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Abstract. This paper proposes a new representation scheme of the cerebral blood
vessels. This model provides information on the semantics of the vascular struc-
ture: the topological relationships between vessels and the labeling of vascular ac-
cidents such as aneurysms and stenoses. In addition, the model keeps information
of the inner surface geometry as well as of the vascular map volume properties,
i.e. the tissue density, the blood flow velocity and the vessel wall elasticity.
The model can be constructed automatically in a pre-process from a set of seg-
mented MRA images. Its memory requirements are optimized on the basis of the
sparseness of the vascular structure. It allows fast queries and efficient traver-
sals and navigations. The visualizations of the vessel surface can be performed at
different levels of detail. The direct rendering of the volume is fast because the
model provides a natural way to skip over empty data. The paper analyzes the
memory requirements of the model along with the costs of the most important
operations on it.

1 Introduction

Vascular diseases represent a 10% of the clinical examinations. Current diagnosis meth-
ods are based on vessel images obtained by: X-Rays, DSA (Digital Subtraction Angiog-
raphy), contrasted CT (Computer Tomography) or MRA (Magnetic Resonance Angiog-
raphy). From these images, physicians must mentally reconstruct the 3D shape of the
vessels in order to detect lesions, such as stenoses and aneurysms. This is a difficult task
because the brain vascular system has a complex tree-like structure, and the vessels are
small, narrow and sparse in comparison to the surrounding volume. The reconstruction
and visualization of blood vessels three-dimensional model from a set of slices provides
better means of diagnosing and treating vascular pathologies.

Previous papers on this topic address three main approaches:

– Direct visualization of the data, generally performed with the Maximum Intensity
Projection (MIP) [1],

– Blood vessels surface extraction using Marching Cubes (MC) [2] and Dividing
Cubes (DC) [3] algorithms,

– Construction of a topological description of the vascular system (symbolic model)
[4, 5, 6].

The former approach does not require any pre-processing. Even the segmentation,
which is required for most operations on MRA data [7] can be avoided with MIP pro-
jection. However, MIP lacks depth perception, and therefore it produces ambiguities in



the overlapping of vessels, diameters reduction and loss of the smallest vessels. Depth
cue can be added to the rendering [8] but, for clinician’s use, it is generally necessary
to compute in batch several different MIP views and record them as a film. Other vi-
sualization strategies require a good segmentation [9] and they are generally too slow
for routine diagnosis, although they can be speeded-up by using hardware 3D texture
mapping [10].

The main drawback of the second approach is that due to the nature of the vessels,
the surface model is composed of a huge amount of tiny faces and the connectivity is
difficult to guarantee.

This paper addresses the third approach: the construction of a symbolic model of
the vascular tree providing information of the medial line of the vessels and of their
diameters. This strategy provides a better understanding of the structure than the two
former ones. In addition, it may allow the generation of a simpler and smoother surface
model. However, the automatic construction of such a model is complex, because it
requires the medial line extraction and diameters computation.

Several symbolic models have been previously proposed. In [4], individual vessels
are modeled as a set of cylinders joined onto common circular sections. The model is
extracted manually. Its main drawback is that it does not provide a global represen-
tation of the topological relationships between vessels. In [5] the vascular structure is
represented as a symbolic tree, composed of numbered branches connected at bifurca-
tion nodes, where the diameters of the vessels and the axes orientations are stored. The
model computed in [6] is a tree of spline curves marking the center lines of the vessels,
plus a sequence of cross-section contours perpendicular to the axis. A smooth surface
model composed of tensor product rectangular patches can be fitted on this symbolic
model. Both models ([5], [6]) can be constructed automatically. As a drawback, they
do not provide a specific representation of aneuryms and stenoses. In addition, they do
not give simultaneous information of the surface geometry and the internal property
values. The hybrid model presented herein is intended at filling this gap. It is first de-
scribed in section 2 and next evaluated in section 3 in terms of memory requirements
and efficiency of its visualizations.

2 Model representation

The proposed model of the vascular structure provides three layers of information: the
global structure of the map (the set of topological relationships between the different
components of the map), the vascular surface ( the global shape of the internal vascular
wall) and the inner volume (the inner properties of the vessels). The volume properties
are the density and the blood velocity, as all other relevant physical properties can be
defined from them. The blood pressure, for instance, can be derived from the velocity
and the vessel diameter and the elasticity can be computed from the density.

2.1 Global structure

Since the physical vascular structure is tree-like, an abstract graph with nodes repre-
senting branchings and edges representing vessels presents itself as the obvious choice



for the logical definition of the vascular area. The graph is cyclic because the vascular
map can present closed paths of nodes, such as the Circle of Willis into the brain, i.e.
a particular cerebral arteries network. In addition, the graph is undirected because an
explicit relationship of order between nodes does not exist. The flow direction is not
represented as the graph direction because in particular regions of the vein system and
under specific circumstances, the flow may reverse its direction. Finally, although some
vascular pathologies may produce disconnections of the vascular structure, the cerebral
map is generally connected. Herein, each connected structure is considered separately
as a connected graph.

The edges and the nodes of the graph are composed of a set of labeled segments
(see Figure 1). Three different types of vessel segments (features) are considered: nor-
mal segments, stenoses and aneurysms. This classification eases the visual detection
of accidents, and, as explained later, it reduces the memory requirements of the sur-
face model. All the nodes and the edges segments of the graph are linked with surface
information and property values, as described in the next section.
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Fig. 1. Representation scheme

As well known, there are two common ways to implement graphs [11]: sequential
and linked representations. The simulations performed in this paper are implemented
on the basis of the linked representation.

2.2 Surface representation

A natural representation of the inner surface of a blood vessel segment is by sweeping
contour cross-sections, generally circles, along a trajectory. The shape of the vessels is
such that there are no intersection between contours and its medial line does not self
intersect.

Therefore, the surface model is defined as the union of generalized cylinders [12]
which represent each segment of the graph. This proposed model fulfills the following
properties:

– The skeleton curveSKLT (t), i.e., the sweep trajectory, is the medial axis of the
vessel segment. It is a linear approximation of the curve segment which guarantees
that every approximated point has a distance less thanK to the curve. Different
representations of the surface can be obtained varying the value ofK. However, to
simplify the data structure, in the implementation,K is assumed constant.



– Each section of the generalized cylinder is defined by a Frenet reference Frame
which defines a coordinate system based on three orthogonal unity vectors (see
Figure 2): a tangent vectorT (t), a normal vectorN(t) and a bi-normal vectorB(t).
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Fig. 2.Frenet Frame illustration.

Thus, the normal planeL(t) at a pointt of the skeletonSKLT (t) can be defined
with the vectorsN(t) andB(t), and the vectorsB(t) andT (t) of the normal plane
specify the orientation of the curve.

– In each section, the contour curveC(v) of vessel is approximated as a set of points
on the normal planeL(t). This approximation allows different levels of precision
in the reconstruction from a simple polygon, a circle, an ellipse, to a spline [13]. In
regular segments, the contour representation is implicit because the regular sections
are circles and thus, it is enough to store their diameters. Cross sections in stenoses,
aneuryms and branchings, generally more complex, are represented explicitly.

– It is sufficient to store sections only at points of the skeletal curve where a signif-
icant change of curvature or diameter exists and at end-points of the different fea-
tures. In the regular segments, as the diameter of the cross section varies linearly,
only one diameter per cylindrical segment and two diameters per conical segment
need to be stored.

– There is a unique correspondence between the points of two consecutive sections.
In the branching nodes, this correspondence is based on the criteria defined in [14]
and [15].

– There is no blending between two consecutive cross-sections, as vessels do not
present twists in their shape. Therefore a linear interpolation between section suf-
fices [12].

The surface model distributed into each element of the graph structure is defined as
the clipping region of the generalized cylinders against the node spatial region. Then,
the surface data attached to a node is the skeletal curves and the set of end contour
curves of the anatomical features which are concatenated in the node.

This surface representation enables the evaluation of the geometry of the boundary
model with different levels of detail. The simplest evaluation is a union of general-
ized cylinders between nodes. A smoother one consists in polygonalizing the surface
by tiling between contour curves ([14], [15]). Finally, it can be approximated by tensor
product spline surfaces. This property of the model makes it suitable to the variety of
operations that must be realized on it. Some operations, such as fluid simulations, re-
quire only simple cylindrical approximations while other ones, such as the navigations,
need smoother surfaces.



2.3 Volume representation

The volume data represent the inner properties of the vessels, i.e. the density and the
velocity. The most usual way of representing volume properties is the voxel model.
This model allows direct access to a point, given its coordinates, and ordered traversals
according to a coordinate direction. On the contrary, it does not provide a direct traversal
of the vascular graph structure. From the occupancy point of view, it has high memory
requirements. Even though, considering the sparse structure of the vessels, the voxels
corresponding to the vascular map occupy only around a 2% of the model.

An alternative model is a compression of the voxel model using a run-length en-
coding [16], [17]. It is a suitable model for low occupancy data sets, especially if the
original data is full of long constant property values sequences. A first difficulty with
this coding is that the direct access to a voxel must be performed as a search on the
run-length structure. [16] proposes to use additional indexed tables with pointers to
the first voxel of each slice and each row in order to reduce the search to a column
length. A second difficulty with a run-length encoded volume is that the volume can
only be traversed optimally in the order in which the voxels are encoded. Thus, only
a coordinate axis traversal of the model is optimal. Again, [16] solves this problem by
precomputing three run-length encoding, one for each of the three coordinate axes. Fi-
nally, as the run-length is a spatial enumeration scheme, the volume traversal according
to the topological order is, as in the voxel model, computationally expensive. This is a
major drawback because topological traversals of the graph are needed in blood flow
simulations as well as navigations.

Run-length property model

subdivided by identifiers

0: 5, 1,             6, 1,

1: 3, 1,             4, 2,          6, 1,

2: 1, 1,             2, 2,          4, 1,

3: 0, 1,             1, 1,          2, 1 

Velocity voxel modelImplicit Binary voxel model

Fig. 3.Run-length encoding of a property of the original model.

To solve the latter problem the volume representation proposed herein keeps sep-
arate volume representation of all the segments of the graph elements (features). This
allows a random access to the features, as required in navigations, while taking benefit
of the spatial ordering of each separate voxel model. Specifically, the volume represen-
tation of each node and segment is a subset of the original voxel model enclosing the
bounding box of the feature, such that only the voxels belonging to the feature have
a property value (see Figure 3). This representation involves overlapping of spatially
close features of the graph although the property values of vascular voxels are stored
only once in the union of all these subsets. The volume models of each feature are coded
as run-length according to the ownership of each voxel to the feature. It allows direct
accesses to the voxel data of each feature, as well as ordered traversals according to



a coordinate direction. Empty voxels of the overlapping regions are no coded several
times. It takes advantage of the spatial structure of the voxel model. Thus, it allows a
direct access to the property values of any voxel of a segment or a branch.
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Fig. 4. Run-length encoding of the voxel model in relation to the features of the model.

Keeping the original voxel model in addition to the features volume schemes is
redundant and unaffordable in most applications environment because of the memory
limitations. Thus, the initial voxel model is segmented and it is compacted by a run-
length encoding method on the basis of the vessel ownership property value of each
voxel (see Figure 4). This model is necessary to keep the implicit spatial order of the
voxel model and to compress the sparseness of the data, without loosing the direct
access of a voxel.

2.4 Management of the three information layers

The main characteristic of the three layers model is that it provides simultaneous access
to the topology, the surface and the properties. These different queries are managed as
follows:

– All the accesses from the graph to the surface (graph-to-surface) and to the volume
data (graph-to-volume) are direct because the surface and the voxels are stored into
the corresponding features of the graph. These queries are necessary for the topo-
logical traversals of the structure, particularly in navigations and flow simulations.

– In order to establish the relationship between a voxel and a feature of the graph
(voxel-to-graph), each voxel stores a simple identifier of the segment of the graph
to which it belongs. This identifier defines a new volume property of ownership of
each voxel to a segment of the vascular structure.

– The accessvoxel-to-surfaceis solved implicitely. To know if a voxel is traversed
by the vessel surface, the feature to which the voxel belongs can be accessed. Next
the surface of the feature should be evaluated. This can be done in several ways:
at low surface resolution (cylinder test), with more complex test (B-splines test).
A different approach consists in simply exploring the set of neighbor voxels and
analyzing the gradient value. This latter solution is the classical one used in simple
volume models.

– The accesssurface-to-voxelcan be performed directly with a given surface point.
The voxel to which the point belongs is directly retrieved from the point coordinate
values and then, from the voxel, the identifier of the segment of the graph is found
(surface-to-graph).



3 Evaluation

In the following sections, the occupancy and efficiency of the model are analyzed in
terms of theoretical and experimental terms.

All simulations have been performed on a Sun Sparc, Ultra-1 with Solaris 5.5.1.
Five data sets have been used. Three data sets are phantom data of different sizes. Two
medical data sets have been tested: a MRA data and a SCTA (Spiral Computed Tomog-
raphy Angiography) data sets. A segmentation preprocess is performed before building
the model.

3.1 Occupancy

Let n3 be the number of voxels of the original data set, andn3b the number of voxels
of the bounding box. Letnv the number of voxels which contains blood vessels.nv is
0:02� n3b . Letnf be the number of total features of the vascular data with a mean size
of n3ss voxels.

A classical voxel model of the whole volume requires28 � n3 bytes (1 integer
for the density value and 3 floats for the velocity value at each voxel). A run-length
compression of the boundary box representation needs28 � 0:02 � n3b + 6 � 4 � n2b
bytes, where the last adder is the occupancy of the three tables ordered according to
the three main axis respectively and assuming that the number of features can be coded
with one integer. If a double structure of volume data is stored in order to keep both
spatial and ordered traversal, the run-length model of the whole data, according to the
identifier of the features, takes0:02� n2b � 8 + 6 � 4 � n2b , where the first adder is a
coarse approximation of the real costn2b � (log2nf + log2nb) bits of a general case of
run-length.

In addition to the primary model (i.e. the run-length of labeled voxels) storage re-
quirements, a secondary model for each feature must be coded. If these secondary mod-
els are coded with boundary boxes, the mean global occupancy is28� nf � n3ss bytes,
whereas if these secondary models are run-length code according the ownership of the
feature, the memory needed is28� 0:02� n3b + 6� 4� n2ss bytes.

The memory space required to store the graph and the surface is the following.
First, the occupancy of the graph is2 � e, wheree is the number of the edges between
branchings. In addition, if each feature has, in mean, three control points and the number
of points for each contour is at most 20, the surface representation needs20�3�nf�16
bytes.

Table 1 shows the memory requeriments of the symbolic model of different input
data sets, as well as, the memory requeriments of the classical voxel model and of the
mesh of triangles model.

The reduction of the memory requirements ranges from37:74% to 95; 85%. The
maximum efficiency is achieved when the occupancy of the data is low and when the
distribution of the data in the volume is more concentrated. This is the case of the model
MRA which represents blood vessels. By opposite, model Phantom 3, which represents
a skull has also a relatively low occupancy but the data are spread over the whole model.
Therefore the compression rate is lower. Finally SCTA produces an overhead of mem-
ory requirement because the data, interleaved surface layers, occupy the whole original



volume. Summarizing, the model proves to be efficient for sparse and concentrated
structures.

Table 1.Comparison of memory requeriments with different set of data.

Data set Original Occupancy Voxels size Model size Memory
resolution (Kbytes) (Kbytes) reduction

Phantom1 32x32x32 12.72% 32.768 Kb 20.400 Kb 37.74%
Phantom2 64x64x27 8.0% 110.592 Kb 113.484 Kb 102.61%
Phantom3 96x96x69 0.7% 635.904 Kb 129.308 Kb 79.66%
SCTA 128x128x42 21.0% 9633.792 Kb 1597.584 Kb 83.41%
MRA 256x256x124 0.2% 8126.464 Kb 640.080 Kb 92.12%

3.2 Efficiency

The efficiency of the model is next measured in terms of the costs of the visualizations.
These costs do not account the pre-process of model construction, which involves a first
segmentation step, the medial axis extraction, its processing to automatically detect its
features and the construction of the data structures ([18]). The run time of the construc-
tion algorithm depends on the model occupancy and its original size. It ranges from
seconds for small models to minutes for the SCTA and the MRA data sets.

Figures 5 and 6 show a simplified visualization of topology of the model. Edges
segments are approximated by polylines with a circle contour curve at the significant
points of the axis. Branching are shown with spheres. This visualization, very fast, is
used to manage the user interface of the vascular model and to render the topological
relations between different blood vessels.

The visualization of the vascular surface can be performed at different levels of
detail such as: simple cylinders at the segments and spheres at the nodes, polygonal
approximation of the surface by interpolating contour curves between the curves stored
in the model and tiling between curves or by fitting biquadratic splines parameterized
with rectangles between successive contours [6].

Figure 7, shows two levels of refinement of the same vessel segment. The first image
uses 5 points per contour and no interpolation between the contours stored in the model.
The second image uses 20 points per contour and it interpolates 5 contour curves per
pair of stored contours. The number of faces is about 100 and 900 respectively. These
different levels of detail are useful when the whole model is visualized, and also in
navigation where the level of refinement can be computed in relation to the distance
of the feature from the observer. Figure 8 shows an image of a walkthrough sequence.
The navigation takes advantage of the topological model by clipping nodes and edges
that are outside the viewing frustum. Experimentally, the number of edges and nodes
to be render simultaneously in a navigation inside the vessels is almost constant, about
4 features. The navigation is therefore much more faster than a complete projection of
the model.



The visualization of volume model may be performed by slice-to-slice composi-
tion, by MIP projection and by semi-transparent shaded rendering. As an example of
the shaded rendering, Figure 9 shows a BTF (Back-To-Front) visualization. Figure 10
shows several boundary boxes of the edges of the graph. Each voxel has a different
color depending on the feature to which it belongs. It can be seen that although the
boxes may overlap, every vascular labeled voxel belongs only to one box.

Table 2 shows the performance of the volume visualization algorithm, based on the
run-length encoding in comparison to full voxel models visualization. The efficiency
depends on the level of compactness of the run-length. Results show that the cost de-
creases a lot in MRA data sets, providing real time rendering. Table 3 compares the cost
of a walkthrough driven by the topological model versus a direct rendering of the whole
data structure at each frame. The same reasoning as for the surface walkthrough can be
done: the approximate number of features visualized per frame is constant and small.

Table 2.Performance of the volume BTF-visualization algorithm.

Data set Original Voxels size Run time Run-length Run time
resolution (Kbytes) voxels size (Kbytes) run-length

Phantom1 32x32x32 32.768 Kb 0.4 sec. 15.992 Kb 0.127 sec.
Phantom2 64x64x27 110.592 Kb 1.48 sec. 108.444 Kb 0.36 sec.
Phantom3 96x96x69 635.904 Kb 2.62 sec. 110.588 Kb 0.17 sec.
SCTA 128x128x42 9633.792 Kb 7.50 sec. 384.676 Kb 2.61 sec.
MRA 256x256x124 8126.464 Kb 28.68 sec. 487.280 Kb 0.38 sec.

Table 3.Performance of the volume walkthrough algorithm.

Data set Original Projection whole Walkthrough
resolution data model

Phantom1 32x32x32 0.127 sec. 0.127 sec.
Phantom2 64x64x27 0.36 sec. 0.25 sec.
Phantom3 96x96x69 0.17 sec. 0.045 sec.
SCTA 128x128x42 2.61 sec. 0.304 sec.
MRA 256x256x124 0.38 sec. 0.18 sec.

4 Conclusions and future work

The main contribution of this paper is the proposal of a representation scheme for blood
vessels. It is a multiresolution hybrid model, which stores symbolic information on



the topology and geometry as well as volume and surface data. These characteristics
provide flexibility and they enable the realization of all the physicians requirements in
a Computed Assisted Neurovascular System.

The model has been implemented and tested with different visualization strategies.
Results show that for MRA data a compression rate of90% can be achieved. Visual-
izations reduce impressively their cost, especially navigations driven by the topological
model.

Work on progress is the integrated visualization of the blood flow velocity with the
vascular surface. Another question is how to improve the control of the refinement level
by automatically tuning the parameter, which determines the number of control points
stored in the coding of the axis model.

This work has been funded by TIC99-1230-C02-02.
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Fig. 5. Symbolic Model Visualization: Polylines.



Fig. 6. Symbolic Model Visualization: Pipes and spheres.

Fig. 7. Surface Visualization.



Fig. 8. Inner Surface Navigation.



Fig. 9.Shaded volum visualization with a BTF-method.

Fig. 10.Volume features visualization with a BTF-method.


