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Abstract. For the feature analysis of vector fields we decompose a given vector
field into three components: a divergence-free, a rotation-free, and a harmonic
vector field. This Hodge-type decomposition splits a vector field using a vari-
ational approach, and allows to locate sources, sinks, and vortices as extremal
points of the potentials of the components. Our method applies to discrete tan-
gential vector fields on surfaces, and is of global nature. Results are presented of
applying the method to test cases and a CFD flow.

1 Introduction

Features of vector fields strongly affect the characteristics of flows and their physical
behavior. Among the most important features are vortices and pairs of sources and
sinks. In many applications, vortices must be avoided to avoid energy losses, or sources
and sinks must be located, for example to understand atmospheric behaviors. Although
feature analysis is an important area only few technical tools are available for their
detection and visualization.

A number of heuristic criteria are currently used for vortex detection [11][6]. Physi-
cal quantities of the underlying grid such as vortex magnitude and helicity are located at
isolated vertices of the grid. Such local characterizations depend on the chosen neigh-
bourhood and have deficiencies in regions with lower flow velocity. A slightly more
global approach analyses the behaviour of streamlines and other integral curves. For
example, geometric quantities derived from curvature properties of streamlines are used
by Sadarjoen and Post [14] to find vortex cores, and the polyhedral winding angle of a
discrete streamline in [13] is used to detect closed streamlines around a possible vortex
core. Topological methods as introduced by Helman and Hesselink [5] try to decompose
vector fields in different global regions of interest by computing integral curves from
critical points found by local linear approximations of the Jacobian. Higher-order ap-
proximations yield different decomposition [15][7]. For an overview of known methods
in vector field visualization see Teitzel [16].

In this paper we present a variational approach for the decomposition of a given vec-
tor field in different components, a divergence-free, a rotation-free, and a harmonic re-
mainder. Instead of trying to define a discrete version of the Jacobianr� of the discrete
vector field and its splitting in a stretching tensorS and a vorticity matrix
, we derive
a Hodge type decomposition by minimizing certain energies. This more global point
of view reduces the dependency on local measurement inaccuracies and discretization
artifacts. Our approach comes along the lines with a definition of discrete differential



operators of higher differentiability order on piecewise linear functions and vector fields
[9].

The application of our decomposition is two-fold. First, the derived vector field
components have distinguished properties which are mixed in the original vector field.
Second, two components are the gradient respectively the co-gradient of potential func-
tions. The existence of potential functions allows to identify features of the original
vector field as local extrema of the associated potentials which are easily detectable.

2 Related Work

Methods for direct vortex detection are often based on the assumption to have regions
with high amounts of rotation or of pressure extrema. See for example Banks and Singer
[1] for an overview of possible quantities to investigate. The deficiencies of first-order
approximations have been widely recognized, and, for example, tried to overcome with
higher-order methods [12][15].

The Jacobianr� of a differentiable vector field� in R2 andR3 can be decomposed
in a streching tensorS and a vorticity matrix


r� =
1

2
(r� +r�t) +

1

2
(r� �r�t) =: S +
:

The eigenvalues of the diagonal matrixS correspond to the compressibility of the flow,
and the off-diagonal entries of the anti-symmetric matrix
 are the components of the
rotation vector.

In the present paper we choose a different approach by defining higher order dif-
ferential operators. On discrete curved surfaces it is rather non-trivial to define higher
order derivatives point-wise and in local coordinates. Therefore we follow a different
approach and define discrete differential operators as total quantities being integrated
over local regions. For example, the discrete divergence of a vector field is defined at
an edge midpoint as an integrated quantity over the adjacent triangles. Similar concepts
are, for example, used for the (total) Gauß curvature at vertices of polyhedral surfaces
[10].

On the other hand, our approach has contact with weak derivatives used in finite
element theory where the formal application of partial integration is used to shift the
differentiation operation to differentiable test functions. In fact, the integrands of our
discrete differential operatorsdivh androth have been obtained fromr� by formal
partial integration with test functions.

We avoid the derivation of the more technical details of the vector field decomposi-
tion and prefer to cite the important theorems in section 3. A discussion of the experi-
mental results is given in section 4 where we discuss the decomposition of different test
cases.

3 Decomposition of Discrete Vector Fields

In this section we are heading for a decomposition of tangential vector fields in�1 into
simpler components with special properties. A vector field in�1 is integrable if it is



Fig. 1. Decomposition of test vector field (bottom right) in rotation-free (upper left), divergence-
free (upper right) and harmonic component (bottom left). The two dots in each image indicate the
centers of the original potential. Notice, that the dots in the combined vector field do not seem
to lie in the centers indicated by the vector field, although they do. But the components clearly
recover the original centers. Compare figure 3 for the associated potentials.

the gradient of a function inSh. To define other types of vector fields let us recall some
differential operators and define discrete equivalents. For details of this section we refer
to [9].

LetT be the triangulation of a curved surface immersed inR
3 (or more general,Rn )

which is assumed to be simply connected, for simplicity. OnT we have the function
space

Sh :=

�
u

���� ujT is a piecewise linear function on each triangleT 2 T,
andu is continuous onT

�
:

of piecewise linear functions. They are uniquely determined by their values at vertices.
We consider the space of piecewise constant vector fields

�1 :=
�
� j �jT is a constant, tangential vector on each triangleT 2 T

	
.

The divergence of a differentiable vector fieldv = (v1; v2) in the euclidean plane
with respect to local coordinates(x; y) is defined asdiv v = v1jx+v2jy, and the rotation
is a vector of lengthjrot vj = v2jx � v1jy normal to the plane. Recalling that for a



vertexp 2 T, the setstar p consists of all triangles havingp as vertex, and for an
edge midpointm, starm consists of the two triangles havingm in common, we define
discrete versions of both differential operators, the discrete divergence and the discrete
rotation:

Definition 1. Let � be a piecewise constant vector field onT. Then thediscrete diver-
gencerespectivelydiscrete rotationof � are defined at each edge midpointm by

divh �(m) : =

Z
@ starm

h�; �i

roth �(m) : =

Z
@ starm

hJ�; �i

whereJ denotes the rotation of a vector by90� degrees in the plane of a triangle, and
� the exterior normal along the oriented boundary ofstarm.

Our main application of the discrete differential operators is the characterization of
integrable vector fields. We recall that a smooth vector field� is gradient of a differen-
tiable function if and only if its rotation vanishes, and, correspondingly,J� is gradient
if the divergence of� vanishes. In the discrete setting we have a similar result:

Theorem 1. Let � 2 �1 be a piecewise constant vector field on a simply connected
triangulationT. Then we have

1. � = ru with a functionu 2 Sh if and only ifroth �(p) = 0

2. � = Jrw with a functionw 2 Sh if and only ifdivh �(p) = 0.

This result leads to the possibility of decomposing a vector field on triangulated
surfaces in a rotation-free, a divergence-free, and a harmonic vector field.

Theorem 2. LetT be a triangulation of a compact surface. Any vector field� 2 �1(T)

has a unique decomposition

� = ru+ Jrw + v

with u;w 2 Sh, v 2 �1 and normalizationZ



u = 0,
Z



w = 0 and divh v = 0, roth v = 0.

The functionu respectivelyw is obtained by minimizing the energy determined by
the valuehru� 2�;rui respectivelyhrw + 2J�;rwi integrated overT. The har-
monic vector field componentv is defined as the remainderv := � �ru� Jrw. The
normalization ofu andw only fixes a specific offset, and it has no influence on the
gradients.

In our numerical experiments the energy minimization is performed with a conju-
gate gradient method leading to minimizersu andw in Sh of the respective energies.
These functions directly determine the three vector field componentsru, Jrw, andv.
Please note, for efficiency, one does not need to store the three components explicitly
since they are determined by the scalar-valued potential functionsu andw. Further, if
one is interested only, say, in identifying the vortices of a vector field�, then it suf-
fices to calculatew and identify its local extrema, i.e. without actually performing the
decomposition.



4 Results

The first test case consists of an artificial vector field generated as the sum of a gradient
vector field corresponding to a point potential and three rotation vector fields corre-
sponding to three potentials whose gradient has been rotated by90� degrees, see figure
2. Application of the minimization algorithms leads to two functionsu andw. The up-
per images in figure 2 displayru andJrw. The algorithm has clearly separated the
gradient field from the three vortices.

The visualization is made with the line integral convolution method [2]. We used a
filter kernel with variable length to emphasize regions with vectors of small length.

Fig. 2. Test vector field consisting of three vortices and a potential. The algorithm clearly sepa-
rates the components. The harmonic component (lower left) has only a minor size.

Another interesting fact is visible in figure 1 where the original vector field is the
sum of a single potential and vortex. The two dots in each image indicate the centers of
the original potentials. Notice, that the dots in the combined vector field seem to deviate
from the centers indicated by the vector field, although they do are in the correct place.
Obviously, the summation of both vector fields leads to a misleading transition of the
visible vortex center and potential. It is remarkable, that the reconstructed components
clearly recover the original centers.



We have applied the algorithm to a flow from a CFD simulation, see figure 4. The
rotation-free component of the incompressible flow around a cylinder vanishes as ex-
pected, except at inlet and outlet. The divergence-free component has additional arti-
facts at the boundary which are currently not well-understood.

A slight drawback of the present method is that it does not allow interaction of the
user to steer the decomposition. Compare de Leeuw and Post [3] for interactive vortex
detection.

Leeuw and van Liere [4] proposed a hierarchical ordering of flow features to reduce
the complexitiy and suppress high-frequency patterns. It would be an interesting ap-
proach to combine their ideas with the decomposed fields presented here. An approach
might be to first smooth the obtained principal functions to reduce high-frequencies.

The vector field components derived from gradients of the potentials are directed,
and, therefore, emphasizing the vector directions in the LIC images will enroll addi-
tional information. Here tools for displaying the orientation of vectors using oriented
textures developed in [8] would clearly add information to the LIC images.

5 Conclusions and Future Work

We have presented a variational approach for the decomposition of piecewise linear
and piecewise constant vector field on triangulated surfaces in a divergence-free and a
rotation-free component with a harmonic remainder. In many sample cases we obtained
a nearly perfect separation of different features. We notice that in test cases with incom-
pressible flows the divergence-free component vanishes as expected, but the harmonic
remainder has a significant size. Here future study must concentrate on the currently
unclear physical properties and features associated with the harmonic component.

The existence of different components of the vector field enables to separate features
of the vector field, and study them for each component separately. Beside an extension
to three-dimensional flows in volumes, there is also a connection to other feature ex-
traction concepts required. Especially useful should be that fact, that the decomposition
allows to study the potentials associated with the components rather than the vector
fields as indicated in figure 3.
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H. Löffelmann, and W. Ribarsky, editors,Data Visualization ’99, pages 53 – 62. Springer
Verlag, 1999.

15. G. Scheuermann, H. Hagen, and H. Kr¨uger. Clifford algebra in vector field visualization. In
H.-C. Hege and K. Polthier, editors,Mathematical Visualization, pages 343–351. Springer-
Verlag, Heidelberg, 1998.

16. C. Teitzel. Adaptive methods and hierarchical data structures for interactive three-
dimensional flow visualization. Dissertation, Friedrich-Alexander-Universit¨at Erlangen-
Nürnberg, IMMD 32/09, Computer Graphics Group, September 1999.



6 Figure Appendix

Fig. 3. Rotation-free (left column) and divergence-free (right column) components of the vector
field decomposition shown in figure 1 with associated potentials. Features of the original vector
field are easily identified as local extrema of the potentials.



Fig. 4. Incompressible flow around a cylinder. Rotation-free component (top) vanishes except at
inlet and outlet. Divergence-free component (bottom) has additional artifact at boundary. Cour-
tesy Michael Hinze, TU-Berlin.

Fig. 5. Decomposition of the vector field generated by rotating the torus around the vertical axis
(bottom right). The rotation-free component (upper left) vanishes because the field belongs to
an isometry of the ambient space. Since the torus is not-simply connected we have a typical
harmonic component (bottom left) belonging to the incompressible, rotation-free component of
the underlying flow. The divergence free component (upper right) shows the expected behavior
where the vortex maxima are a one-parameter family along the upper and lower latitudes.


