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Abstract. An essential step in feature extraction is the calculation of attribute
sets describing the characteristics of a feature. Often, attribute sets include the
position, size, and orientation of the feature. These attributes are very important,
but they do not provide a good approximation of the shape of a feature. For better
shape description, a more sophisticated method is needed.

This paper describes a method that extracts a binary skeleton of a feature, and
transforms it into a graphical representation: the skeleton-graph. This graph rep-
resents the original skeleton with controlled precision, and contains the essential
topology and geometry of the skeleton. In addition, distance information is used
to generate a simplified reconstruction of the original 3D feature shape, which
can also be used as an iconic object for visualization.
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Simplification.

1 Introduction

Feature extraction is an approach to visualization aiming at automatic recognition of
important features (structures, objects, or regions) in scientific data sets. Rather than
leaving the recognition of the interesting features entirely to the visual inspection by
the user, this task is performed automatically. The extracted features are characterized
by quantitative descriptions or attributes. The features are directly related to physical
entities and phenomena studied, and thus dependent on the application. In the field of
computational fluid dynamics, common examples of features are vortices, shock waves,
and recirculation zones.

Most feature extraction techniques are based on a classification or segmentation of
the data, to identify the parts of the data sets that belong to the features. If the data are
defined on the nodes of a grid, a filter can be used that selects data items which satisfy
a certain selection criterion. Other techniques for segmentation include region growing,
and edge detection. The result of a segmentation of a grid data set is a binary grid in
which feature nodes are marked. Adjacent marked grid nodes can then be clustered into
coherent regions, and for each region certain attributes are calculated [8].

The guantification by calculating attributes is essential to the process of feature
extraction. The attribute sets give a quantitative description of a feature, describing its
most important characteristics, such as its position, and size. The attribute sets can be
used to evaluate a feature or to compare it with other features, for instance in order



to track features in time-dependent data sets [7]. A frequently used attribute set is the
ellipsoid fit around the feature. The ellipsoid provides a good indication of position,
orientation, and size, but is a crude (first order) approximation of shape. Sometimes a
more accurate description for shape is needed.

Skeletonization, or Medial Axis Transformation (MAT) provides a more sophisti-
cated method to characterize the shape of a feature. The skeleton of an object can be
defined as the locus of points that lie at the center relative to the object’s boundary.
Thus, the skeleton is a thinner version of a 3D object, which still preserves the topology
and geometry of the object. Therefore, it is an efficient and compact shape descriptor of
features.
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Fig. 1. Pipeline for skeleton graph generation.

This paper presents a method for skeleton attribute calculation of extracted features.
Figure 1 illustrates the process of determining for these shape attributes. The input is a
regular segmented data volume (a voxel grid), in which binary data represent the voxels
belonging to a number of feature objects. The skeleton voxels of the objects are deter-
mined by an existing skeletonization method. The resulting voxels are then connected
into a voxel graph of skeleton-nodes and edges. The graph initially contains all skeleton
voxels, but it can be simplified. First, the topology is extracted by identifying special
nodes such as end-nodes, junction-nodes, and loop-nodes. Next, geometry is approx-
imated to a given tolerance by inserting extra curve-nodes and profile-nodes. Third, a
reconstruction is made of the 3D shape of the original object.

The combination of skeleton and distance information provides an excellent way
to approximately reconstruct the shape of the original object. The skeleton graph is
“fleshed out” by wrapping spherical and conical volumes around the edges and nodes
of the graph. The size of these volumes is determined by the distance to the surface,
which is stored at every skeleton node. The result is a simplified geometric object,
which may be used as an iconic representation describing the feature shape and which
is superior to the crude approximation by a fitted ellipsoid.

The paper is organized as follows. Sections 2 through 5 describe each step in the
process of skeleton graph generation. Section 6 shows a number of applications for this
method. Finally, some conclusions and topics for future research are given in section 7.



2 Skeletonization

The first step is the skeletonization of the segmented binary volume. The result is a
set of skeleton voxels at the center of the object. Many skeletonization algorithms have
been published, especially in the image processing literature. Most algorithms are only
for 2D data, but some can be extended to 3D or higher dimensions.

The skeletonization algorithms found in the literature can be classified in two cate-
gories:

— Topological thinning methods.These methods are based on removing voxels from
the surface of the object, by identifying the so-called simple points, i.e. points that
will not change the topology of the object when they are removed. Methods (2D
and 3D) based on this concept are described in [4] and [6].

— Distance transform (DT) methods.The DT can be calculated in each voxel of the
object and is equal to the minimal distance to the surface of the object. The skeleton
voxels are identified as the local maxima of the DT. Some methods that extract the
skeletons based on the DT are described in [5] and [9]. Methods to calculate the
DT are described in [1] and [2].

The results of the two types of methods are somewhat different. Topological thinning
guarantees the connectivity of the skeleton voxels, while DT-methods in general do not.
For our purposes we want a method that guarantees the connectivity.

The algorithm we use is a topological thinning algorithm based on a hit-or-miss evalua-
tion using sets of masks [3]. The mask sets can be used to manipulate a binary object in
several ways, of which skeletonization is only one. A mask set consists of a number of
3x3x3 masks with zeroes, ones and “don’t cares”. Each mask indicates a configuration
that must remain in the object. If the 3x3x3 neighborhood of a voxel matches one of the
masks, it is a skeleton voxel and should remain in the object, otherwise it is removed.
Thus, the object surface is peeled off iteratively until only the skeleton voxels remain.

The characteristics of a skeleton obtained in this way depends on the mask set used.
We have three different mask sets to produce different types of skeletons: surface skele-
tons, line skeletons and point skeletons (see Figure 2). Here, we will only concentrate
on the line skeletons. At each skeleton voxel also the distance information is stored,
indicating the distance from the voxel to the object surface. We have used a cham-
fer distance transformation [1, 2], which is calculated together with the skeletonization
(see Figure 1).

3 Voxel Graph Construction

After the skeleton voxels have been determinedo®el graphcan be constructed by
connecting neighboring voxels. In the voxel graph, all skeleton voxels are nodes, and
adjacent voxels are connected by edges. The basic approach for constructing the voxel
graph is to traverse all voxels of the skeleton and to connect neighboring voxels. The
voxel graph is a structure that is easy to manipulate and to analyze. Using the voxel
graph, the number of nodes and edges can be reduced, while preserving the basic struc-
ture of the skeleton.
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Fig. 2. Skeletonization of a binary volume, resulting in three types of skeletons, depending on the
masks used: a) binary volume, b) surface skeleton, c) line skeleton, and d) point skeleton.

The connection of neighboring voxels is not a straightforward process. Simply con-
necting the adjacent skeleton voxels causes problems as shown in Figure 3a: a “zero-
loop” occurs at the junction. All three voxels at the junction have more than two edges
and may be classified as a junction-node (see section 4.2), while there is in fact only
one junction. Lee, Kashyap and Chu [4], solved this problem by directly classifying the
junction node as it is encountered, and classifying all its neighboring nodes as regu-
lar. However, the choice of the junction node will depend on the starting point of the
traversal, which will result in slightly different graphs, as illustrated in Figure 3b, ¢, and
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Fig. 3. Problems when constructing the voxel graph: a) zero-loop, b, ¢, and d) the junction node
depends on the traversal starting point.

We solved the problem of zero-loops by assigning a priority ordering to the con-
nections. In a 3D skeleton, each voxel has 26 neighbors: 6 face-connected, 12 edge-
connected, and 8 vertex-connected. We give priority to the connection with the nearest
neighbor, so face-connected neighbors are connected before edge-connected neighbors
and these are connected before the vertex-connected neighbors. In case of a junction,
this connection priority will always lead to the graph shown in Figure 3b, which we
believe is the best solution.



4  Graph Simplification

After the construction of the voxel graph, the graph can be simplified by removing re-
dundant nodes. The voxel graph initially contains all skeleton voxels as nodes, which
may be a large amount. We can reduce the number of nodes and edges while still pre-
serving the topology and geometry of the skeleton. The task is to determine which nodes
should be kept and which nodes can be removed.

There are two classes of nodes that are significant and that should be retained: the
topologicalnodes and thgeometricnodes. Topological nodes are nodes that are nec-
essary to preserve the topology, and geometric nodes are necessary to preserve the geo-
metric shape of the object. The identification of topological nodes and their connectivity
results in a topological graph, while the detection of geometric nodes results in the ge-
ometric graph. The final skeleton graph is a combination of the two graphs.

4.1 Topological Graph

The topological graph holds the basic structure of the object and can be determined
by finding the topological nodes. The topological nodes are identified by counting the
number of edges connected to a node in the voxel graph:

— End nodeone edge.
— Regular nodetwo edges.
— Junction nodethree or more edges.

The end nodes and junction nodes are the nodes that determine the topology of the
object. Thus, the topological graph is created by simply removing the regular nodes,
and connecting the remaining nodes by edges. However, there is a problem in case of
loops.

An additional type of topological node, th@op node is needed to describe loops
in the graph. Figure 4 shows a number of situations with loops in the graph. In the case
of Figure 4a, the removal of all regular nodes will remove all nodes. To overcome this
problem a loop node is included at an arbitrary location on the loop. In the topological
graph the loop node is connected to itself with an edge. A similar situation occurs in
Figure 4b; the junction node is connected to itself. Therefore, this junction node is
classified as a loop node. In the Figures 4c and 4d, also a loop exists, but no node is
connected with itself, therefore all nodes in the loop remain junction nodes.

The number of loops is an important variable in the topological graph, because it
may provide a cue for comparison of two skeletons. It can be calculated wiEutke
formula

V—-E+F=C-H Q)

with V' the number of node$; the number of edges aridthe number of face€! — H
form the so-calledeuler numberwith H the number of holes in an object antthe
number of connected objects in a scene. Because we only work withHilcas be set
to 0, and because the graph is always a single obféatan be set td. Substitution
gives the number of loops (holes) in the graph:

H=1-V+E )
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Fig. 4. Loops in the topology of the skeleton.

4.2 Geometric Graph

The geometric graph refines the edges in the topological graph by determining certain
geometric nodes. The topological graph is not a sufficient approximation of the shape,
especially if the shape is strongly curved. Geometric nodes are key points for describ-
ing the shape of the skeleton. The geometry can vary in two ways: the skeleton line is
curved, or the profile of the object surface is curved. Hence, we distinguish the follow-
ing two types of geometric nodes:

— Curve nodeswhere the skeleton line bends.
— Profile nodeswhere the surface profile changes.

The geometric nodes are inserted on the edges of the topological graph. For each
edge the regular nodes are traversed, and curve or profile nodes are inserted. Insertion
of geometric nodes depends on geometric tests, which will be described below. If a new
node is inserted, the two new edges are handled recursively in the same way until all
geometric tests are satisfied.

Curve nodes

The test for finding the curve nodes uses the maximum distdpge between the

voxel nodes and the edge, and compaigs, to a distance thresholfl;;,; (see Figure

5). A curve node is added at the location of the maximum wigpn, > Tgis¢e. TWO

new edges are created and both are tested recursively. The process terminates when all
intermediate nodes fall withifi;; of the corresponding edges.
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Fig. 5. Finding the curve nodes recursively.

The distance threshold provides a measure of precision for the approximation of the
original voxel graph. A zero threshold results in a geometric graph that is equal to the



original voxel graph. When the threshold is very large, no curve nodes are inserted and
the topological graph is not refined.

Profile nodes

The test for finding the profile nodes uses the distance transform (DT) in a similar way
as the test for finding the curve nodes. The DT is known at each voxel node and can
be highly variable. If a linear profile is assumed along an edge, the actual values of the
corresponding voxels will differ from this assumption. The profile test finds the voxel
with the maximum distance to this linear profile and tests this distance to a threshold
Tyroy (see Figure 6). A new profile node is inserted when the threshold is exceeded and
the two resulting edges are tested recursively.

Profile Profile __

Fig. 6. Finding the profile nodes recursively: a) first step, and b) second step.
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Again, the threshold is a measure for shape approximation of the original voxel
graph, but this time for the profile of the surface of the object. Also, with a zero thresh-
old the geometric graph is equal to the voxel graph, and with a very large threshold the
topological graph remains unchanged.

Figure 7 shows the skeleton graph which results after graph simplification. In the figure
the original segmentation is visualized with a transparent iso-surface, and the skeleton
graph is visualized with spheres connected by lines. The spheres are located at the node
positions and have a radius equal to the DT. In general the skeleton graph gives a good
approximation of the shape. However, some objects are cut by the system boundary
which results in a flat shape, in these cases the skeleton graph gives a less accurate
approximation. The cross-section of a flat object has an elliptical contour, while we
assume a circular contour with a radius equal to the distance transform.

5 Shape Reconstruction

The shape of the original object can be approximated by adding a volume to every edge
in the skeleton graph. The resulting 3D shapes can be used for an iconic visualization
of the features [8]. Several types of geometric objects can be used for “fleshing out” the
skeleton graph. The topology is viewed best with an open geometry with for instance
lines and spheres, such as shown in Figure 7. A solid structure of spherical and conical
volumes gives a clear visualization of the volume of the objects, see Figure 8a). Some
variations and intermediate representations to this are possible, one is shown in Figure
8b).
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Fig. 8. Skeleton surface reconstruction using solid spheres and cones, or a more open geometry.

In another approach a cubic Hermite interpolating tube is calculated through each
path (from end node to end node) in the geometric graph. The interpolation results in
a smooth tube, see Figure 9. The thickness of the tube is taken equal to the distance
information at the nodes. This way, a smooth surface is drawn representing the feature
objects.

6 Applications

The skeleton generation procedure was applied to a dataset with turbulent vortex struc-
tures, obtained from a fluid dynamics simulafiohe dataset consists ®28> grid

nodes with vorticity data. After segmentatiol® objects were found with a total of
119262 voxels. Skeletonization reduced this number of voxel86®, and after graph
simplification only87 nodes remained. The file size of the skeleton graph is about 2.3
Kb, while the original data file was 8.0 Mb, a reduction factor in the order of 1000.
Figures 7, 8, and 9 show different visualizations of this application.

We also applied the skeleton reconstruction to similar simulations of turbulent vor-
tex structures with a higher Reynolds number. In total three similations were obtained
with 1282 grid nodes with vorticity data. A higher Reynolds number results in more
complex and smaller vortex structures, and therefore the skeleton data is somewhat
larger. Table 1 shows the reduction in percentages, from segmented volume (V) to voxel
nodes (VN), from voxel nodes to geometric nodes(GN) and from volume to geometric
nodes, the last column shows the file size of the skeleton file (SF) in Kb (N.B. the file
size of the raw data is 8.0 Mb).

! Data courtesy D. Silver and X. Wang of Rutgers University.



dataset [V—VN|VN—GN|V—GN|SF (Kb)
Simulation || 74.3% | 81.0% |95.1% | 12.3
Simulation 11} 79.7% | 76.5% | 95.2% | 2.7
Simulation 111} 89.1% | 91.1% [99.9% | 2.3
Table 1. Reduction percentages.

7 Conclusions and Future Research

In this paper we have presented a method that generates skeleton graphs describing the
shape of feature objects in a binary segmented volumes. The skeleton graph is a set of
feature attributes that signifies a significant data reduction, while still preserving a good
approximation of the original shapes.

The method works in four stages. First,
the skeleton voxels of the objects are de-
termined by an existing skeletonization
algorithm. Then, neighboring skeleton vox- |
els are connected into a voxel graph rep-
resentation with nodes and edges. The nodes
represent the voxels and the edges rep-
resent the connectivity between voxels.
Using the distance transform, also the min-
imal distance to the surface is known in
each voxel. Then, the voxel graph is sim-
plified by recognizing topological nodes
(junction nodes, end nodes, and loop nodes)
and geometric nodes (curve nodes and
profile nodes). The simplification can be
controlled by two threshold variables, con-
trolling the precision of the skeleton grapﬁig- 9. Skeleton surface reconstruction us-
approximation. Finally, the skeleton grapid hermite tube icons.
is used to reconstruct a geometry that approximates the surface of the segmented ob-
jects.

The applications with the turbulent vortex structures showed that this method ap-
proximates the original surface very well. The skeleton attributes provide a good topo-
logical and shape description in a very condensed way. Data reductions in the order
of a 1000 were obtained. Figures 7, 8, and 9 show some nice visualizations of this
application.

The turbulent vortex structures normally have a worm-like shape which can be very well
approximated by this method, however sometimes the method fails. The cross-sections
of the worms have a circular contour with a minimal radius equal to the DT. When the
shape is more flat the contour has an elliptical shape and the circular approximation can
be poor. Two solutions can overcome this problem: 1) for each skeleton voxel create
an elliptical approximation, 2) use the surface skeletons (Figure 2b) and do a similar



simplification as described in this paper. The implementation of these two solutions is
a topic for future research.

Another topic for future research is using the skeleton graph information for fea-
ture comparison and tracking [7] in time-dependent data. The skeleton graph can be
collected in successive time steps and stored as feature data. For tracking purposes, a
metric needs to be defined for the correspondence between two skeleton graphs.
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