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Abstract

We present interactive techniques for identifying and extracting features in function fields. Function fields map

points in n-dimensional Euclidean space to 1-dimensional scalar functions. Visual feature identification is ac-

complished by interactively rendering scalar distance fields, constructed by applying a function-space distance

metric over the function field. Combining visual exploration with feature extraction queries, formulated as a set of

function-space constraints, facilitates quantitative analysis and annotation. Numerous application domains give

rise to function fields. We present results for two-dimensional hyperspectral images, and a simulated time-varying,

three-dimensional air quality dataset.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Tech-

niques

1. Introduction

In scientific visualization, scalar and vector fields are well-

studied data types with mature visualization techniques,

including isosurfaces [LC87], slicing and volume render-

ing [BW01], and streamlines [Vol89]. Scalar fields, which

map points to scalar values, arise in numerous applications

domains, e.g. medical imaging [SFF91]. Vector fields, which

map points to vector values, are often used to model flow.

In this paper we are concerned with an under-studied data

type: function fields. Function fields map points p in n-

dimensional Euclidean space to 1-dimensional scalar func-

tions:

F : p ∈ R
n
→ fp ∈ FI , (1)

where FI is the set of functions defined over a closed

interval I. Datasets often store sampled functions as m-

dimensional vectors associated with each point. Figure 1 il-

lustrates the structure of two-dimensional (1(a)), and time-

varying, three-dimensional (1(b)) function fields.

This paper introduces interactive techniques for identify-

ing and extracting features in function fields. These methods

do not rely on application domain-specific knowledge, and

do not require expensive data preprocessing.

Features in function fields are spatial regions in which the

1-dimensional functions are similar. Our approach to fea-

ture identification is to interactively generate scalar distance

fields by applying a function-space distance metric over the

function field. These scalar fields can be rapidly rendered as

images or volumes, within which users are easily able to vi-

sually identify features. Feature identification is discussed in

Section 4.

In addition to visual exploration, the extraction of features

is important for quantitative analysis and annotation (Sec-

tion 5). Users construct queries as a set of function-space

constraints against the field’s functions. We demonstrate a

number of queries to extract features such as golf courses,

water, and areas of high pollution.

2. Datasets

Function fields arise in many application domains. We

demonstrate our methods on two distinct function field

datasets: hyperspectral images from the domain of remote

sensing, and a particulate pollution dataset used in air qual-

ity research.

Hyperspectral imaging systems are used in remote sens-

ing for a broad range of applications, including environ-
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(a) Hyperspectral Image (b) CRPAQS Dataset

Figure 1: Graphical overview of the two function field datasets used in this paper. In (a), we show the data layout of hy-

perspectral images. Hyperspectral images are spatially two-dimensional with pixels that are sampled functions of radiance

(or reflectance) versus wavelength. In (b), we show the data layout for the California Regional Particulate Air Quality Study

(CRPAQS) dataset. Each cell in this time-varying, three-dimensional function field contains a sampled function of particle

concentration versus diameter.

mental studies and military preparation. The primary ben-

efit of using a hyperspectral imagery system is that each

pixel contains data for multiple spectral channels (instead

of only grayscale or RGB), thus allowing more in-depth im-

age analysis. The Airborne Visible InfraRed Imaging Spec-

trometer (AVIRIS) [VGC∗93] is aircraft-mounted and ac-

quires calibrated 614x512 images of up-welling spectral ra-

diance. In AVIRIS images, each pixel consists of 224 ra-

diance (or reflectance) samples over visible and short-wave

infrared wavelengths. We use two images in this paper, each

approximately 270 megabytes: one of Moffett Field and the

San Francisco Bay, and another of an area approximately 18

kilometers to the east of Moffett Field.

The second dataset is an air quality simulation from

the California Regional Particulate Air Quality Study (CR-

PAQS). This study is concerned with particulate pollution

throughout the San Joaquin Valley, California, U.S.A. The

size of aerosol particles is an important factor in their tox-

icity; thus, each cell contains a sampled function of par-

ticle concentration versus diameter. The full dataset con-

tains nine particle types, however we only consider SO4.

The dataset is organized as a 5-dimensional rectilinear grid:

a time dimension (25 timesteps), three dimensions spatially

(185x185x15), and a particle diameter dimension (9 bins).

Despite the low spatial resolution, this dataset is approxi-

mately 450 megabytes.

3. Related Work

Function fields in visualization have been under-studied

compared to scalar and vector fields. Direct rendering of

function fields is difficult. Two-dimensional datasets can be

treated as 3D volumes or 2D animations [ESG97]. Three-

dimensional datasets become 4D volumes or a time-series of

3D volumes [HAF∗96]. Using animation to visualize the ex-

tra dimension in function fields is difficult when the dataset

itself is time-varying.

Fields with functions representing statistical distribu-

tions have been referred to as “distribution fields”. Kao et

al. [KLDP02, KKL∗05] use parametric statistics and shape

descriptors to give an overall impression of two-dimensional

distribution fields. Luo et al. [LKDP03] transform distribu-

tion fields into scalar fields using unary operators upon in-

dividual distributions. For example, a three-dimensional dis-

tribution field could be visualized by volume rendering the

standard deviations of each distribution in the field.

For hyperspectral imagery, each pixel may be colored by

integrating the radiance versus wavelength functions with

color matching functions. Examples of color matching func-

tions include CIE XYZ, which models the wavelength-

dependent response of the human eye [WS00], and spec-

trally weighted envelopes of Jacobson and Gupta [JG05].

Color matching functions, while useful for hyperspectral im-

agery, do not generalize well to function fields from other

application domains.

Hyperspectral imagery may also be analyzed using a li-

brary of measured spectral signatures for various natural and

man-made materials. Linear spectral unmixing [SD93] esti-

mates the ratios of materials present in each pixel. Of course,

spectral unmixing is domain-specific since it relies upon the

spectral behavior of mixed-material regions, as well as the

availability of a spectral library.

Principal Component Analysis (PCA) [Jol02] is an ubiq-

uitous dimension reduction technique. For a set of vectors

in m-dimensional space, PCA identifies a set of ordered, or-
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thonormal basis vectors (“components”). Transforming the

data vectors into a space spanned by the first k, k < m, of

these basis vectors yields a dimension reduction that maxi-

mally preserves variance. PCA has been used to display hy-

perspectral imagery by associating components with color

channels to produce color images [TKDO03].

Multidimensional scaling (MDS) [CC00] is often used to

embed high-dimensional, non-spatial data samples in a low-

dimensional metric space. The goal of the embedding is to

create an analogue between similarity in the original data

space and distance in the new space (i.e., similar samples are

close, dissimilar samples are distant). Once MDS has been

performed, the low-dimensional space may be visualized to

study the similarity structure of the original data. Spatial data

is ill-suited to MDS visualization since the original spatial

layout of the data samples is lost.

In this paper, we introduce interactive techniques for iden-

tifying and extracting features in function fields. We do not

assume that datasets can be explored using a static color

mapping or via a single statistic. Instead, users interactively

direct the generation of scalar distance fields, within which

features may be visually identified. In addition to a distance-

based visualization approach, we describe how features may

be extracted using queries. The combination of visual explo-

ration and feature extraction creates a powerful framework

for quantitative analysis and annotation.

4. Feature Identification

In this paper, we consider function field “features” to be spa-

tial regions in which the 1-dimensional functions are similar.

This is a common definition of features in unsupervised clas-

sification (see [JMF99]), and proves useful in many applica-

tion domains.

Take a body of water in a hyperspectral image. Pixels of

water will form regions, and their spectral signatures will be

largely similar (often interpreted by our eyes as greenish-

blue). The same definition of features applies in the CR-

PAQS dataset. Pollution is created in cities, factories, etc.,

and transported by winds or other diffusive factors. Thus,

it is reasonable to expect functional similarity in particulate

pollution features.

Our approach is to produce visualizations that support the

feature identification process by highlighting similarities and

differences within function fields.

We begin by defining a distance metricD, representing the

dissimilarity between two 1-dimensional functions, a and b,

each with m samples. Given a weight wi ∈ [0,1] for each
sample, i = 1, . . . ,m, we use a weighted Euclidean distance
metric:

D(a,b) =

(

m

∑
i=1

wi (ai−bi)
2

)
1
2

. (2)

The sample weights are modifiable, providing users with a

degree of control over the distance metric.

From an n-dimensional function field F , the above metric

is used to generate an n-dimensional scalar field S. The scalar

value at point p is the distance in function-space between fp
and the 1-dimensional function fc at a user-positioned probe

c ∈ R
n:

S : p ∈ R
n
→ D( fp, fc). (3)

The probe is directly positioned in two dimensions using a

mouse. In three dimensions, the probe is positioned using a

“full space cursor” [NDRO87].

Prior to visualization, the field S is normalized such that

its values are in the range [0,1]. Traditional rendering tech-
niques may be applied to S since it is a scalar, rather than

function, field: two-dimensional function fields become im-

ages, while three-dimensional fields may be volume ren-

dered.

We use weighted Euclidean distance due to its effi-

cient evaluation, despite the availability of distance met-

rics tailored to sampled functions (e.g., Earth Mover’s

Distance [RTG98], and Chang’s spectral distance met-

rics [Cha00]). This efficiency allows users to reposition

the probe, modify the sample weights, and generate new

distance field renderings interactively for moderately-sized

datasets.

Figure 2 shows distance field renderings for feature iden-

tification within two- and three-dimensional function fields.

In 2(a), the user has positioned the probe over water in a

hyperspectral image. As expected, other water pixels have

low distance values (blue) since their functions are “close”

in function-space to the probe function. In 2(b), the dis-

tance field of the CRPAQS dataset shows both low (blue)

and high (red) distance regions located over the central San

Joaquin Valley, California, U.S.A. In the high distance re-

gion, medium-sized SO4 particles have higher concentration

than at the probe.

4.1. Collisions

Generating and rendering distance fields enables visual fea-

ture identification. “Collisions” can occur when dissimilar

functions map to similar distances with respect to the probe.

Consider Figure 2(a); features with functions mapping to

high distances (red) include certain types of buildings and

golf courses. The real similarity between these functions is

that they are dissimilar to water.

Collisions are not unique to our mapping from functions

to scalar values; for example, they also occur in [TKDO03,

JG05,LKDP03] as described in Section 3. Unlike other pro-

jections, however, our method allows collisions to be re-

solved easily, and interactively, by the user.

Collisions may be resolved by changing the probe loca-

tion, and thus the function to which all other functions are
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(a) Hyperspectral Image (b) CRPAQS Dataset

Figure 2:Distance field renderings for feature identification within two- and three-dimensional function fields. In (a), we show a

distance field for a hyperspectral image. The probe is positioned over water. As expected, other water pixels have low distance

values (blue) due to functional similarity. Features with functions mapping to high distances (red) include certain types of

buildings and golf courses. In (b), we show a distance field of the CRPAQS dataset. The dark blue and red regions are located

over the central San Joaquin Valley, California, U.S.A.

compared. Alternately, the user may modify the distance

metric by changing the sample weights wi, i = 1, . . . ,m.
In addition to resolving collisions, sample weights may be

modified for illustrative visualizations of function fields – it

is simple to emphasize similarities or play down differences

between functions (and vice versa).

5. Feature Extraction

Combining visual exploration with feature extraction opens

the door to performing quantitative analysis, such as calcu-

lating the size of a body of water or determining how long

a pollution source remains active. It also makes it simple to

annotate function fields with overlays.

Features in function fields are spatial regions in which the

1-dimensional functions are similar. While it is tempting to

use one of the distance fields generated during exploration

for feature extraction, user interaction might be needed to

resolve collisions. In order to make feature extraction robust

and reusable across multiple datasets we perform extraction

in function-space.

We define a feature query as a set of constraints over the

closed interval I. For a dataset with m samples per function,

these constraints take the form of minimum-maximum inter-

valsQi for each sample, i= 1, . . . ,m. A point p in the dataset
with 1-dimensional function fp, is part of the feature if and

only if fpi ∈ Qi for i= 1, . . . ,m.

In our system, users first explore function fields using dis-

tance field renderings. Once a feature has been identified,

(a) Golf Courses

(b) High SO4 Concentration

Figure 3: In (a), we show the function-space constraints

(green) used to extract golf courses from hyperspectral im-

ages (Figure 4). In (b), we show the constraints (red) used to

extract regions from the CRPAQS dataset in which medium-

sized SO4 particles have high concentration (Figure 5). In

both, the black curves are functions that satisfy the feature

queries.
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(a) (b)

Figure 4: Hyperspectral images annotated with overlays produced by three queries: golf courses as shown in Figure 3(a)

(green), water (blue), and evaporation ponds containing brine shrimp (red). The feature queries were constructed by a user

exploring the hyperspectral image of Moffett Field and the San Francisco Bay in (a). The image in (b) shows an area approx-

imately 18 kilometers to the east of Moffett Field; golf courses and water were extracted using the pre-constructed queries

without modification.

the user is able to sketch a pair of curves that define the fea-

ture query’s minimum and maximum constraints. For exam-

ple, Figure 3(a) shows the constraint curves, in green, used

to extract golf courses from hyperspectral images; the black

curve plots the function of a pixel from a golf course. Fig-

ure 4 shows two hyperspectral images annotated with over-

lays produced by three queries: golf courses (green), water

(blue), and evaporation ponds containing brine shrimp (red).

Defining features as a set of constraints in function-space

makes queries reusable across multiple datasets. The queries

used to extract features in Figure 4 were constructed by a

user exploring the hyperspectral image of Moffett Field and

the San Francisco Bay in 4(a). The image in 4(b) shows

an area approximately 18 kilometers to the east of Moffett

Field; golf courses and water were extracted using the pre-

constructed queries without modification.

Feature queries work on datasets of arbitrary spatial di-

mension, and upon time-varying datasets. Figure 3(b) shows

a simple query that can be used to extract regions from the

CRPAQS dataset in which medium-sized SO4 particles have

high concentration. In time-varying datasets it is often pos-

sible to reuse a query across multiple timesteps. Figure 5

shows distance field renderings and the regions extracted

by the aforementioned query for timesteps 0, 5, 10, 15, and

20. For clarity we only show ground layer images from the

three-dimensional results.

6. Implementation & Performance

The datasets used in this paper were previously described in

Section 2. The first dataset contains multiple AVIRIS hyper-

spectral images of Moffett Field and the San Francisco Bay

area. The second function field dataset is an air quality sim-

ulation from the California Regional Particulate Air Quality

Study (CRPAQS).

We have tested our methods on a 2.6 Ghz Mobile Pen-

tium 4-M laptop with 1.0 Gb RAM and a nVidia GeForce

4200 Go graphics card. Figure 6 shows part of our software

system. The upper plot shows the probe function in black,

and the constraint curves in red defining the query that ex-

tracts evaporation ponds containing brine shrimp from hy-

perspectral images. The lower plot shows the sample weights

curve. The minimum-maximum constraint curves and sam-

ple weights curve are modifiable by the user; control points

can be added, removed, and manipulated. The right side of

the interface provides more controls for feature queries.

Since our approach to feature identification is user-driven,

moving the probe location, changing sample weights, and

generating the resulting distance fields must be interactive.

We have used Single Instruction, Multiple Data (SIMD)

instructions (e.g., SSE2 for Intel processors) to vectorize

the code for the generation of distance fields (Equations 2

and 3). Table 1 shows timing results for distance field gener-

ation. For hyperspectral images, distance fields are generated

at the rate of approximately 6 per second; for the CRPAQS

dataset, approximately 25 per second. Generating distance
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Time 0 5 10 15 20

Distance Images

Query Images

Figure 5: Distance field renderings generated from the CRPAQS dataset, and the results of using the feature query shown in

Figure 3(b) to extract regions in which medium-sized SO4 particles have high concentration. For clarity we only show ground

layer images from the three-dimensional results.

fields for all 25 timesteps in the CRPAQS dataset can be per-

formed in about 1 second.

Feature queries also evaluate rapidly in our system, thus

allowing users to interactively change function-space con-

straints. Table 1 shows timing results and coverage for query

evaluation. In all function field datasets, multiple queries

may be evaluated per second. Coverage, the percentage of

total cells returned by a query, is an example of quantitative

analysis facilitated by feature extraction.

7. Discussion

Function fields are a relatively new data type in scientific vi-

sualization. We have presented methods for identifying and

extracting features in function fields. Our methods are in-

teractive, and have been useful for exploring, annotating,

and performing quantitative analysis on function fields from

multiple application domains.

As with any research, however, current limitations moti-

vate future work. Some particularly salient topics include:

• Features are assumed to be spatial regions of similar func-

tions. This definition is general, and applicable to many

application domains, however it is not universal. It is easy

to imagine applications in which features are not regions,

but points, surfaces, or something else entirely.

• No optimizations have been presented for maintaining in-

teractivity while working with large function fields.

• The construction of feature queries involves some trial

and error. As a first approximation, users typically form

the constraint curves into a rough envelope around an

exemplar function. Further adjustments to the constraint

curves allow the user to fine-tune the query.

Figure 6: Part of our software system. The upper plot shows

the probe function in black, and the constraint curves in red

defining the query that extracts evaporation ponds contain-

ing brine shrimp from hyperspectral images. The lower plot

shows the sample weights curve. The minimum-maximum

constraint curves and sample weights curve are modifiable

by the user; control points can be added, removed, and ma-

nipulated. The right side of the interface provides more con-

trols for feature queries.
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Dataset Distance Field Generation (ms) Query Execution (ms) Coverage

Hyperspectral Image 165

Water 320 46.11 %

Golf Courses 218 0.82 %

Evaporation Ponds 257 3.66 %

CRPAQS 40 High SO4 Concentration 23 0.85 %

Table 1: Timings and coverage. For hyperspectral images, distance fields are generated at the rate of approximately 6 per sec-

ond; for the CRPAQS dataset, approximately 25 per second. Regions extracted by the feature queries are shown in Figures 4(a)

and 5.
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