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Abstract 

We have developed a hierarchical paging scheme for handling very large volumetric data sets at interactive 
frame rates. Our system trades texture resolution for speed and uses effective prediction strategies. We have 
tested our approach for datasets with up to 16GB in size and show that it works well with less than 500MB of 
main memory cache for 64MB of 3D-texture memory. Our approach makes it feasible to deal with these volumes 
on desktop machines. 

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image 
generation � Display algorithms  

Additional Key Words and Phrases: Volume rendering, texture caching, out-of-core rendering 

 

 

1. Introduction 

Increasingly sophisticated data acquisition techniques and 
complex simulations produces larger and larger volumetric 
datasets. The oil and gas industry in particular acquires 
enormous amounts of seismic data for the exploration of 
potential new reservoirs. This data has to be sighted by 
geologists and geo-physicists to discover the precious oil 
and gas containing subsurface structures. Dealing with 
these multi-gigabyte volumes has been really slow or even 
impossible in most applications.  

We have developed a system that allows users to roam 
through multi-gigabyte volumetric data sets in real-time 
with low memory requirements. In our application domain, 
users typically explore their datasets using a set of slices 
through the volume and local volume rendering lenses as 
shown in Figure 1.  Users browse through data sets by 
moving around slices and volume rendering lenses at 
different speeds.  They quickly move through some areas 
and slow down or pause in other regions to take a closer 
look at local phenomena. Interactive frame rates are an 
important issue in this context and our system gives users 
the possibility to  dynamically trade resolution for speed as 
necessary. 

 

Our multi-resolution approach  focuses on exploring only 
parts of a large  volumetric  dataset at a time and roaming 
through the volume. Other approaches, e.g. LaMar et al. [8] 
and Weiler et al. [11], use multi-resolution techniques to 
render large volumetric datasets as a whole with the best 
possible quality. Our work is based on similar multi-
resolution data structures and also uses 3D-texture 
hardware. We augment these multi-resolution data 
structures with a sophisticated caching scheme and 
predictive paging techniques. 

Our main contribution is the development of a hierarchical 
paging scheme that guarantees interactive frame rates for 
very large volumetric data sets by trading texture resolution 
for speed. Our approach handles paging from main memory 
into texture memory and paging from hard disk into main 
memory efficiently. We describe our paging techniques in 
detail and introduce effective prediction strategies. We 
have tested our approach for datasets with up to 16GB in 
size and show that it works well with less than 500MB of 
main memory, which makes it feasible to deal with these 
volumes on desktop machines. 
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2. Related Work 

3D-texture based volume rendering techniques and the 
appropriate sampling schemes were introduced by Cullip 
and Neumann[4]. Cabral et al.[1] were the first to show 
interactive volume rendering of medical datasets on 
graphics hardware with 3D-texturing capabilities.  
Westermann and Ertl [12] developed these ideas further to 
support efficient handling of clipping geometries and non-
polygonal surface rendering. 

LaMar et al.[8] describe an octree-based multi-resolution 
approach for interactive volume rendering. They filter the 
volume to create levels-of-detail in an octree structure. 
They propose the use of spherical shells to reduce visual 
artifacts for 3D-texture based volume rendering.  Based on 
this work, LaMar et al. [9]  introduce an adaptive scheme 
that renders the data along a cutting plane at different 
resolutions depending on the distance to a given center of 
interest. The required volume tiles are loaded for each 
frame. There is no explicit paging strategy introduced. 
Artifacts are limited by blending between different levels of 
resolution.  

Weiler et al. [11] carefully address the avoidance of 
interpolation errors in their multi-resolution model for 
volumetric datasets. Their approach allows consistent 
interpolation between levels even for adaptive slice 
distances. 

Cline and Egbert [2] also apply a two-level caching 
mechanism for dealing with large two-dimensional 
textures. They use a quadtree hierarchy to store their two-
dimensional terrain textures at different levels of detail. 
The main differences to our approach are the following: 
they deal only with two-dimensional textures, their 
geometry is tiled according to the size of the texture tiles in 
a pre-process, and they do not use any prediction schemes. 

Our approach focuses on roaming at interactive frame rates 
through three-dimensional volumes that do not fit into 
texture memory or even into main memory. Our 
hierarchical approach leads to paging and prediction 
strategies that make effective use of frame-to-frame 
coherence. 

3. Volume Texture Paging 

Our basic data structure for storing volumetric datasets is 
an octree similar to the one used by LaMar et al. [8].  
Original volumes are divided into bricks of a certain size, 
typically in the range of 32x32x32 to 64x64x64 voxels 
each. These bricks create the finest level in our octree 
structure. Eight neighboring bricks are filtered into a single 
brick of the next coarser level until only a single brick 
remains on the top of the octree.  We also deal with non-
powers of two volumes, since our octree structure does not 
require the existence of all children for each node. For 
bricks, which are only partially filled with voxels, we 
maintain the boundaries of the original volume and clip 
sampling geometries against these boundaries. We are able 
to handle arbitrary polygonal meshes as sampling or proxy 
geometries for volume rendering as well as for cutting and 
slicing geometries.  

Our approach is divided into two separate tasks, which are 
typically performed in parallel: paging from main memory 
into texture memory and paging from the hard disk into 
main memory.  

3.1. Paging From Main Memory Into Texture Memory  

We adopt a two-step approach for finding the desired 
bricks, which need to be loaded into texture memory for 
each frame. First we create a list of bricks, which would 
display the sampling geometry at the best possible 
resolution under the constraint of the texture memory size. 
In a second step, we optimize this list such that only a 
given number of bricks gets loaded into texture memory 
per frame. This step guarantees that the texture reload takes 
only a certain amount of time and therefore avoids  slowing 
down the rendering process. 

Figure 1: A seismic dataset. Two orthogonal slices
are shown and a volume rendering lens with a green
frame. The blue and red stripes show strong
reflections of the acoustic shock waves used to
acquire this data. The green, polygonal surface is a
horizon, which separates two earth layers. 
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The first step starts with the top-down insertion of the 
sampling geometry into the octree. Figure 2 shows an 
example for a single slice. This process stops, when the 
finest level is reached or the number of required bricks 
equals the texture memory size (or a given fraction 
thereof). The refinement process works level by level and 
prefers bricks closer to the viewer over those farther away. 
This way we end up with only two different refinement 
levels. The sampling geometry is clipped on the fly at the 
boundaries of each brick. We call the list of bricks resulting 
from this refinement process our wish list, since it contains 
those bricks, we would like to have in our texture memory 
to display the sampling geometry at its best resolution. The 
brick wish list plus the path through the octree leading to 
the bricks on the wish list is called wish list tree. 

The second step takes the wish list and compares it with the 
list of currently loaded texture bricks in texture memory. 
Those bricks, that are loaded into texture memory and do 
not belong to the wish list, are added to the list of unused 
bricks. This list sorts bricks by their last access time and 

does not remove bricks from texture memory. The 
remaining bricks form the reload list. If the number of 
bricks, which need to be reloaded, is larger than a given 
reload limit, we need to collapse refinement levels. Here 
we trade speed for resolution. We start the collapse process 
with the currently finest level and farthest away from the 
viewer. When the collapse process requests brick texture 
memory from the list of unused bricks, it is first checked if 
this brick is still in texture memory and unused, otherwise 
the oldest brick from the list of unused bricks is assigned. 
Figure 3 shows an example.   

3.2. Adding Prediction 

The described paging on demand strategy works quite well 
in most cases. By trading resolution for speed, this strategy 
will never stop the rendering process for longer than it 
takes to download the required bricks, but in some cases 
the displayed texture resolution can be quite low. Since 
sampling geometries typically do not jump around in 
texture space, a predictive paging strategy seems quite 
promising. Since texture memory and main memory to 
texture memory bandwidth are very scarce resources, we 
need to carefully plan how much memory and bandwidth 
we invest for predictive texture loading. One option is to 
just add all the neighbors of the current wish list to the wish 
list and performing the collapse operation based on this 

Viewer 

(a) (b) 

(c) (d) 

Figure 2: (a) � (d) show the hierarchical   insertion
process of a slice into the octree structure. The dark
tiles are required for displaying the slice, while the
light colored tiles are ignored. The process stops,
when the texture memory limit is reached or no
further refinement is possible. In this example, we
limit the amount of available texture memory to 9
bricks. The viewer is assumed to be on the lower left
side of the dataset. Bricks closest to the viewer are
refined first, which can be seen in (d), when the
process stops. 

previous 
slice 

current 
slice 

(a) (b) (c) 

Figure 3: (a) � (c) show the process of collapsing
bricks to satisfy a given reload limit of 4 bricks. The
dashed line shows the position of a cutting plane
during the previous frame. The bricks that were
resident in texture memory during the previous frame
are shown in yellow. The dark bricks are those bricks
that need to be reloaded for the current position of
the slice. (a) 5 bricks need to be reloaded, which is
more than our reload limit. (b) the brick that is
farthest away from the viewer, which is assumed to
be on the lower left corner of the dataset,  is
collapsed. Unfortunately, we still need to reload 5
bricks. (c) we then collapse the next brick and his
neighbor and this time we reduce the number of new
bricks to 4, which is our limit. 
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extended list. Unfortunately, this requires such a large 
neighborhood that we often achieve only really coarse 
resolutions even when the sampling geometry is not 
moving at all. It soon became clear that we need a more 
precise estimate of the potentially needed bricks for the 
next frames. We decided to use linear extrapolation of the 
positions of the current sampling geometry based on their 
motion from the previous frame to the current frame. 
Copies of the current sampling geometry moved to the 
predicted locations are also inserted into the octree to create 
a separate wish list. The refinement and collapse processes 
work level by level as described in the previous chapter and 
alternate now between the two wish lists. For a given level 
in the octree, the refinement process takes the regular wish 
list first and refines it. Then the predicted wish list is 
refined. This process continues until the texture memory 
limit is reached. The collapse process works in the reverse 
order. It collapses the predictive wish list first and then the 
regular wish list until the reload limit is reached.  

This linear prediction method avoids loading of large 
neighborhoods when the sampling geometry moves slowly 
or stops. In such cases pre-paging is effectively turned off 
and the maximum available detail for the actual sampling 
geometry is displayed. There are two trade-offs implied by 
this method. The displayed texture resolution is lower 
while moving a sampling geometry through the volume 
than without prediction and coarse texture bricks might be 
displayed, when the sampling geometry starts to move. 
Figures 10a and 10b show snapshots for texture memory 
paging with and without prediction. 

3.3. Paging From Hard Disk Into Main Memory 

We allocate a certain amount of main memory for texture 
caching from the hard disk. A separate process takes over 
the wish list generated by the actual sampling geometry and  
basically computes a hull around the bricks contained in the 
wish list tree. This hull contains all the neighbors, fathers, 
and neighbors of neighbors and so on of the current wish 
list. Basic priorities for loading these bricks are assigned 
based on distance to the bricks contained in the wish list 
tree and on the level in the hierarchy. The distance is 
measured in bricks. There are first order neighbors, 2nd 
order neighbors and so on. The elements of the wish list 
tree have neighborhood distance zero. An inner brick has 
26 neighbors with a distance of one, 98 bricks with a 
distance of two, and so on. The scheme is shown in Figure 
4. It gives priority to coarser levels, which should always 
be present before adding in finer detail.  

Many bricks might have the same priority, because they 
have the same distance to a brick on the wish list. Here we 
prioritize those bricks, which were created by the most 
recent entries on the wish list. This means essentially that 
we are assigning higher priorities to bricks that we are 
moving towards than to those we are moving away from, 

even if they have the same neighborhood distance. This is a 
very important point, since it adds direction-dependent 
prediction to the paging process. Figure 10c shows an 
example. 

When the available main memory cache is full, we need to 
decide which bricks should be discarded. We adopted a 
modified LRU strategy, which is based on the following 
discard priority p: 

),,( dlafp =  

a denotes the number of frames since the brick has been 
accessed, l is the octree level of the brick, and d is the 
neighborhood distance to the wish list tree. Currently we 
use a weighted sum of the parameters: 

dklkakdlaf dla ++=),,(  

with the following parameter settings: 

1;16;1 === dla kkk  

This discard function and the empirically chosen 
parameters prefer to discard finer levels for bricks with the 
same age as well as bricks with higher neighborhood 
distance and the same age.  The discard priority does not 
seem to have a really crucial effect on the performance of 
the system as long as there is a reasonable amount of main 
memory cache allocated, but nevertheless there might be 
better discard priority functions, which reduce the main 
memory requirements. 

4. Implementation 

The Octreemizer code has been developed in C++ and on 
top of OpenGL. There are only very few graphics calls in 
the core library, which could be easily ported to support 
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Figure 4: Paging priorities given to bricks based on
their level in the octree and their neighborhood dis-
tance to bricks in the wish list tree. The bricks with a
gray background are elements of the wish list tree.  
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other graphics libraries. The original development took 
place on SGI Onyx2 machines with Infinite Reality 
graphics running SGI�s IRIX operating system. In the 
meanwhile, Octreemizer has been ported to Windows and 
Linux platforms.  

The latest version of our software has been tightly 
integrated with our virtual environment framework Avango 
(Tramberend [10]), which is based on SGI�s Performer 
graphics tool kit. Performer uses multi-processing to 
pipeline application processing, view frustum culling, and 
rendering. Our software makes effective use of this process 
model to avoid stalling the graphics pipeline by performing 
too much computation during the rendering process. Our 
most time consuming task, the creation of brick wish list, 
happens in the application process, which runs in parallel 
with the culling and drawing process. This list is handed 
over to the drawing process, which optimizes the list to 
satisfy the reload limit, loads the required bricks (manual 
texture paging), and draws the geometry. Another separate 
process handles paging from the hard disk into main 
memory.  

We have integrated the described algorithms into our geo-
scientific prototype (Fröhlich et al.[5]). We use the system 
to drive stereoscopic display devices like workbenches 
[6,7], surround screen systems [3], and large multi-
projector wall displays. Users interactively manipulate 
cutting planes and volume lenses as well as other data types 
and visualization primitives. 

5. Results 

One of the most important parameters for texture paging is 
the texture download rate. Figure 5 shows the results of our 
benchmarks.  We compared a SGI Onyx2 system with IR2 
graphics with currently available PC graphics boards, 
which support 3D-textures. The results show a strong 
dependency of the download rate from the brick size. The 
Onyx2 in particular reaches only a very small percentage of 
the maximal download rate of 320 MB/s. The start up time 
and the general overhead for block transfers seems quite 
large and gets amortized only with larger blocks. The PC 
boards perform quite well for smaller block sizes and the 
dependency on the block size is less pronounced. These 
results suggest to use large block sizes, but the trade-off is 
that the actual number of bricks fitting into texture memory 
gets less and less.  The texture memory range from 
approximately 45 MB on the ATI Radeon, which has a 
combined frame buffer and texture memory of 64MB, to 
actual 64MB on the Wildcat and InfiniteReality2 boards. 
For practical applications, we found that brick sizes of 
32x32x32, 64x32x32, 64x64x32, and 64x64x64 voxels are 
a decent trade off between download rate and the 
partitioning of the texture memory.   

Another important factor is the bandwidth from the hard 
disk into main memory. We performed some experiments 
to assess which structure would be best for storing the 
octree data structure on the hard disk. Our first option was 
to store the whole octree in a single random access file. The 
second option was to store each brick separately in a file. It 
turned out that we got much better performance for random 
brick access with the single octree file under the SGI IRIX 
6.5 operating system. We stored the octree file on a 4-way 
stripe set and on a single hard disk. The stripe set delivered 
random bricks at about 18MB/s and the single disk at about 
7 MB/s. Disk caching was turned off. The main memory to 
texture memory bandwidth is much higher than the hard 
disk to main memory bandwidth, but in typical applications 
we do not want to spend the entire frame time with 
downloading textures. This means that the effective 
bandwidth for both transfers is approximately the same, 
which keeps the main memory cache size within a 
reasonable range.  

We have done a set of performance tests with data sets of 
120MB (64x64x32 bricks), 2.1GB (64x64x64 bricks), and 
16GB(64x64x64 bricks). We moved a volume lens on a 
circular track through the volume. There were 64 sampling 
planes inside the volume lens for the first two tests (figure 
6 and 7). The size of the volume lens varied between 
0.15x0.15x0.15 and 0.3x0.3x0.3. The size of the volume 
was 1.0x1.0x1.0 in each case. The texture memory reload 
limit was set to 0.5 MB/frame. The window size was 
600x600. We recorded the frame time for the static lens 
and for the moving lens on an SGI Onyx2 system with IR2 
graphics.   
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Figure 5: The download rates for texture bricks with
different sizes. Cubic bricks were used with the same
number of voxels in each direction.     
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Data set size 120 MB 2.1GB 16GB 

Texture memory size 10 MB 64MB 64MB 

Main memory cache 120 MB 400MB 400MB 

Time per frame static 3.7ms 5.3ms 10ms 

Time per frame moving 35ms 40ms 41ms 

Figure 6: Performance measurements for a volume 
rendering lens of size 0.15x0.15x0.15. 

 
Data set size 120 MB 2.1GB 16GB 

Texture memory size 10 MB 64MB 64MB 

Main memory cache 120 MB 400MB 400MB 

Time per frame static 7ms 15ms 14ms 

Time per frame moving 48ms 45ms 46ms 

Figure 7: Performance measurements for a volume 
rendering lens 0.3x0.3x0.3. 

 
Data set size 120 MB 2.1GB 16GB 

Texture memory size 10 MB 64MB 64MB 

Main memory cache 120 MB 400MB 400MB 

Number of slices 128 47 56 

Time per frame static 13ms 13ms 13ms 

Time per frame moving 56ms 43ms 45ms 

Figure 8: Performance measurements for a volume 
rendering lens 0.3x0.3x0.3 and a variable slice number to 
keep the time per frame constant for the static case. 

 

The texture memory size was artificially reduced for the 
smallest volume with 120MB to force texture paging. Hard 
disk paging was only necessary at the beginning, because 
the whole volume fit into the main memory cache. For the 
2.1GB and 16GB volumes the measurements were pretty 
similar as expected. The time per frame for the moving 
volume rendering lens is dominated by the texture 
downloads and the overhead associated with collapsing the 
wish list. We found that 400MB of main memory seem to 
be enough for manual movement of the lens through the 
volume. Our system did not produce any cache misses 
when running off a local hard disk. This is mainly due to 
the limited bandwidth into the graphics card, which needs 
to be shared between downloading triangles and volume 
bricks. 

We have just received a new computer which allowed us to 
provide some more interesting and detailed results. The 

hardware is a dual processor Xeon4 1.7GHz computer 
equipped with 2GB RAM, and an ATI FireGL4 graphics 
board with 128MB shared video and texture memory. As a 
test case we used our 2.1GB seismic data with a resolution 
of  1250x1300x1400 voxels (8 bit). The total size of the 
octree is about 11000 bricks of size 643, which results in a 
data set size of 2.7 GB. We used a window size of 600x600 
with the view of the whole volume just fitting into the 
window. 

The volume lens had a size of 0.2x0.2x0.2 or 0.8% of the 
total volume. We used 256 slices inside the volume lens. 
The main memory cache was set to 1500MB. We reserved 
90MB of the 128MB memory on the graphics board for  
our volume bricks. The reload limit from main memory 
into texture memory was set 2 MB / frame, since this 
graphics card provides more than 300MB/s download from 
main memory into texture memory. We achieved an 
average frame rate of about 10 frames per second with this 
configuration when moving the lens through the data set. 
The frame time of 100ms consists of about 20ms for sorting 
the 256 slices into the octree structure, 8ms for reloading 
the bricks, and about 75ms for drawing the slices. All the 
other operations necessary require less than 1ms in total. 
An interesting observation was the following:  We could 
reduce the download time to 4ms, when we were 
alternating between drawing slices and reloading bricks 
instead of loading all the new bricks before drawing the 
slices. This clearly shows that this graphics card is able to 
interleave these operations and perform them in parallel. 

For providing quantitative information about the influence 
of our prediction strategy, we used the following two test 
cases with and without prediction: the volume lens was 
moved at two speeds through the volume on a circular track 
taking 10 seconds respectively 40 seconds for one round. 
Figure 9 shows a table with the minimum, maximum, 
average, and standard deviation of the octree depth of all 
the  bricks contained in texture memory. It can be clearly 
seen that the average brick depth is higher with prediction, 
but more importantly the standard deviation is much 
smaller resulting in a much more even appearance. 

 

 min max average dev 

slow / no P 3.6 5.0 4.85 0.18 

slow / P 4.6 5.0 4.99 0.017 

fast / no P 3.2 4.5 4.18 0.15 

fast / P 4.1 4.4 4.22 0.05 

Figure 9: The minimum, maximum, average, and standard 
deviation of the octree depth of all the  bricks contained in 
texture memory for four test cases: the slow and fast moving 
volume lens with and without prediction (abbreviated as P).  
The  maximum octree depth was 5. 
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Another convenient side effect of the system is that start up 
times have been reduced to a minimum. Without the main 
memory caching, the whole volume was loaded at start up 
time, which took about two minutes for the 2GB volume. 
Now the application starts up immediately and loads the 
volume on demand. 

6. Conclusions and Future Work 

We have presented efficient paging and caching techniques 
for dealing with multi-gigabyte volumes on small and 
medium scale computers. Fill and download rates of 
current and next generation PC graphics cards are very 
encouraging and reach far beyond those available on the 
very high end graphics engines today. In addition, full 
support of 3D-texturing on these cards is just becoming 
available. This makes porting to Linux systems and IA32 
platforms worthwhile. Current and next generation high 
end hardware provide larger texture memory in the range of 
256MB to 1GB, which allows more detailed presentations. 

Our current system does not provide an explicit frame rate 
control mechanism. Users need to specify a fixed limit for 
the texture download in megabytes per frame. By 
dynamically updating this limit depending on the current 
frame rate, we could provide a frame rate control 
mechanism, which keeps the frame rate stable. This is an 
important feature for interactive virtual environment 
applications.   

Currently, we have only done tests, where the volume data 
resides on a local hard disk. We need to investigate how 
our prediction techniques and caching strategies work for 
larger data sets over network connections, since data bases 
are often maintained on large file servers. 

For real world applications, it is often necessary to support 
multi-attribute volumes and several independent volumes at 
once. These volumes need to share the available memory 
and bandwidth. We are extending our caching and paging 
strategies  to be able to handle these cases efficiently. 
Visualization techniques for multi-attribute data and several 
volumes also need further development.  

We are currently working on an interactive volume editing 
system based on the described multi-resolution structure. In 
this system, we support typical image processing operations 
such as  delete, enhance, filter, and shade. These are very 
important operations to facilitate the exploration and 
understanding of complex volumetric datasets. 
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Figure 10: This figure shows snapshots from moving a volume rendering lens from left to right through a larger volume.
Texture paging from main memory into texture memory is shown in (a) and (b). No prediction is applied for (a). Prediction
is applied for (b).  The green and red bricks are requested by the current wish list.  Green bricks show the finest level. Red
bricks show a coarser level. The blue bricks are requested by the predictive wish list. It is easy to see that prediction
provides more detail and the pre-paging happens only in the direction of the movement. (c) shows the texture paging from
the hard disk into main memory.  Green bricks contain actual geometry. Green and blue bricks are in main memory. Blue
bricks show the hull generated around the wish list.  The brightness of the lines shows the age of the bricks. Bright colors
show younger bricks, darker colors show older bricks. 

(a)                                                         (b)                                                                         (c) 
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