a \(C^2\)-continuous function \(f\), critical points can be determined analytically as points where the gradient \(\nabla f\) vanishes. The associated type of the critical point is determined by the eigenvalues of the Hessian at that point. For general \(C^0\)-continuous functions, including those given by piecewise trilinear interpolation (at mesh vertices, on mesh edges and on mesh faces), gradient and Hessian are undefined. Based on the work of Banchoff [4] it is possible to "emulate" these criteria for discrete data sets by looking at a neighborhood around a point and checking how many regions with a larger and how many regions with a smaller value than the value at the considered location exist. This definition has been used in computational geometry to detect critical points of piecewise linear scalar fields, [8].

To handle general data sets we further need to extend the concept of critical points to critical regions. While Morse theory requires that only isolated points can be critical, it is possible that a data set contains entire regions that are critical: A torus can form around a circle, which could be a min-
imum, a new component can appear around a constant value sub-volume, or two surfaces can merge along a line denoting a saddle. We extend the concept of isolated critical points to regions in a data set. This enables us to detect topology in data sets that contain regions of constant value.

We consider the common case of data sets with data values given at vertices of a uniformly spaced rectilinear grid. We define iso-surface topology by assuming that trilinear interpolation is used within individual cells and use the topology of the level set of the trilinear interpolant in each cell to define level set topology for the whole data set. We detect both critical points and critical regions. For critical regions, iso-surface topology changes occur over a region (a one-, two-, or three-dimensional manifold embedded in the domain). We detect critical regions, classify them, and use the resulting set of critical iso-values for interactive data exploration using iso-surfaces and for automated transfer function design.

2. Related Work

Topology of level sets for data given on simplicial meshes using linear interpolation in cells has been a subject of research in computational geometry. Related to our work is the concept of contour trees that encode topological changes of level sets. A contour tree is a graph that describes how contours in a level set appear, join, split, or disappear. Van Kreveld et al. [21] used contour trees to speed up iso-surface extraction. Using a contour tree, they compute a minimum seed set for iso-surface reconstruction. Starting from the resulting seed points all iso-surface components are tracked and computed. Bajaj et al. [1] also considered tetrahedral meshes. They determine a contour spectrum specifying properties like 2D contour length, 3D contour area and gradient integral as functions of the iso-value. The contour spectrum is displayed along with the contour tree of a data set aiding a user in identifying interesting iso-values. Bajaj et al. [3] also developed a technique that uses topology to enhance visualizations of trivariate scalar fields. Their method employs a C^1-continuous interpolation scheme for rectilinear grids and detects critical points of a scalar field. Subsequently, integral curves (tangent curves) are traced starting from locations close to saddle points. These integral curves are super-imposed onto volume-rendered images to convey structure of the scalar field.

Fujishiro et al. [9] used a hyper-Reeb graph for exploration of scalar fields. A Reeb graph encodes topology of a surface, similarly to a contour tree. In addition to tracking the number of contours, it also encodes genus changes. A hyper-Reeb graph encodes changes of topology in an extracted iso-surface. For each iso-value that corresponds to an iso-surface topology change, a node exists in the hyper-Reeb graph containing a Reeb graph encoding the topology of that iso-surface. Fujishiro et al. [9] constructed a hyper-Reeb graph using “focusing with interval volumes,” an iterative approach that finds a subset of all critical iso-values, which was introduced by Fujishiro and Takeshima [10]. The hyper-Reeb graph can be used, for example, for automatic generation of transfer functions. Fujishiro et al. [11] extended this work and used a hyper-Reeb graph for exploration of volume data. In addition to automatic transfer function design, their extended method allows them to generate translucent iso-surfaces between critical iso-values. Considering just the images shown in their paper [9], it seems that their approach does not detect all critical iso-values of a scalar field.

Topology is also important in the context of data simplification to preserve important features of a data set. Bajaj and Schikore [2] extended previous methods to develop a compression scheme preserving topological features. Topology is also important in the context of data simplification. Isosurfaces of data defined on rectilinear, hexahedral grids are commonly extracted using the marching cubes (MC) method introduced by Lorensen and Cline [14]. Due to topological inconsistencies the original algorithm could produce holes in an extracted iso-surface, see, for example, [7]. Several authors have proposed extensions [5, 6, 16, 17, 19] to the original algorithm with the aim of generating consistent and topologically correct iso-surfaces. Most recently, Nielson [18] has provided an in-depth analysis of the trilinear interpolant resulting in a consistent and topologically correct iso-surface.
correct implementation of MC. In his doctoral dissertation, Lopes [13] proposed the use of additional points in a cell’s interior to improve accuracy of isosurfaces extracted by the MC method. We use his approach with a minor correction motivated by the work of Nielson [18] to extract topologically meaningful isosurfaces.

3. Critical Points and Critical Regions

Considering a C^2-continuous function f, critical points occur where the gradient ∇f vanishes, i.e., where $\nabla f = 0$. The type of a critical point can be determined by the signs of the eigenvalues of the Hessian of f. Trilinear interpolation, when applied individually to the rectilinear grid cells discretizing a domain, produces, in general, only C^0-continuous functions.

Critical points can also be defined for discrete data sets. Scalar fields defined on simplicial meshes using piecewise linear interpolation have been subject of intensive research. Linear interpolation have been subject of intensive research. Linear interpolation have been subject of intensive research. Linear interpolation have been subject of intensive research.

Definition 1 (Regular and Critical Points) Let $M \subset \mathbb{R}^3$ be a mesh and $F : M \rightarrow \mathbb{R}$ be a C^0-continuous function that is C^∞-continuous in each grid cell. A point $x \in \mathbb{R}^3$ is called (a) regular or ordinary, (b) minimum, (c) maximum, (d) saddle, (e) extended minimum, (f) extended maximum, (g) extended saddle, or (h) flat point of F, if for all $\epsilon > 0$ there exists a neighborhood $U \subset U_\epsilon(x)$ with the following properties: If $U_{\epsilon_1} = \bigcup_{i=1}^p P_i$ is a partition of the preimage of $(F(x), +\infty)$ in $U - \{x\}$ into “positive” connected components, $U_{\epsilon_2} = \bigcup_{j=1}^q N_j$ is a partition of the preimage of $(-\infty, F(x))$ in $U - \{x\}$ into “negative” connected components, and $U_{\epsilon_3} = \bigcup_{k=1}^r R_k$ is the partition of the preimage of $(F(x), \pm\epsilon)$ in $U - \{x\}$ into “zero” connected components, then (a) $n_p = n_n = n_s = 1$, (b) $n_p = 1$ and $n_n = n_s = 0$ (and U contains only ordinary points), (c) $n_n = 1$ and $n_p = n_s = 0$ (and U contains only ordinary points), (d) $n_p + n_n = 2$, $n_p, n_n \geq 1$, $n_s > 1$ (and U contains ordinary points), (e) $n_p = 1$, $n_n = 0$, $n_s \geq 1$ (and U contains non-ordinary points), (f) $n_n = 1$, $n_p = 0$, $n_s \geq 1$ (and U contains non-ordinary points), (g) $n_p + n_n > 2$, $n_s = 1$ (and U contains non-ordinary points), and (h) $n_s = 1$ and $n_p = n_n = 0$.

Remark 1 The zero set corresponds to the level set for the value at x.

Remark 2 Definition 1 is a modified form of Definition 1 from [22]. The original definition added the zero set to both positive and negative sets. However, to extend the concept of critical points to critical regions it becomes necessary to consider the zero set individually.
does not hold for the 2D case. In the 2D case, the zero set would be partitioned into more than one components when a saddle is “cut out”, regardless whether it is a face saddle or not.

We can use the concept of an extended minimum, maximum, and saddle in combination with flat points to define larger regions that are critical, i.e., larger regions around which isosurface topology changes. We therefore extend the definitions of distance and neighborhood.

Definition 2 (Region Distance) Let \(R \) be a connected region and \(||x|| \) be a norm. The distance \(||x - R|| \) of a point \(p \) to a region is the infimum of distances of \(p \) to all locations inside that region, i.e., \(||x - R|| := \inf \{ ||x - y|| : y \in R \} \).

Definition 3 (Region Neighborhood) Let \(R \) be a connected region. The \(\varepsilon \)-neighborhood \(U_\varepsilon(R) \) of \(R \) consists of all locations that have a distance less than \(\varepsilon \) from \(R \), i.e., \(U_\varepsilon(R) := \{ x : ||x - R|| < \varepsilon \} \).

Definition 4 (Classification Region) A connected region \(R \subset \mathbb{R}^3 \) in space is a classification region if the following statement holds: Each point \(x \in R \) is a flat point, an extended minimum, an extended maximum, or an extended saddle according to Definition 1, and \(R \) has maximal size, i.e., each point in an \(\varepsilon \)-neighborhood around \(R \) is an ordinary point according to Definition 1.

Remark 5 A Classification Region consists of points that cannot be classified locally but must be classified by also considering surrounding locations.

Definition 5 (Regular and Critical Regions) Let \(M \subset \mathbb{R}^3 \) be a mesh and \(F : M \rightarrow \mathbb{R} \) be a \(C^0 \)-continuous function that is \(C^\infty \)-continuous in each grid cell. A classification region \(R \subset \mathbb{R}^3 \) is called (a) regular, (b) minimum, (c) maximum, or (d) saddle of \(F \), if for all \(\varepsilon > 0 \) there exists a neighborhood \(U \subset U_\varepsilon(R) \) with the following properties: If \(\bigcup_{j=1}^{P_1} \overline{P}_j \) is a partition of the preimage of \((F(R), +\infty) \) in \(U - R \) into “positive” connected components, \(\bigcup_{j=1}^{P_1} \overline{N}_j \) is a partition of the preimage of \((-\infty, F(R)) \) in \(U - R \) into “negative” connected components, and \(\bigcup_{k=1}^{Q} \overline{Z}_k \) is the partition of the preimage of \(F(R) \) in \(U - R \) into zero set connected components, then (a) \(n_p = n_n = n_s = 1 \), (b) \(n_p \geq 1 \) and \(n_n = n_s = 0 \), (c) \(n_n \geq 1 \) and \(n_p = n_s = 0 \), and (d) \(n_p + n_n > 2 \) and \(n_n = 1 \).

4. Connected Components in a Single Cell

We classify a region by examining those hexahedral cells that contain its neighborhood. Within a cell, we are concerned with one trilinear function. If we need to determine connected components in a neighborhood around a classification region, we need to know its behavior in single cells. The following paragraphs provide proofs that document the correctness of our method.

Figure 2: With respect to the \(L^\infty \)-norm, the intersection of the neighborhood with a cell is a collection of boxes. If the neighborhood is chosen sufficiently small, vertices of the boxes that do not coincide with cell vertices or faces have the same polarity as an edge-connected vertex, and their corresponding region is also connected to one of the cell’s edges.

Lemma 1 Let \(C \) be a rectilinear cell with trilinear interpolation applied to it and \(v \) be an arbitrary value. Each maximum-extended connected positive region \(R \subset f^{-1}(\{v, +\infty\}) \) contains at least one vertex of \(C \).

Proof A maximum-extended connected region with values \(> v \) contains a local maximum within its compact closure. Since trilinear interpolation only allows a maximum in the vertices of a cell to exist, \(R \) contains a vertex. (The same lemma holds for negative connected regions.)

Lemma 2 Let \(C \) be a trilinearly interpolated rectilinear cell that intersects the classification region \(R \), i.e., a cell that contains a number of vertices that belong to the classification region with a value of \(v \). Each connected positive or negative region in the neighborhood of \(R \) intersecting \(C \), i.e., \(U_h(R) \cap C \), contains a part of an edge of the cell that starts at a vertex belonging to the classification region. (The vertex itself does not belong to the region.)

Proof (sketch) Consider the \(L^\infty \)-norm. A neighborhood around a point is a cube, and a neighborhood around an edge or a face is a (rectilinear) cuboid/box. The neighborhood around a collection of points, edges, and faces is a set of boxes. The intersection of the neighborhood with the cell is also a set of boxes, see Figure 2. Values are trilinearly interpolated within each box. Vertices of a box coincide with vertices of the cell, its edges, or lie in its interior. If we choose a sufficiently small neighborhood, the vertices in the interior have the same polarity as one of their edge-connected neighbor vertices. Each connected region in one of the boxes is connected to one of the vertices of that box. This vertex, in turn, is connected to a vertex that lies either on an edge of \(C \) or coincides with one of its vertices belonging to the classification region. Thus, each positive- and each negative-connected component within the neighborhood is connected to an edge emanating from a vertex of the classification region.

Furthermore, if two edges of same polarity are connected within the intersection of a cell’s face with the neighborhood of the classification region, their corresponding regions are also connected. Additionally, “being connected” is a transitive property, i.e., if edge (region) \(A \) is connected to edge
5. Detecting Critical Regions

5.1. Overview

Our algorithm detects critical regions in a two-pass approach. First, we perform a pass that classifies all grid vertices that can be classified locally, i.e., all grid vertices whose edge-connected neighbors differ in value. This local classification is performed as described in [22]. Using the polarities of the six edge-connected neighbor vertices, an index for a vertex is read from a manually generated LUT. Vertices that cannot be classified locally are marked by setting an associated flag, see Figure 3(a).

Second, this flag is used in a subsequent pass that handles global classification. The next vertex that belongs to a region that needs to be classified is located. Starting with this seed vertex we perform a "flood fill" operation that recursively adds all vertices having the same associated scalar value as the seed vertex and are edge-connected to the current vertex. While adding these vertices to the classification region we reset the associated flag that marks the vertex as belonging to an unclassified region. We also maintain an updated bounding box that contains all marked vertices. After the flood fill we have a bounding box, shown as dotted rectangle in Figure 3(b), containing all vertices belonging to the current classification region. All vertices belonging to this region are flagged. We extend the bounding box containing all vertices of the classification region to a bounding box of grid cells such that no vertex belonging to the classification regions lies on the boundary of this bounding box, shown as dashed rectangle in Figure 3(b).

We classify a region by constructing two graphs whose connected components correspond to connected regions in a neighborhood around that region. One graph corresponds to positive regions, and another graph corresponds to negative regions. These graphs are constructed by marching through all cells of the extended bounding box and adding nodes and edges to this graph cell-by-cell. It follows from our observations (Section 4) that for each cell a connected region in the neighborhood of the classification region contains at least one edge starting from a vertex of the classification region. Thus, we can represent connectivity of these regions by considering all edges that originate in a vertex belonging to the classification region. For each of those edges, we create a node in one of the graphs representing the classification region neighborhood. To add edges as nodes to one of the graphs, we assign a unique identification number to each edge in a grid by effectively numbering all edges of the grid. This step ensures that the same node in the neighborhood graph is accessed for two cells sharing that edge.

Once the two graphs representing the neighborhood of a region are constructed, a region can be classified by counting the connected components in them. The graph in Figure 3(c), for example, indicates that the classified region is a saddle. When a region is classified, the search for the next vertex belonging to an unclassified region proceeds until all vertices of the grid are checked.

5.2. Constructing the Connectivity Graphs within a Cell

Within a cell the graph is constructed based on the vertex configuration within the cell. A main case is determined based on which vertices of the current cell belong to the classification region. The vertices of a cell are numbered according to Figure 4 and a look-up index is computed by setting the corresponding bit for each vertex belonging to the classification region. This step results in an index referencing one of 256 possible cases. Considering rotational symmetry this number can be reduced to 23 base cases, shown in Figure 5. (This approach is similar to symmetry consideration, and our numbering of base cases corresponds to the numbering scheme used in [18].)

We reference an LUT that contains the base case number and permutations of vertices, edges, and faces that map vertex, edge, and face numbers of the current case to vertex, edge, and face numbers of the corresponding base case. We then construct the edge graph for a cell by calling a function that handles the corresponding base case. Whenever this function references a vertex, edge, or face of the cell it does so via the corresponding permutation function for the current topology case index.

We add all edges connecting the classification region to positive vertices as nodes to the positive-components graph and all edges connecting the classification region to negative vertices to the negative-components graph. If a pair of edges belongs to the same connected region in a cell, we connect the corresponding nodes in the positive or negative edge graph. When cell marching terminates, the connected components in one graph correspond to positive-connected regions, and the connected components in the other graph correspond to negative-connected regions.

We first consider cases C0 and C22. For case C0, a cell does not contain any vertices of the classification region and
Figure 3: Stages of the algorithm: (a) After the local pass all vertices that cannot be classified locally are marked with a flag (indicated by a rectangle around these vertices in the figure). Once the first flagged vertex is determined we perform a flood fill that marks all vertices belonging to the classification section (marked by solid black disks in the figure). The region is classified by constructing two graphs, one representing positive- and one representing negative-connected regions in the neighborhood around the classification region. For each edge originating in a vertex belonging to the classification region, a corresponding node in the graph exists (shown as dark and light gray solid rectangles). Two nodes in the graph are connected when the corresponding edges belong to the same connected region in a cell. A region can be classified by counting the connected components in the two graphs.

Figure 5: Base cases for constructing graphs that represent positive and negative regions around a classification region. A case number is determined according to which vertices belong to the classification region (marked as solid black disks). The other vertices can assume arbitrary values different from the value of the classification region.

thus does not intersect the ε-neighborhood of the classification region. A C22 cell belongs completely to the classification region and does not intersect the neighborhood either. Cells of these types can be skipped during graph construction.

Cases C3, C4, C6, C7, C10, and C13 are handled by considering them as a combination of single vertices or single edges belonging to the classification region. If we consider, for example, case C3, we observe that two vertices belong to the classification region. Both vertices have edge-connected neighbor vertices that do not belong to the classification region. Thus, it is possible to handle them independently and construct the neighborhood graphs for each vertex individually. Similarly, case C6, for example, can be handled by constructing the graphs for an edge and for a vertex.

Constructing the neighborhood graph for a single vertex corresponds to case C1. This is equivalent to the situation in a single cell as described in [22]. The neighborhood around the vertex in the classification region is partitioned in the same way as in a linearly interpolated tetrahedron. Thus, in this case all vertices of the same polarity are always connected, and we only need to add edges between all edges of equal polarities in the corresponding graph.

For the construction of the neighborhood graph of an edge, we must consider 16 cases. (The edge is connected to four vertices that do not belong to the classification region.) By using symmetry and reversing polarities, it is possible to reduce the number of cases to four possible sub-cases, see Figure 6. Figure 6 shows possible configurations for the edge-connected vertices that have either positive (gray) or negative (white) polarity. Each edge has a corresponding node in the classification graph (shown as white rectangles for the negative graph and gray rectangles for the positive
The classification region, all vertices and edges are separated (belonging to positive regions, overlap. If one of its vertices by an edge, are numbered. We subsequently compute a topology sub-case number by setting the values, zero corresponds to the “left” end of the edge and one between these cases, we first determine for which parameter values, determining the polarity of the whole face. If it is positive, the positive vertices \(v_3 \) and \(v_4 \), along with their corresponding edges, are connected (C.2.4.0); if it is negative, the negative vertices \(v_2 \) and \(v_3 \), along with their corresponding edges, are connected (C.2.4.1). If it also has the value of the classification region, all vertices and edges are separated (C.2.4.2). The remaining sub-cases can be derived from these base cases.

For the remaining base cases, those vertices that do not belong to the classification region, but are connected to one of its vertices by an edge, are numbered. We subsequently compute a topology sub-case number by setting the bit for each positive vertex. These sub-cases can be derived from a number of base sub-cases. Figure 8 shows base sub-configurations for topology base case C5. (Edges \(e_8 \) and \(e_0 \) lead to the same non-classification region vertex on a face and are connected within the intersection of a neighborhood of the classification region with that face. Thus, their corresponding nodes in the classification graph are always connected.)

Similarly to the construction of the classification graph for an edge, the graphs for most cases can be derived from the fact that nodes for edges on the same face are connected within the intersection of the region neighborhood and that face if they have the same polarity and using transitivity of the graph. Similarly to the edge case C2, only a minimum number of edges needed to obtain a correct number of connected components is given for the neighborhood graphs. The actual neighborhood graphs are the transitive closure of the graphs in the figure. Sub-configuration C5.4 is interesting: In contrast to sub-configuration C2.4 no ambiguity exists. The bottom face has always the same polarity as vertex \(v_0 \). Because trilinear interpolation is continuous, a bilinear slice close to the bottom face connects the vertices of the same polarity as \(v_0 \), i.e., \(v_0 \) and \(v_9 \). Thus, nodes for edges leading from the classification region to these vertices must be connected in the classification graph.

Case C8, see Figure 9, is similar to the case of handling an edge belonging to the classification region. For cases C8.0 – 8.2 the same arguments can be used to derive the classification graphs in each cell. It differs from the edge case in the way ambiguities (C8.3) are resolved: All vertices of the bottom face have the same value. Thus, contours on all bilinear slices parallel to the top face are topologically equivalent to contours on the top face. We use the asymptotic decider [19] to determine connectivity on that face and connect negative nodes, or positive nodes. If the saddle on the top face has the same value as the classification region, no nodes are con-

© The Eurographics Association 2003.
connected. In this case, the saddle on that face is connected to the classification region via an "extended" internal cell saddle (see Section 5.3). To classify the region correctly in this case it would be necessary to trace that saddle and combine region classification with classification of extended face saddles. We currently do not do this. The neighborhood graphs for base case C9, see Figure 10, can be constructed using the same arguments as for case C5.

Figure 11 shows the classification graphs for sub-cases of topology case C11. The graphs for cases C11.0-C11.4 can be constructed using the same observations as for base case C5. For sub-case C11.5 we observe that all positive regions are connected since the complete bottom and back faces have positive polarity.

Case C12 is a combination of base case C5 and vertex case C1. Case C14 can be obtained by “mirroring” base case C11. Base case C15 is a combination of base case C9 and vertex case C1. Base case C16 has only three vertices that do not belong to the classification region. If a pair of vertices has the same polarity, it is always connected in the neighborhood of the classification region. For base cases C17, C19, and C20, all vertices not belonging to the classification region lie on a single face. Furthermore, on this face they are always connected, when they have the same polarity. Thus, in these cases vertices of equal polarity are always connected. Base case C18 contains only two vertices that do not belong to the classification region. If these vertices have the same polarity, they are connected. Case C21 consists of only one vertex. In this case, it is necessary to connect the nodes in the classification graph that correspond to its incoming edges.

5.3. Detecting Saddles on a Cell Faces and within its Interior

We currently detect saddles on a cell’s faces and within its interior using the same criteria that are described in [22].

On cell faces, saddles of the bilinear interpolant are detected. Subsequently we determine by considering the adjacent cells, whether that saddle is a saddle of the piecewise trilinear interpolant. We note, that internal saddle need not occur at isolated points anymore. The gradient of the interpolant within a cell can be zero along a line or a hyperbolic curve that connects two cell face saddles. In some cases, it is not possible, to determine locally, whether a face saddle is a saddle of the piecewise trilinear interpolant. We currently discard these cases. To handle them correctly, it is necessary to combine face saddles and extended interior saddles and classify them together.

6. Applications

A convenient way to use critical isovalue is to provide a user with a navigational tool in addition to an isosurface viewer. Prior to starting an isosurface viewer, critical points, critical regions, and corresponding isovalue values can be computed and displayed in an “isovalue navigator” window. In this window, critical isovalue values are listed along with a corresponding type (vertex minimum, vertex maximum, vertex saddle, face saddle, interior saddle, region minimum, region maximum, region saddle). When a user selects a critical point, its corresponding position in space is marked by a sphere whose color depends on the type (blue, red, and green representing minimum, maximum, or saddle, respectively). For regions we mark its position by a point set with a color corresponding to type. Buttons allow a user to set the isovalue of a displayed isosurface to a value slightly below, equal to, or slightly above a critical isovalue. The isovalue offset for the isosurfaces below and above a chosen critical isovalue is specified in a text field.

In data sets containing several “nested isosurfaces,” i.e., data sets where one isosurface component is completely contained within another, it can be difficult to locate a critical point, even if its position is marked. The “isovalue navigator” contains a button that positions the camera so that the viewing focus is the critical point. For critical regions we position the camera to view the centroid of the critical region.

Critical isovalue values can guide in the construction of transfer functions. Given a list of critical isovalue values we can construct a corresponding transfer function based on the methods described in [22], which, in turn, are based on the work of Fujishiro et al. [9, 11].

7. Results

Figure 12 shows a region maximum of value 190 in the "Nucleon" data set (courtesy of SFB 382 of the German Research Council (DFG), available at http://www.volvis.org) which was missed by the previous approach [22]. In the neighborhood of this maximum a torus-shaped isosurface component disappears.
8. Conclusions and Future Work

We have presented an algorithm that determines critical regions for minima, maxima, and saddles. Our approach detects exact regions for maxima and minima. Region saddles are detected, and our approach can mark a large region as a saddle, a region larger than the actual saddle region. We plan to extend our approach to detect exact regions of saddles. Handling of face saddles and internal saddles should be merged into a combined step that traces saddles in the interior of cells, even though this case rarely occurs. It should be possible to adapt our approach to detect critical regions for piecewise linear simplicial meshes. Developing additional automatic transfer function schemes could also help in gaining insight in data sets containing a large number of critical regions/points and isosurfaces.

Acknowledgments

This work was supported by the Stiftung Rheinland-Pfalz für Innovation; the National Science Foundation under contract ACT 9624034 (CAREER Award) and ACT 0222909, through the Large Scientific and Software Data Set Visualization (LSSDSV) program under contract ACT 9982281, and through the National Partnership for Advanced Computational Infrastructure (NPACT); the National Institute of Mental Health and the National Science Foundation under contract NIMH 2 P20 MH60975-06A2; the Lawrence Livermore National Laboratory under ASCI ASAP Level-2 Memorandum Agreement B347878 through the Large Scientific and Software Data Set Visualization (LSSDSV) program under the National Science Foundation under contract NIMH 2 P20 MH60975-06A2; the Lawrence Livermore National Laboratory under ASCI ASAP Level-2 Memorandum Agreement B347878 and under Memorandum Agreement B503159; and the Lawrence Berkeley National Laboratory.

We thank the members of the AG Graphische Datenverarbeitung und Computational Geometry at the Department of Computer Science at the University of Kaiserslautern, Germany, and the Visualization and Graphics Research Group at the Center for Image Processing and Integrated Computing (CIPIC) at the University of California, Davis.

References

Figure 13: Topological analysis of the “Hydrogen” data set: (a), (b) Volume rendered images with automatically generated transfer functions emphasizing topological changes (a) and zones of similar topological behavior (b); (c) – (l) topological structure; (c) around a region minin having a value of zero, two components appear simultaneously; (d), (e) at a saddle region having a value of 3.5, a hole in one surface component closes; (f), (g) the “inner” surface is separated into three disjoint components along two saddle regions having a value of 12; (h) a close-up of one of the two saddle regions having a value of 12; (i), (j) The “ring” component disappears around a region maximum having a value of 36; (k), (l) Two components disappear at two region maxima having a value of 80; The remaining component disappears around a localized maximum having a value of 250; (Data set courtesy of SFB 382 of the German Research Council (DFG).)
Figure 13: Topological analysis of the “Hydrogen” data set: (a), (b) Volume rendered images with automatically generated transfer functions emphasizing topological changes (a) and zones of similar topological behavior (b); (c) – (l) topological structure; (c) around a region minima having a value of zero, two components appear simultaneously; (d), (e) at a saddle region having a value of 3.5, a hole in one surface component closes; (f), (g) the “inner” surface is separated into three disjoint components along two saddle regions having a value of 12; (h) a close-up of one of the two saddle regions having a value of 12; (i), (j) The “ring” component disappears around a region maximum having a value of 36; (k), (l) Two components disappear at two region maxima having a value of 80; The remaining component disappears around a localized maximum having a value of 250; (Data set courtesy of SFB 382 of the German Research Council (DFG).)