
EUROGRAPHICS - IEEE VGTC Symposium on Visualization (2005)
K. W. Brodlie, D. J. Duke, K. I. Joy (Editors)

Interactive rendering of massive terrains on PC clusters

V. Gouranton1, S. Madougou1,2, E. Melin1 and C. Nortet1

1Laboratoire d’Informatique Fondamentale d’Orléans, LIFO Orléans, France
2BRGM, France

Abstract
We describe a parallel framework for interactive smooth rendering of massive terrains. We define a parallelization
scheme for level of detail algorithms in cluster-based environments. The scheme relies on modern PC clusters
capabilities to address the scalability issue of level of detail algorithms. To achieve this, we propose an efficient
tile-based data partitioning method that allows both reducing load imbalance and solving the well-known border
problem. At runtime level of detail computations are performed in parallel on cluster nodes. A hierarchical view
frustum culling combined to a compression mechanism harnessing the frame-to-frame coherence are used to
drastically reduce the inter-tasks communication overhead. We take into account level of detail algorithms visual
quality issue by providing geomorphing and texturing supports. We are able to interactively and smoothly render
terrains composed of hundreds of millions to billions of polygons on a cluster of 8 PCs.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Parallel simplification,
Virtual Reality, Real-time Rendering, Level of Detail Algorithms

1. Introduction

These last two decades, scientific visualization becomes an
attractive way for gaining deep understanding in scientific
data. Interactive rendering of these data gives researchers
the ability to do faster visual data analysis. Due to strides in
data acquisition technologies (high-resolution 3D scanners,
cameras, scientific simulation), these data can reach gigan-
tic sizes. For instance, USGS elevation data for Washing-
ton state at a horizontal resolution of ten meter and a ver-
tical resolution of ten centimeter represent 1,4 billion ele-
vation values [was]. Visualizing this kind of data in an in-
teractive way is not a trivial task [HDJ04]. As the data ob-
viously do not fit in the system memory, direct rendering
cannot be used even with high-end graphics dedicated in-
frastructures such as SGI machines [MBDM97]. These ar-
chitectures generally provide memory and compute capa-
bilities that can satisfy many visualization needs. However,
their restricted scalability and extensibility makes them not
appropriate for the rapid increase of today’s datasets. An
alternative way is to use level of detail (LOD) algorithms.
Given a model to be visualized, their goal is to decrease
the size of the data sent through the graphics pipeline by
discarding the unnecessary detail while preserving an ac-

ceptable visual quality. Although they induce some CPU
load overhead, LOD algorithms give the ability to balance
between interactivity and detail for large models visualiza-
tion. First LOD algorithms require the data to fit entirely in
the system memory [LKR∗96, Hop96, DWS∗97]. This natu-
rally bounds their usage for huge datasets. In order to bypass
this bottleneck, many desktop-based LOD algorithms resort
to out-of-core mechanisms. This often leads to considerable
CPU load and memory footprint overheads. To ensure inter-
activity by hiding the latency due to the external memory
access, they must implement complex prefetching mecha-
nisms. However, any extra time spent in LOD algorithm in-
exorably results into frame rate degradation, thus into inter-
action disruption.

For interactive rendering of huge datasets, both LOD tech-
niques and high-performance computing are required. More-
over, the anatomy of super-computers is quickly and deeply
changing. Clusters of commodity components are becoming
the leading choice architecture. They are now usual in the
supercomputer top 500 [top]. They are scalable and modu-
lar with a high performance-price ratio. These architectures
are proved efficient for classical (not interactive) intensive
computations. In scientific visualization field, several work

c© The Eurographics Association 2005.

http://www.eg.org
http://diglib.eg.org

V. Gouranton, S. Madougou, E. Melin & C. Nortet / Interactive rendering of massive terrains on PC clusters

[ARZ03, GJR03] showed the effectiveness of using PC clus-
ter as a means of complex computations (simulation) while
the rendering is performed in a multi-display environment.

By using such an environment for LOD algorithms, the
major issues related to massive terrain rendering can be ad-
dressed. Indeed, as the number of nodes is theoretically un-
bounded, using parallelism makes complex computations
achievable without significant overhead. In the same way, by
distributing the terrain data on cluster nodes system memory,
the size of manageable terrains depends only on the number
of nodes. However, as for external solutions, one must face
the communications overhead induced by bus and network
traffics. Currently, efficient inter-connecting networks exist
for clusters. Their throughput now outperforms that of to-
days hard discs. Furthermore, in the particular case of graph-
ical applications, in addition to the LOD algorithm which
itself is a data reduction process, ways for further reducing
the data transfer can be implemented by harnessing intrinsic
graphical properties.

LOD algorithms usually require building a hierarchi-
cal structure that encompasses all levels of detail. As
this preprocessing may be very time-consuming, the first
parallelization attempts have been used to tackle this is-
sue [ESV99, DLR00]. Other approaches really parallelize
LOD computations [BW00, GLMM04]. In [BW00] a mas-
ter/slaves paradigm is proposed. In this scheme, slaves per-
form the LOD computations and the resulting data are gath-
ered on master for rendering. The master node becomes a
bottleneck for the scalability of this approach. In a previous
work [GLMM04], we present a cluster-based parallelization
framework for height fields that does not suffer from this
bottleneck. However, this work presents some weaknesses.
No load balancing support is provided. It does not propose
a satisfactory solution for the partition boundary simplifi-
cation issue nor it benefits from frame-to-frame coherence.
Moreover, there is no support for visual quality improvement
such as geomorphing or texturing.

This paper describes a comprehensive parallelization
framework built on the model described in [GLMM04]. Crit-
ical issues such as the border problem and load balancing
are solved. Essential optimizations that benefit from graphi-
cal properties such as culling and frame-to-frame coherence
are proposed to drastically reduce the communication over-
head. In addition, techniques such as geomorphing and tex-
turing, are used to improve the visual quality of the render-
ing. The paper is organized as follows: in section 2 we briefly
recall our previous work. Section 3 describes the paralleliza-
tion scheme in details. The way communication overhead
is minimized is explained in 4. Geomorphing and texturing
are described in 5. Algorithm performance is given through
benchmarks in section 6. We conclude and plan for future
work in section 7.

2. Background

In [GLMM04], we present a cluster-based parallel simplifi-
cation framework for height fields (fig. 1). This framework
partitions cluster nodes into visualization nodes and LOD
nodes. The former do only rendering whereas the latter do
only computations. At a preprocessing stage, initial height
field data are partitioned into n partitions where n is the num-
ber of LOD nodes. During the execution, before each step
of LOD computations, computations nodes receive view pa-
rameters (view point and frusta) from visualization nodes.
Then, they independently perform the LOD algorithm on
their partition. Resulting data are culled against visualiza-
tion nodes frusta before being sent for rendering. The way

��� ���

�������	��
�� �������	��
��

�������� ��������

���������	
����

���

���

�	�	��	�����
����

�

�
�
�
��
��

�
�
�

�
�
�
�
�
��
�
�����
��

���������	��	���	��
	������������

���

Figure 1: A parallelization model for LOD.

the initial data are partitioned does not allow to reach a sat-
isfying load balancing. As partition is done on a block-per-
node basis, load balancing is strongly related to the user’s
interaction. Moreover, this work does not address the border
problem because LOD computations are performed totally
independently inside tiles whereas some overlapping data
are needed. Indeed, [GLMM04] proposes a parallelization
of Roettger’s algorithm [RHSS98]. This algorithm dynami-
cally constructs a hierarchical structure, called quadtree, that
represents the most relevant data with respect to the current
view point and the local terrain topology. The depth of the
quadtree at which appears a node is called its LOD value.
The subdivision process is controlled by a decision variable
f evaluated at each quadtree node (for the sake of clarity, we
will call it block). It depends on the block’s distance from
the current viewpoint as well as the local terrain topology.
The local terrain topology is measured as the terrain rough-
ness around the block (called its d2 value). Thus, the deci-
sion variable of a given block also depends on the adjacent
blocks. This information is used to constrain the LOD dif-
ference between adjacent blocks to never exceed one. We
call this constraint the fundamental constraint. As long as
this constraint is fulfilled, T-junctions, that cause cracks,

c© The Eurographics Association 2005.

V. Gouranton, S. Madougou, E. Melin & C. Nortet / Interactive rendering of massive terrains on PC clusters

are avoided by skipping drawing central vertices on shared
edges between blocks of different LOD values (see figure
2). While using a sequential algorithm, we can easily satisfy
this constraint as we hold the entire neighborhood informa-
tion about each block. Roughness values are then computed
in a consistent manner. However, in a parallel framework,
adjacent blocks may belong to different partitions. For these
blocks, there is a lack of complete neighborhood informa-
tion. Thus, independently computing d2 values inside the
partitions, as done in [GLMM04], leads to inconsistencies
in border blocks d2 values and thereafter to cracks.

Figure 2: Lacking complete neighborhood information
leads to cracks between adjacent blocks of different parti-
tions.

3. The Parallelization Scheme

As usual in parallel computing, our algorithm is made up
of two phases: a data partitioning phase and a computations
phase. Data partitioning is done statically in a preprocess-
ing stage whereas computations step occurs at each frame
and may lead to inter-tasks communications. The three key
points in writing efficient parallel algorithms, namely inter-
tasks communications, load balancing and global coherence,
are taken into account. Inter-tasks communication is the
topic of the next section. The way data are partitioned takes
care of load imbalance and it is discussed in subsection 3.2.
The global coherence issue, known as the border problem in
the field of LOD, is described and addressed next.

3.1. Addressing the Border Problem

Spatial decomposition is not a novel idea in
the LOD field. Many out-of-core algorithms
[CRMS02, CGG∗03, Hop98, Ulr02, ESC00, YSGM04]
partition the initial data into tiles (some authors call them
clusters, segments or chunks) to speed up external data ac-
cess. A known issue related to this partitioning is the border
problem. This problem occurs because LOD algorithms
need to know about the neighborhood of a particular simplex
in order to determine whether it has to be simplified, refined
or left unchanged. However, when data are partitioned, this
information lacks for border simplices inside the partitions.
Several authors have been faced this issue. For instance,

in [Hop98], Hoppe describes one of the first out-of-core
LOD algorithms which partitions initial terrain data into
rectangular blocks. After simplification, adjacent blocks are
stitched together in a hierarchical fashion to form larger
blocks. To ensure a conforming stitching, blocks boundaries
are left unchanged. While going up in the hierarchy, blocks
boundaries are coarsen but at the price of an additional
processing. Other authors simply hide the visual artifacts
due to the border problem either by using vertical skirts
to fill the cracks around the chunks [Ulr02] or by using
texturing [BDH00].

In fact, in order to solve the border problem, some infor-
mation about neighboring simplices are needed for each bor-
der simplex [CRMS02]. There are several ways to do this.
One way is to fetch the missing information at runtime. This
could be costly, especially in a parallel computing context.
So, we adopt an alternative way which consists in associat-
ing additional neighborhood information into partitions data
at the preprocessing stage and then doing some computa-
tions to recover the missing information. As stated in sec-
tion 2, in the LOD algorithm we used, when the fundamen-
tal constraint is fulfilled, the only information needed by a
block about its neighbors is whether they are refined or not.
This information is obtained by computing the decision vari-
able f of those blocks. Thus, we must fulfill two conditions
in order to guarantee a solution to the border problem:

1. satisfying the fundamental constraint across partitions
boundaries

2. knowing foreign neighbor blocks subdivision state for
each border block

To satisfy the first constraint, the d2 values must be com-
puted as described in [RHSS98], but on the entire dataset
and before the partitioning stage occurs. To satisfy the sec-
ond condition for a given border block, we must be able to
evaluate f for each adjacent block belonging to another tile.
Except the d2 value, all parameters needed to evaluate the
decision variable for adjacent blocks can be computed from
the border block. So, in addition to its own d2 values, a tile
must store the d2 values of neighboring tile blocks. These
contiguous blocks follow a binary tree pattern, and as neigh-
boring tiles number is at most four, the number of additional
d2 values to record is 4 ∗ ∑n−1

i=0 2i = 4 ∗ (2n
− 1). This rep-

resents a few percent of the initial tile data (3% for n=7 for
instance).

3.2. Data Partitioning

Data distribution is a critical stage in parallel computing.
The parallel algorithm efficiency heavily depends on it. The
global task and data must be partitioned into subtasks and
subsets that are ideally independent and balanced. Apart
from embarrassingly parallel algorithms, these goals are dif-
ficult to reach. In the LOD field, partitions size must be care-
fully chosen: they must not be too small nor too large. In

c© The Eurographics Association 2005.

V. Gouranton, S. Madougou, E. Melin & C. Nortet / Interactive rendering of massive terrains on PC clusters

Right
neighboring

tile
Tile

d2 value

Figure 3: Binary tree of neighboring d2 values at the border
of the tile right edge.

one side, if they are too large, the navigation can introduce
load imbalance. On the other side, cutting them too smaller
can limit the drastic simplification ability of the algorithm as
the number of partitions determines its minimum achievable
resolution. Let’s assume our initial terrain is a square of side
(2n +1). On one hand, if terrain is not square, we extend its
side to the power of 2 immediately greater than the actual
side, the added data being skipped at drawing phase. Next,
terrain data are partitioned into square tiles of side (2m +1),
where m <= n. Such tiles perfectly fit to Roettger’s algo-
rithm and can be processed on different machines. The num-
ber m is chosen such that load imbalance is minimized and
the minimal resolution is acceptable. To achieve this, tiles
are assigned to the computation nodes using a round-robin
pattern. Thus, whatever the navigation, each computations
node has some work to do. Moreover, sending the simplified
data to the visualization nodes is not done on a per-tile basis.
Instead, each computations node data are gathered together
before being sent, thus optimizing the network bandwidth
use.

4. Minimizing communication overhead

Although they have evolved, networks still remain a bottle-
neck for data transfer-intensive applications on PC clusters.
Therefore, sending all data at each frame from LOD nodes
to visualization nodes would bound the model scalability.
Instead, we propose a scheme which relies on culling and
frame-to-frame coherence to considerably reduce the data
transfer overhead by avoiding sending non visible and non
modified data.

4.1. Hierarchical frustum culling

Large terrain visualization highly benefits from frustum
culling since usually only a small part of the whole model is
visible at a time. Systems for interactive rendering of large
datasets often comprise many optimization techniques. Hier-
archical view frustum culling is one of the most interesting
ones. Combining it with LOD allows to maintain a constant
frame rate. LOD is more effective for large views of the 3D
object whereas frustum culling reaches its full potential at
close ranges. In addition, in our scheme, all distribution fea-
tures take advantage of this combination: faster LOD com-

putations with early geometry pruning and lighter commu-
nication, both leading to an effective rendering. In order to
perform the culling, a hierarchy of bounding boxes is gener-
ated at the preprocessing time. As for d2 values, a bounding
box is computed for each possible quadtree block. At run-
time, the view frustum culling is carried out in two stages :
coarse-grained by not processing every tile fully outside the
viewing frustum, and then fine-grained inside the LOD pro-
cess when traversing each tile quadtree. Storing a complete
hierarchy of bounding boxes over each tile quadtree would
represent up to 66% of the original data. Actually a reason-
able tradeoff is to limit the hierarchy to one or two level(s)
below its maximum depth, the memory overhead is hence-
forth of 16% or 4% only whereas the culling efficiency is
still maintained.

4.2. Exploiting Temporal Coherence

Despite of LOD which continuously modifies the data visi-
bility state, we observe that, the frame-to-frame coherence
property still holds inside tiles. So, between two frames,
large parts of the rendered data do not change even with in-
teraction. On the basis of this observation, we implemented
a mechanism allowing modified data detection. It should
be noted that this stage takes place after the culling step.
Therefore, as it is applied to already reduced data, it does
not induce a significant CPU overload. Furthermore, the in-
troduced memory overhead is compensated by a substantial
reduction of communication overhead . This mechanism is
very similar to Unix commands diff and patch. We recall that
after LOD algorithm is performed, data are sent to visualiza-
tion nodes as triangle fans. For each tile, we record a copy
of the list of fans being rendered which is the result of the
previous LOD computations. At the end of current computa-
tions, a new list of fans is generated. A diff operation occurs
between this list and the saved one. The delta is then sent
to the visualization nodes which perform a patch operation
between the incoming data and the previously rendered data.
This operation results in updating the rendered data with re-
spect to the current view parameters.

5. Rendering Quality

Thanks to advances in graphics technologies, graphics users
become more demanding in interactivity and high visual
quality even for huge models. LOD-specific visual issues
are not tolerated anymore. Indeed, LOD obviously produces
lower detail rendering in simplified regions. Moreover, as the
view point moves, detail is suddenly added or removed. This
leads to visual artifacts known as vertex popping. There are
several ways to solve these issues. Terrain texturing can be
used to maintain an acceptable detail even in simplified ar-
eas. Vertex popping is usually solved by using colors blend-
ing or by implementing a geometrical morphing technique
(geomorphing) [Hop97]. However, geomorphing is more
widely used than blending. Instead of going from one level

c© The Eurographics Association 2005.

V. Gouranton, S. Madougou, E. Melin & C. Nortet / Interactive rendering of massive terrains on PC clusters

of detail to another in one step, geomorphing technique con-
sists to smoothly morph vertex positions between two con-
secutive levels of detail. This smooth transition is gained at
the cost of an additional processing. So, it naturally benefits
from our parallel framework as the induced CPU workload
is distributed on all computations nodes.

5.1. Geomorphing

Since its introduction by Fergusson et al. [FEK01], many
LOD algorithms have incorporated the morphing tech-
nique. Different approaches are used for its implementation.
Distance-based approaches use transition zones to blend the
geometry between levels of detail [COL96, Paj98]. Time-
based strategies use a fixed time interval as interpolat-
ing parameter [Hop97, DWS∗97]. These approaches may
induce important computational overhead because finding
the appropriate interpolating parameter is not a trivial task
[Hop97]. Another approach consists in using the error metric
used in the algorithm to parameterize the morphing process
[RHSS98, CE01] . What is common to all approaches is that
they all may introduce cracks because of the need to early
know the interpolation final positions before the subdivision
that creates them occurs.

In [RHSS98], the morphing parameter (called the blend-
ing factor b) is computed using the decision variable f (the
metric error). However, instead of computing the blend-
ing factor as specified in that paper, we use the formula
b =

(1− f)
(0.5+0.5∗ f cmin− f) [ter] (f cmin being the minimum of

the child blocks f values) that takes into account children
states. This is essential in order to prevent a block having a
child while still morphing. Moreover it allows more linearity
and more smoothness to the morphing process.

Our parallel framework perfectly fits to this technique (see
figure 4). However, due to the border problem, the cracks
occurrence is even more important in our model than the
sequential ones. But as the blending factor depends on f and
that the global consistence issue regarding this parameter is
solved with the border problem, our implementation is free
of geomorphing cracks.

Figure 4: New vertices at each level of refinement. Only
these vertices have to be geomorphed, while corner ones
stay at the same 3D position.

5.2. Texturing

Texture data represent another important category of terrain
data. In many applications, terrain data are associated with
another layer of data such as a large satellite image, gener-
ally in the form of a texture handled by the graphics card
[DBH00, BDH00].

To fit the texturing to our tiling framework, we also adopt
a tiled texturing approach [Ulr02]. At preprocessing stage,
we compute a texture tile for each terrain tile using lightmap-
ping and multi-texturing. These additional tiles are managed
by the visualization nodes at rendering time.

Using lightmaps leads us to a static lighting based on the
original terrain model. We found this technique more suit-
able to our framework than dynamic lighting that could re-
quire more graphical resources and lead to disturbing effects
as we do not provide yet morphing mechanism for lighting
attributes. In contrast, our approach avoids this drawback
and it requires only one or two bytes per texel which can
be compressed using advanced features of modern graph-
ics cards. An alternative way would be to distribute light-
ing information on computations nodes, packed with height
data. But lighting precision will follow the LOD simplifica-
tion scheme, which leads to unexpected appearance in most
simplified areas.

Texturing may also be used to manage missing values by
exploiting alpha texturing. Missing data are present in many
areas such as GIS. In this framework, we use them to ful-
fill the tile size constraint by setting to ’missing’ all values
beyond the real boundary of the tile.

Finally, large scenery textures may be difficult to han-
dle as we do not provide distribution mechanism for tex-
ture data. However, since our framework frees visualization
nodes from unnecessary geometry storing and processing,
the whole graphical resources are available for addressing
a maximal video memory, using AGP memory at full extent
or even running out-of-core techniques such as clip-mapping
[TMJ98].

6. Performance

We perform our tests on a linux cluster of 8 PCs, each
equipped with 1 Pentium 4 processor, 1 GB of RAM and
1 NVIDIA GeForce FX 5900 graphics card with 256 MB of
video memory. The nodes are connected by a Gigabit Eth-
ernet network over TCP/IP. The same screen resolution of
1024x768 is used in all configurations. We use the publicly
available USGS Washington state dataset [was] for all tests.
The flythrough over the terrain is fixed in order to keep the
interaction almost identical in all cases. As our framework
is a tile-based system, we can load a variable number of
tiles in order to change our dataset size. We choose a tile
size of 257x257. Changing the granularity of the tiles af-
fects load balancing and the minimal global resolution. This

c© The Eurographics Association 2005.

V. Gouranton, S. Madougou, E. Melin & C. Nortet / Interactive rendering of massive terrains on PC clusters

resolution is set to a value that always ensure a good approx-
imation of the model. The parallel environment used is the
MPI (see www-unix.mcs.anl.gov/mpi/mpich/) communica-
tion library and we use Net Juggler [AGL∗02], as parallel
rendering middleware. LOD computations and the render-
ing are synchronized at frame level by Net Juggler. In the
remainder of the section, we note m−n a setup composed of
m visualization nodes and n computations nodes.

Using the described configuration, an extended version of
the whole USGS dataset representing 3.2 Gigabytes of data
was successfully rendered in a 1−7 setup at an average rate
of 28 frames per seconde (FPS). Each of the 7 computations
nodes was loaded with 3600 tiles of 256x256 points, which
equals to a complete map of 1.65 billions 16 bits height val-
ues. Then, we perform some tests with small datasets. The
tests consist in rendering a fixed-size model using different
setups. This model is made up of 3600 tiles. In the first setup,
we use only one computations node, so that it processes the
whole dataset. The second setup uses 2 computations nodes,
each one dealing with 1800 tiles. The others setups follow
the same pattern. Results being drawn in the dotted curve
of the figure 5, we can observe that after a small speed-up
of about 1.5, the speed-up stays almost constant. This is not
surprisingly for a parallel approach. When data are too small,
the parallelization overhead is not compensated. However,
when the data size exceeds some threshold, the framework
performs at its full efficience.

The purpose of our work is to increase the size of datasets
which can be rendered using level of detail and commodity
clusters. So, our first test consists in checking the algorithm
data scalability. Our experiments showed that when dealing
with geometry only, one needs 3600 tiles to saturate one
node’s main memory (1 GB). So, each computations node
participating to the test is loaded with L1 = 3600 tiles. We
then use the frame rate for the 1 − 1 setup as a reference
and give it the ratio 1. For the 1−2 setup, the global terrain
size is L2 = 2× L1 = 7200 tiles. Thus, as the data size is
two times that of the 1− 1 setup, the frame rate ratio is two
times the observed frame rate divided by the frame rate of
the reference setup. More generally, for a m− n setup, the
global terrain size is Ln = n × L1 and the speed-up is ob-
tained by the formula: frame rate speed-up× Ln

L1
. The results

are summarized in the figure 5. We observe a super-linear
speed-up very close to the optimal linear speed-up. It clearly
emphasizes the data scalability of our approach. The super-
linearity is due to a reduction in the LOD computations time.
Indeed, thanks to the view-dependent nature of the LOD al-
gorithm, whatever the number of computations nodes and
their load, the intensive work is always located around the
nearest areas to the view point. Moreover, we note that we
do not necessarily enlarge these areas by adding more tiles,
so as our algorithm is parallel and load-balanced, the LOD
computations time does not grow in the same proportion as
the dataset size.

Figure 5: Data scalability test.

Tests on the data compression are very conclusive while
not activating geomorphing. 80% to 90% of the data remain
unchanged on the visualization nodes. However, when acti-
vating geomorphing this ratio drops to 50-60% which is not
surprisingly as geomorphing introduces more changing ver-
tices (see figure 6). Using our framework, we distribute these
additional computations on the cluster nodes. As shown in
figure 6, the more they are, the lighter the cost due to geo-
morphing.

Figure 6: Implementing geomorphing introduces important
computation overhead. Observe the distance between the 2
top curves. These curves represent the global computation
time when geomorphing is ON (curve on the bottom) and
OFF (curve on the top).

As stated in section 5, texturing improves the visual qual-
ity. But as the goal of these tests is to clearly establish the
pure scalability of our parallel framework in terms of dataset
size, we do not activate it (see figure 7). But texturing in-
duces no substantial overhead on the rendering, so activating
it do not alter the given results.

c© The Eurographics Association 2005.

V. Gouranton, S. Madougou, E. Melin & C. Nortet / Interactive rendering of massive terrains on PC clusters

Figure 7: Our parallel framework running on USGS Wash-
ington State dataset.

7. Conclusion

We presented a parallel framework for interactive smooth
rendering of massive terrains. The framework based on the
model presented in [GLMM04], gives several improvements
on this previous work. The main contributions concern ad-
dressing unsolved issues in [GLMM04] by solving the bor-
der problem and reducing load imbalance, adding more op-
timizations to further reduce the communication overhead
by providing a hierarchical view frustum culling and a data
compression mechanisms. Moreover, geomorphing and tex-
turing features are given to improve the rendering quality.
As shown by our benchmarks, this allows our framework to
support smooth interactive rendering of very huge terrains.

However, texture data bound our parallel scheme because
they are centralized on the visualization nodes. A solution
will be to distribute those data among computation nodes
which process them and then transfer the resulting color val-
ues to the rendering nodes. Furthermore, terrain data may
be described as ’triangle soup’, our framework is then not
usable. In order to extend its applicability to other types
of dataset such as triangulated irregular networks (TIN) or
time-varying data, we aim at using scattered data approxima-
tion techniques [LWS97] to adapt such models to our frame-
work. In addition, to speed up the local computations, the
high stream processing capabilities of recent graphics pro-
cessors can be exploited.

Acknowledgments

We would like to acknowledge the BRGM (French Geolog-
ical survey) and Région Centre for supporting part of this
work. We also would like to acknowledge Sylvain Jubertie
for setting up the environment for our tests.

References

[AGL∗02] ALLARD J., GOURANTON V., LECOINTRE

L., MELIN E., RAFFIN B.: Net juggler: Running vr jug-
gler with multiple displays on a commodity component
cluster. IEEE VR’02 (2002). 6

[ARZ03] ALLARD J., RAFFIN B., ZARA F.: Coupling
parallel simulation and multi-display visualization on a pc
cluster. In Euro-par 2003 (Klagenfurt, Austria, August
2003). 2

[BDH00] BAUMANN K., DOLLNER J., HINRICHS K.: In-
tegrated multiresolution geometry and texture models for
terrain visualization. Proceedings joint EuroGraphics-
IEEE TCVG 2000 (May 2000). 3, 5

[BW00] BRODSKY D., WATSON B.: Model simplifica-
tion through refinement. Graphics Interface’00 (2000).
2

[CE01] CLINE D., EGBERT P.: Terrain decimation
through quadtree morphing. IEEE Transaction on Visual-
ization and Computer Graphics 2001 7, 1 (January 2001),
62–69. 5

[CGG∗03] CIGNONI P., GANOVELLI F., GOBETTI E.,
MARTON F., PONCHIO F., SCOPIGNO R.: Bdam:
Batched dynamic adaptive meshes for high performance
terrain visualization. Proceedings EG2003 (September
2003), 505–514. 3

[COL96] COHEN-OR D., LEVANONI Y.: Temporal con-
tinuity of levels of detail in delaunay triangulated terrain.
IEEE Visualization ’96 (October 1996), 37–42. 5

[CRMS02] CIGNONI P., ROCCHINI C., MONTANI C.,
SCOPIGNO R.: External memory management and sim-
plification of huge meshes. IEEE Transaction on Visual-
ization and Computer Graphics (2002). 3

[DBH00] DOLLNER J., BAUMANN K., HINRICHS K.:
Texturing techniques for terrain visualization. Proceed-
ings IEEE Visualization’00 (2000), 227–234. 5

[DLR00] DEHNE F., LANGIS C., ROTH G.: Mesh sim-
plification in parallel. ICA3PP’00 (2000), 281–290. 2

[DWS∗97] DUCHAINEAU M., WOLINSKY M., SIGETI

D., MILLE M., ALDRICH C., MINEEV-WEINSTEIN

M. B.: Roaming terrain: Real-time optimally adapting
meshes. IEEE Visualization (1997), 81–88. 1, 5

[ESC00] EL-SANA J., CHIANG Y.-J.: External memory
view-dependent simplification. Computer Graphics Fo-
rum 3, 19 (August 2000), 139–150. 3

[ESV99] EL-SANA J., VARSHNEY A.: Parallel process-
ing for view-dependent polygonal virtual environments.
Proceedings SIGGRAPH’99 (1999). 2

[FEK01] FERGUSSON R., ECONOMY R., KELLY

A.AND RAMOS P.: Continuous terrain level of detail for
visual simulation. ACM Symposium on Interactive 3D
Graphics (March 2001), 111–120. 5

c© The Eurographics Association 2005.

V. Gouranton, S. Madougou, E. Melin & C. Nortet / Interactive rendering of massive terrains on PC clusters

[GJR03] GAUGNE R., JUBERTIE S., ROBERT S.: Dis-
tributed multigrid algorithms for interactive scientific sim-
ulations on clusters. ICAT 2003, Japan (2003). 2

[GLMM04] GOURANTON V., LIMET S., MADOUGOU

S., MELIN E.: a scalable cluster-based parallel simpli-
fication framework for height fileds. EuroGraphics/ACM
SIGGRAPH, Proceedings Parallel Graphics and Visual-
ization’04 (June 2004), 59–65. 2, 3, 7

[HDJ04] HWA L., DUCHAINEAU M., JOY K.: Adaptive
4-8 texture hierarchies. IEEE Visualization ’04 (October
2004), 219–226. 1

[Hop96] HOPPE H.: Progressive meshes. In proceedings
SIGGRAPH’96 (1996), 99–108. 1

[Hop97] HOPPE H.: View-dependent refinement of pro-
gressive meshes. Computer Graphics (In proceedings
SIGGRAPH’97) (August 1997), 189–198. 4, 5

[Hop98] HOPPE H.: Smooth view-dependent level-of-
detail control and its application to terrain rendering.
IEEE Visualization ’98 31 (October 1998), 35–42. 3

[LKR∗96] LINDSTROM P., KOLLER D., RIBARSKY W.,
HODGES L. F., FAUST N., TURNER G.: Real-time,
continuous level of detail rendering of height fields.
Computer Graphics, Proceedings SIGGRAPH’96 (1996),
109–118. 1

[LWS97] LEE S., WOLBERG G., SHIN Y.: Scattered data
interpolation with multilevel b-splines. IEEE Transac-
tion on Visualization and Computer Graphics 3, 3 (July-
September 1997). 7

[MBDM97] MONTRYM J., BAUM D., DIGNAM D.,
MIGDAL C.: InfiniteReality: A Real-Time Graphics Sys-
tem. In Computer Graphics (SIGGRAPH 97) (August
1997), ACM Press, pp. 293–303. 1

[Paj98] PAJAROLA R.: Large scale terrain visualization
using the restricted quadtree triangulation. IEEE Visual-
ization (Proc. IEEE Visualization ’98) (1998), 19–26. 5

[RHSS98] ROTTGER S., HEIDRICH W., SLUSSALLEK

P., SEIDEL H.-P.: Real-time generation of continuous
levels of detail for height fields. Proceedings of the 6th
International Conference in Central Europe on Computer
Graphics and Visualization (February 1998), 315–322. 2,
3, 5

[ter] http://home.planet.nl/ monstrous/. 5

[TMJ98] TANNER C., MIGDAL C., JONES M.: The
clipmap: A virtual mipmap. SIGGRAPH’98 proceedings
(1998), 151–158. 5

[top] http://www.top500.org. 1

[Ulr02] ULRICH T.: Rendering massive terrains using
chunked level of detail control. SIGGRAPH Course Notes
(2002). 3, 5

[was] http://rocky.ess.washington.edu/data/raster/tenmeter/onebytwo10/index.html.
1, 5

[YSGM04] YOON S., SALOMON B., GAYLE R.,
MANOCHA D.: Quick-vdr: Interactive view-dependent
rendering of massive models. IEEE Visualization 2004
(October 2004), 131–138. 3

c© The Eurographics Association 2005.

