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Abstract
Several algorithms can effectively represent vector fields by texture-based representations, visualizing at most all
information on the field: direction, orientation, and local magnitude. An open problem still remains the mapping
on textures of adjunctive information such as temperature, pressure, and so on, without using colors. This article
addresses this issue by proposing a technique to add a scalar value denoting streamlines by means of different
levels of contrast. Both streamline starting tones and the range of tones depend on the scalar value to be mapped;
in this way, areas visualized by different contrast levels are represented. Two examples show the effectiveness of
the proposed technique.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Viewing Algorithms

1. Introduction

Visualizing vector fields is one of the most important tasks
in scientific visualization. Several techniques are known in
the literature: vector plot, particle tracing, stream surfaces,
volume rendering, and so on. One of the main drawbacks of
these methodologies is to often provide a rather coarse spa-
tial resolution; in this way, small vector field features could
be lost in the visualization.

Texture-based methods overcome this problem, only for
2D-data sets, by providing flow representations up to the pix-
el resolution. Curves having tangent vectors coincident to the
vector field (streamlines) are computed in order to produce
textured representations of the flow. Direction, orientation,
and local magnitude can be denoted in very effective and
efficient ways.

On the other hand, the multivariate visualization can be
a problem for this kind of techniques. Several application-
s require to map a set of scalar values besides vector field
structure (for instance, pressure, temperature, vorticity, . . . ),
but it is very difficult as pixel tones are computed to denote
direction, orientation, and magnitude of the flow.

Colors are often used to add an “adjunctive coordinate”
but this could be not sufficient. This paper addresses this is-
sue by proposing a new, innovative, and efficient strategy
based on the local contrast analysis. The sensitivity of the

human eye to different contrast levels 1 is used to add a s-
calar value in the textures. Low contrast levels will denote
low values of scalar, while highly contrasted areas will rep-
resent high scalar values. Practical examples show how this
approach can improve the user capability to investigate and
detect vector field features, thus leaving colors to map fur-
ther information.

Section 2 reviews main texture-based techniques and Sec-
tion 3 presents goals and the basic idea behind the proposed
work. The algorithm is described in the details in Section 4
and two examples show the effectiveness of using local con-
trast to add a scalar value to textures in Section 5.

2. Background

Texture-based methods can improve spatial resolution up to
the pixel limit (dense textures). One of the first algorithm,
called spot noise, was proposed by Van Wijk 2; spot noise
convolves a random texture along a straight segment whose
orientation is parallel to the flow direction. This method was
then extended by bending spot noise, filtering the image to
cut low frequency components, and using graphics hardware
methods 3. Cabral and Leedom 4 presented the Line Inte-
gral Convolution (LIC) algorithm which soon became one
of the most popular techniques to represent vector fields by
textures. LIC locally filters a white noise input texture a-
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long a streamline. Given a steady vector field defined by a
map v : � 2 � � 2 � x � � � v � x � , its directional structure can
be shown by the integral curves, where an integral curve is
a path σ � u � having tangent vectors coincident to the vector
field (that is d

du σ � u ��� v � σ � u �	� ). By a re-parameterization
of σ � u � in terms of the arc-length s, it is possible to com-
pute the line integral convolution (LIC) for a pixel located at
x0 � σ � s0 � :

I � x0 �
�
� s0 � L

s0  L
k � s � s0 � T � σ � s �	� ds � (1)

where T � x � is an input white noise texture, k � s � is the filter
kernel (normalized to unity), and the filter length is 2L.

Forssell 5 extended the LIC to curvilinear grid surfaces, by
doing calculations in computational space on a regular carte-
sian grid, and then displaying results on curvilinear grids in
physical space. Stalling and Hege 6 reduced the computa-
tional time of LIC by more than ten times proposing fastLIC.
The LIC value computed for one pixel can be re-used, with
small modifications, from its neighbor pixels. In this way, the
computation is streamline oriented and not pixel oriented.

A fast implementation of LIC-like algorithms can be also
found in 7 and 8; in 7 every field line is drawn using a differ-
ent gray value (the same value along the whole streamline).
However, because of the constant gray value, this method
cannot show orientation and magnitude of the field and it is
not suitable for animation. On the other hand, in 8 the TOSL
(Thick Oriented Streamline) algorithm was proposed, which
is able to depict all vector field characteristics and computa-
tional times are up to three times faster than fastLIC. TOSL
may suffer of the macro-structure problem since streamline
starting tones are randomly assigned and it is possible that
neighboring pixels have very similar gray tones thus reduc-
ing the capability to distinguish streamlines.

Visualization of dense and oriented flow fields is also per-
formed by Jobard and Lefer 9. The minimization of the num-
ber of the streamlines is performed by an evenly-spacing
algorithm which is able to produce a good quality image.
However, the use of this algorithm slows down the speed in
comparison to fastLIC.

Bi-dimensional LIC images can be animated to show the
orientation of the field besides the simple direction. This can
be done by changing shape and location of the filter kernel
k over time. To avoid the need for animation, Wegenkittl et
al. 10 introduced OLIC (Oriented Line Integral Convolution)
and then FROLIC 11 (Fast Rendering OLIC). OLIC simu-
lates the use of drops of ink smeared to the underlying vec-
tor field. The algorithm can be made faster by positioning
small and overlapping disks (FROLIC) in order to simulate
the convolution. The length of the pixel traces shows vector
orientation and local magnitude of the field. However, OLIC
and FROLIC use sparse textures, and therefore, small details
of the field may be lost in the visualization. The vector field

visualization can be achieved also using furlike textures 12

and the results are similar to FROLIC.

An extended LIC algorithm, called UFLIC (Unsteady
Flow LIC), for visualizing vector data in unsteady flow fields
has been presented in 13. The convolution algorithm consists
of a time-accurate value depositing scheme and a succes-
sive feed-forward method. The value depositing scheme ac-
curately models the flow advection, and the successive feed-
forward method maintains the coherence between animation
frames.

Although several algorithms can map information of di-
rection, orientation, and local magnitude, adding scalar val-
ues such as temperature or pressure can be a problem. Clas-
sical methods use colors to denote special vector field char-
acteristics. For instance, in 14 and 15 the users, using LIC,
can introduce colored dyes into the vector field to highlight
local flow features. The inserted dyes propagate through the
flow field highlighting vector field characteristics.

A completely different approach is used in 16 and 17

where texture algorithms are merged both to the bump map-
ping technique and shadow casting. Bumps and depression-
s are used in 16 where a bump texture is built according
to the scalar value to be mapped and, by a post-processing
phase, the bump mapping algorithm is applied on the texture
achieved by a classical texture-based technique such as LIC.
A depth coordinate was used in 16 in order to map a scalar
value. A second scalar can be mapped also considering the
azimuth coordinate to cast shadows over bumps and depres-
sions 17. This method can lead to effective visualizations as
long as the second scalar value changes slowly and the first
scalar is strongly related to the vector field structure.

3. Goals and Basic Idea

Texture-based methods can visualize vector field character-
istics up to the pixel resolution. In a broad spectrum of appli-
cations, for instance in CFD (Computational Fluid Dynam-
ics), other scalar values such as temperature, pressure, and
so on, should be mapped on the textures. A few work has
been done to tackle this important issue and this paper aims
to propose a new approach to address multivariate visualiza-
tion.

It has been proved 1 that the level of contrast strongly af-
fects the capability of human eye/brain system to perceive
details. In particular, details are less noticed when displayed
in low contrast areas.

The idea behind this work is to use the local contrast lev-
el to add information in a texture (that is, a scalar value).
Areas denoted by larger scalar values will be characterized
by higher contrast levels, and streamline tones will be as-
signed in order to allow users to easier detect vector field
structure. On the other hand, zones where the scalar value
to be mapped is low will be represented by means of lowly
contrasted streamlines.
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The level of contrast has to be sufficiently high to permit
a clear identification of streamlines in low contrast areas and
maximum for zones associated to high scalar values in order
to enhance the user capability to perceive the vector field
features.

4. The Algorithm

A C-like pseudo code of the algorithm is shown in Figures 1
and 2; in particular, the procedure allows to determine gray
tones assigned to a streamline. The algorithm is divided in t-
wo parts. The first phase (Figure 1) calculates a starting tone
attempting to maximize the local contrast 18, while the sec-
ond phase (Figure 2) adapts the starting tone according to
values of the scalar encountered along the streamline under
analysis.

In the first phase all pixels along the streamline are an-
alyzed and, for each one, an area around the pixel itself
is considered (x_start x_stop y_start y_stop).
This step is performed to collect statistics about pixels of
previously computed streamlines which are neighbor to the
streamline under analysis.

The variable n_less is used to store the number of pix-
els having gray tones in the range ]0,127] within a square
area with center in (x,y) and side 2 pixels (see 18); in the
same way, n_greater stores the number of values in the
range [128,255]. The value 0 denotes pixels not yet com-
puted. On the other hand, c_less and c_greater are
used to store the average value of gray tones in the range
]0,127] and [128,255], respectively.

The search area is analyzed by two nested cycles and
then the average values are computed for gray tones both
in the range ]0,127] and [128,255] (if n_less and
n_greater are not null). This phase is repeated for ev-
ery pixel along the streamline under analysis. In order to
enhance the local contrast 128 is added to the average val-
ue in the range ]0,127] while is subtracted for the range
[128,255].

If no pixel already computed has been found in the search-
ing area, a random gray tone is assigned to the starting pix-
el of the streamline, otherwise, an average value is set. Fi-
nally, the phase 2 of the algorithm is called. The second
phase begins by computing the maximum scalar value a-
long the streamline. This value is necessary to set both a
range of values allowed for the streamline pixels and a cor-
rection parameter (distance). The parameter distance
is added to the starting tone computed in the first step of
the algorithm. Scalar values are normalized loading vector
field files between 0 and 1, and therefore, larger values of
scalar_value will produce lower distance values,
while a lower scalar_value will lead the starting tone
nearer to 127 (that is, the center in the range of permitted
values). Moreover, streamline pixels can assume values on-
ly within a range (tone_begin and tone_end) depend-

phase1(int d,int x,int y)
{
c_less = c_greater = 0;
n_less = n_greater = 0;
x_start = x - 1; x_stop = x + 1;
y_start = y - 1; y_stop = y + 1;

for each pixel of the streamline
for(i=x_start;i<x_stop;i++)
for(j=y_start;jy_stop;j++) {

if(pixel(i,j) in ]0,127])
{
n_less++;c_less+=pixel(i,j);

}
if(pixel(i,j) in [127,255])
{
n_greater++;
c_greater += pixel(i,j);

} }
if(n_less != 0)
c_less = c_less/n_less + 128;
if(n_greater != 0)
c_greater=c_greater/n_greater-128;
if(not found pixels)

pixel = random_value;
else

pixel = ave(c_less,c_greater);

phase2(pixel,bandwidth);
}

Figure 1: The first phase of the algorithm.

ing both on scalar_value and on the parameter band-
width set by the user. A large value of scalar will lead to
use at most all the range denoted by bandwidth, on the
other hand, a low scalar value forces pixels to be clustered
around 127. In this way, the local contrast strongly depends
on the scalar value. If streamlines move in field areas where
the scalar value is high, the range of permitted gray tones
will be large and the local contrast will be high, but if low
scalar values are encountered along streamlines, pixel tones
are forced to be close to 127 into a small range, thus produc-
ing poorly contrasted streamlines. Moreover, the user can
control the bandwidth parameter which can be used as
a minimum filtering band (examples are shown in Section
5), that is, the range tone_end - tone_begin can be
never smaller than bandwidth. Finally, gray tones along
a streamline change according to the local velocity mag-
nitude. The constant value cost_tone is proportionally
added to the previous pixel tone and if the value is greater
than tone_end (that is, it is out of the permitted range) the
gray tone restarts from tone_begin.

5. Examples

In the first example, we visualize the flow field correspond-
ing to the natural development of a spatially evolving two-
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phase2(int tone, int bandwidth)
{

int scalar_value;
int distance, range;
int tone_begin, tone_end;

scalar_value = 0;
for each pixel along the streamline

if (local_scalar > scalar_value)
scalar_value = local_scalar;

distance = (127 - tone)*(1-scalar_value);
tone += distance;
range = (bandwidth / 2 + ((255 - bandwidth)/2) * scalar_value);
tone_begin = 127 - range;
tone_end = 127 + range;

for each pixel along streamline
{

tone += ceil((cost_tone*(cost_tone - modulo)/max_modulo));
if(tone > tone_end)

tone = tone_begin;
}

}

Figure 2: The second phase of the algorithm.

Figure 3: Two-dimensional laminar mixing layer visualized
by TOSL.

dimensional laminar mixing layer. A mixing layer originates
in the merge of two parallel streams, each with a unifor-
m velocity U1 and U2, both assumed in the same direction
(the upper stream U1 is faster than U2). A vorticity devel-
ops in the streamwise direction. Figures 3 and 4 show the
visualization respectively obtained by TOSL and LIC, with-
out considering the scalar value to be mapped on the texture,
while Figure 5 represents a gray tone encoding of the scalar
value to be mapped on the texture; dark tones correspond to

high values, on the other hand, light tones denote low scalar
values.

Figure 4: Two-dimensional laminar mixing layer visualized
by LIC.

Figure 6 shows the result obtained after the first phase of
the algorithm attempting to enhance the local contrast in or-
der to better denote streamlines. Figure 7 shows the situation
obtained by setting bandwidth = 100. The scalar to be
mapped is the local vorticity and it can be noticed as the vor-
tex and the area characterized by higher values are clearly
denoted. On the other hand, the two streams are visualized
by lower contrast levels and although information concern-
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Figure 5: Gray tone representation of the scalar value.

Figure 6: Two-dimensional laminar mixing layer visualized
after the first phase of the algorithm maximizing local con-
trast.

ing the flow field (direction, orientation, local magnitude)
can still be detected, user can easier identify interesting ar-
eas. The impact of the choice of bandwidth can be noticed
in Figure 8 where the mixing layer example is visualized by
setting bandwidth equal to 0. A null contrast is used to
depict streamlines where the scalar value is minimum and
only the vorticity in the developing is represented (the two
parallel streams disappear). The second example represents
two vortices. Figures 9, 10, and 11 depict the visualization
setting bandwidth equal to 140, 50, and 0, respectively.
Figure 12 denotes a gray tone encoding of the scalar value in
the same way as Figure 5. It can be clearly noticed the im-
pact of the proposed methodology; the left vortex involves
lower scalar values and streamlines representing it are vi-
sualized by lower contrast levels; moreover, the choice of
bandwidth affects the representations of the left vortex,
and in particular of its center.

Figure 7: Two-dimensional laminar mixing layer - band-
width = 100.

Figure 8: Two-dimensional laminar mixing layer - band-
width = 0.

6. Conclusion and Remarks

This paper presents a new and effective technique to tack-
le the multivariate visualization problem using texture-based
representations. A local contrast analysis phase allows to as-
sign pixel gray tones along streamlines according to the local
value of the scalar to be mapped. Neighboring streamlines
will be highly contrasted if they move in areas where the s-
calar value is high or, otherwise, lowly enhanced. The user
has to be aware of this encoding scheme in order to correctly
interpret underlying data. The examples show how, although
in poorly contrasted areas information on the vector field is
clearly visible, highly contrasted streamlines allow to imme-
diately detect zones of particular interest. In order to be fair,
it has to be outlined how the proposed method is able to pro-
vide a qualitative evaluation of the scalar value mapped on
the texture, while a quantitative information could be better
obtained by using colors.

Computational overhead due to the contrast analysis
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Figure 9: Double vortex - bandwidth = 140.

Figure 10: Double vortex - bandwidth = 50.

phase is negligible in terms of absolute values. In fact, com-
putational time for the first example (resolution of 402x302
pixels) without the proposed methodology is of 0 � 266s ver-
sus 0 � 328s necessary using local contrast, while computa-
tional time for the second example (resolution of 400x200
pixels) changes from 0 � 203s to 0 � 250s; all times refer to a
800 MHz Pentium III.

It has been shown in Section 5 the impact of the parame-
ter bandwidth; users can use bandwidth to investigate
in-depth flow characteristics by varying the range from 0 to
255, but it could be difficult immediately identifying a val-
ue of bandwidth suitable for clearly detecting vector field
features.

Future work will be aimed to analytically evaluate impor-
tant issues such as the number of levels of contrasts that can
be clearly detected by human perception and the possibili-
ty of combining the proposed methodology with other tech-
niques for mapping adjunctive scalar values.
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