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Abstract

In the recent years the advent of powerful graphics hardware with programmable pixel shaders enabled interac-
tive raycasting implementations on low-cost commodity desktop computers. Unlike slice-based volume rendering
approaches GPU-assisted raycasting does not suffer from rendering artifacts caused by varying sample distances
along different ray-directions or limited frame-buffer precision. It further supports direct implementations of many
sophisticated acceleration techniques and lighting models.

In this paper we present a GPU-assisted raycasting approach for data that consists of volumetric fields defined
on computational grids as well as unstructured point sets. We avoid resampling the point data onto proxy grids
by directly encoding the point data in a GPU-octree data structure. This allows to efficiently access the (semi-
transparent) point data during ray traversal and correctly blend it with the grid data, yielding interactive, high-
quality rendering results. We discuss approaches to accelerate the rendering performance for larger point sets and
give real world application examples to demonstrate the usefulness of our approach.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing Algorithms [.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—

Raytracing

1. Introduction

In numerical analysis discretized data defined on computa-
tional grids as well as unstructured point sets are very com-
mon. Often both data types are employed at the same time
in order to model different quantities or phenomena. This is
for example the case for hydrodynamic simulations where
mesh-based and mesh-less representations of the field vari-
ables are popular. As an example consider astrophysical sim-
ulations that approximate interstellar gas densities on struc-
tured grids and compute dark matter components using SPH-
solvers (Smoothed Particle Hydrodynamics solvers) or large
scale galaxy distributions via n-body simulations, resulting
in potentially large grid-, and point-based data sets. Another
example is the visualization of hydrodynamic simulations,
which often imply the display of grid based data sets as well
as point primitives for streamline tracing. Scenarios like this
require appropriate interactive techniques to visualize both
kinds of data simultaneously.

In the last years sophisticated hardware-accelerated vi-
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sualization approaches have been developed for both types
of data. Texture-based direct volume rendering and GPU-
assisted raycasting for grid data and splatting approaches for
point sets are among the most popular ones. Combining both
types of rendering approaches with interactive frame rates
is unproblematic if at least one of them is mapped to com-
pletely opaque colors. In this case the opaque quantity is ren-
dered in a first pass whereas the transparent one is rendered
in a second pass, utilizing hardware-supported depth buffer
and blending operations to combine the two rendering re-
sults in real-time.

The situation is more problematic if both types of data are
mapped to (semi-)transparent colors, since this case requires
interactive, view-dependent depth sorting. Nevertheless this
case is very important since non-opaque splats are a very
popular and natural representation for many types of point-
based data sets and the use of suitable semi-transparent col-
ormaps is often crucial for good depth perception in direct
volume rendering.
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Resampling the point data onto an auxiliary grid structure
and displaying both grids simultaneously using hardware-
supported direct volume rendering is a possible approach
but has its limitations. This either implies low-pass filtering
or using highly refined grids to capture the high frequencies
that are usually contained in the data. In the first case im-
age quality is sacrificed; in the second one texture-memory
usage and computational complexity are increased.

In this paper we propose an approach for hardware-
accelerated, high-quality volume rendering of grid data and
unstructured point sets. Our algorithm is based on GPU-
assisted raycasting. The point data is organized in an octree
that is encoded using 3D textures to efficiently access the
data on the GPU and enables pixel-accurate depth sorting of
the data fields. We further propose several acceleration tech-
niques to improve rendering performance by reducing the
number of sampling operations. The resulting approach is
applied to visualize real-world simulation results.

2. Related Work

The most popular hardware-accelerated techniques for di-
rect volume rendering of data on structured grids are texture-
based slicing and GPU-assisted ray-casting approaches.

The basic idea of texture-based volume rendering, intro-
duced in 1993 [CN93], is to approximate the volume ren-
dering integral by mapping the data volume to a 3D-texture,
respectively a stack of 2D-textures and to exploit graphics
hardware to extract sets of slices from the volume. The re-
sulting slices are rendered in a view-consistent order and
their color intensities are combined by hardware-accelerated
framebuffer blending. The algorithm has been extended in
many ways to incorporate sophisticated acceleration tech-
niques and optical models, see e. g. [KPHE(02, EKEOla,
GWGS02, WWH*00].

With the advent of programmable graphics hardware that
supports flexible fragment programs, it was feasible to per-
form the ray-integration on a per-pixel basis at interactive
frame rates on standard desktop computers, as proposed
in [RGW*03,KWO03, SSKEO0S5]. In this approach a fragment
program is executed for each pixel that is covered by the
projected bounding box of the data volume. The ray is pa-
rameterized in texture coordinates and the volume render-
ing integral is computed within the shader. GPU-assisted
raycasting is very attractive, since it enables a direct re-
alization of advanced shading models and does not suf-
fer from typical rendering artifacts of slice-based methods,
which are caused by limited precision for the blending op-
erations or varying sample distances for different ray direc-
tions. The approach has been extended to multi-resolution
data in [VSE06, Lju06, KWAHO6].

Point primitives are employed in many different areas of
visualization and computer graphics. Consider for exam-
ple footprint-based splatting approaches of structured and

unstructured grid data, e.g. hierarchical splatting [LHO1,
MMC99] and more recently [CDMO06]. Point primitives
have been successfully applied in surface rendering algo-
rithms [ABCO*03, RL00]. A rendering approach for large
unstructured point data using point splats has been recently
proposed in [HEO3]. The authors employ a sophisticated
data structure to efficiently sort the points on the CPU and
stream the resulting subsets to the GPU. The approach has
been extended for time-dependent data and molecular dy-
namics visualization [HLEO4, REO5].

Octree-textures have been proposed in [BD02] and an
implementation tailored for GPU-processing was presented
in [LHNOS5, KLS*05]. The underlying idea is to represent
each node of the octree as a set of 8 RGBA-texels. The
RGB-channels are used as indices to texels that represent
child nodes whereas the alpha channel is employed to dis-
tinguish internal nodes and leaf nodes. This way a recursive
top-down traversal of the octree-texture can be realized in
fragment shaders via dependent-texture lookups.

We base our approach on GPU-assisted raycasting since
it achieves image quality comparable to pure software solu-
tions and is flexible enough to support the rather complex
sampling operations. We choose to store the points in an
octree, since this data structure can be efficiently accessed
on the GPU and does not require the storage of bounding
box coordinates for the internal nodes, which can be recom-
puted on-the-fly based on the current sample position and
node depth.

The remainder of this paper is organized as follows: We
start with a general description of the overall rendering algo-
rithm in Section 3. Next, the point data structure and its rep-
resentation on the GPU are discussed in Subsection 3.1. We
then propose acceleration techniques in Subsection 3.2 and
give results of the application of the approach to simulation
data in Section 4. We end with conclusions and a discussion
of future work in Section 5.

3. The Algorithm

We will start this section with a presentation of the overall
structure of the rendering algorithm. In order to simplify the
discussion we will refer to the scalar data discretized on the
grid structure as grid data, denoted by g and to the unstruc-
tured point set as point data, denoted by p. Although the ap-
proach in principle generalizes to an arbitrary number of grid
and point data sets, we will restrict ourself to the case of one
grid data set and one point data set for the sake of simplicity.
We implemented it for structured grids, but it could also be
incorporated into GPU ray-casting schemes for unstructured
grids like [WKMEO3].

The overall structure of the GPU-accelerated raycasting
algorithm is based on the single-pass approach described
in [SSKEOS5]. The front faces of the data volume’s bounding
box are rendered with texture coordinates at the vertices that
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Figure 1: The image above shows a time step of a large scale cosmological simulation of the epoch of hydrogen reionization
of the universe gas in a region of approximately one hundred million light years across at a time when the universe was 900
million years old. The point data represent the galaxies providing the ultra violet radiation whereas the blue and red regions
are the interstellar gas densities given on a structured grid. The blue colors correspond to the hot ionized material and the red

to the neutral primordial intergalactic medium.

equal the vertex coordinates. For each covered pixel the in-
terpolated texture coordinates are accessible within the frag-
ment shader and directly give the object space coordinates
of the ray’s entry point into the data volume. After comput-
ing the ray direction in object space and transforming it to
texture coordinates, the intensity integration is performed.
Therefore the ray is discretized into a set of segments s; that
are processed from front-to-back to permit early ray termina-
tion, once the accumulated opacity exceeds a certain thresh-
old. Along the ray both fields are sampled and mapped to
color intensity and opacity. The grid data is stored as a 3D-
texture. The data samples are obtained by texture lookups
and mapped to color intensity I, (s;) and opacity a(s;) via
an user-defined color table.

Next the intensity of the point data needs to be computed.
As mentioned above we store this data in an octree. We will
describe in detail how the structure is generated and accessed
within the fragment shader in the next subsection. For the
moment we assume that the resulting intensity and opac-
ity for the point data at ray location s; is given as I,(s;),
respectively o (s;). Now the separate contributions of the
two fields are combined to yield the resulting local intensity,
which is given as the sum of the two components weighted
by their opacities

(i) := oug () I (si) + 0tp(si) Ip(si)- M

We assume the following relation between the separate opac-
ities 0y (s;) that are usually stored in the user-defined col-
ormaps and the corresponding extinction coefficients & (s;)

o (si) =1 —e TSIl for ke {g.p},

where |s;| denotes the length of the ray segment. By adding

(© The Eurographics Association 2007.

the separate extinction coefficients we obtain the following
result for the total opacity of the segment

— e Ssls)lsil ,—Ep(si) Isil

= 1=(1—ag(s)) (1 —ap(s)). @
Finally the total color intensity Ix and opacity Oy up to
the ray-segment are updated according to the “front-to-back
blending equation”

Iy = I+ (1—ag)I(si), 3
oy + (1 —ox) as). “)

alsi) = 1 — ¢~ (Gels)+Ep(s0)) Isil

Oy

The next subsections explains in more detail how the point
data is stored and accessed within the fragment shader.

3.1. The Point Data Structure

We organize the points in an octree data structure, since it
allows an efficient implementation with 3D-textures and thus
can be evaluated directly in the GPU during ray traversal.
In the following we assume that the only point features are
center position ¢, and radius rp, but the approach can be
extended to incorporate additional point attributes.

Points are inserted into the octree based on intersections
between the spheres defined by ¢, and r, and the octree
nodes. The root node of the octree is recursively refined until
the maximal number of points that intersect a certain node is
smaller than a predefined threshold or a maximal tree depth
is reached. Notice that it is not sufficient to base the inser-
tion of the point solely on the criterion if the center cp is
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contained in the node. The reason for this is that the oc-
tree is sampled locally along the viewing rays and parts of
the spheres that extend across the boundaries of their nodes
would be missed, as illustrated in Figure 2.

Figure 2: Parts of the points within the grey-shaded nodes
would be missed during ray-traversal, if points were inserted
into the octree based only on the locations of their centers.

Storing the point data multiple times increases the mem-
ory requirements, but permits a correct sorting of the points
with pixel precision. This is usually not possible for foot-
print based point rendering, which can suffer from locally
incorrect depth sorting for parts of the splats that exceed the
node boundaries.

In order to efficiently access the point data in the fragment
shader, we map it to a GPU-octree data structure [LHNOS,
KLS*05]. The octree structure is encoded by a three-
dimensional 4-channel (RGBA) texture. Each internal node
of the tree is represented by 23 RGBA-texels. The distinc-
tion of internal and leaf nodes is based in the texel’s alpha
channel:

e a = 1 indicates that the node is an internal node. In this
case the RGB-triple is interpreted as an index to the node’s
“child”-texels.

e g = (.5 indicates that the texel represents a leaf node and
the RGB-triple stores an index to another data texture that
encodes the point data, see discussion below.

e a = (0 indicates that the texel represents an empty node
that is not further refined.

Since we usually must store more than one point per oc-
tree leaf node and each point requires at least 4 floats for its
center and radius, we can not encode the point data directly
within the index texture. We use a separate 3D floating-point
texture for this purpose. The RGB-values in the index texture
that correspond to leaf nodes are used as texture coordinates
to the floating point data texture. They index to the texel that
stores the first point entry for the corresponding leaf node.
The end of each node’s point list is indicated by inserting
a texel with a 4th-component that equals zero into the data
texture. The whole point encoding strategy is illustrated in
Figure 3.

In the current implementation we use 8-bit for each chan-
nel of the index texture. This allows us to index into 256
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Figure 3: In the upper part of the figure a simple 2D exam-
ple of a point data set with 6 points and the corresponding
quadtree data structure are shown. The middle part of the
figure depicts the resulting index texture. Black circles rep-
resent leaf nodes that point into the data texture on the lower
part of the figure. White circles represent empty leaf nodes
and the white square is an internal node that stores an index
to the 4 child nodes. The white circles in the lower part of
the figure represent RGBA-texels with vanishing alpha com-
ponent (radius) that indicate the end of the particle list for
each node. Notice that point number 4 intersects the bound-
ing boxes of two leaf nodes, and thus it is inserted two times
into the data texture.

texels of the RGBA-floating point texture, which corre-
sponds to 16.7 million points entries. The octree index tex-
ture lookup is done as described in [LHNOS]. Once the index
into the data texture is obtained, the data texture is sampled
until a texel with an alpha-component of 0.0 is processed,
which indicates the end of the point list for this octree leaf
node.

Sampling the octree index and data textures is a compu-
tationally intensive operation and turns out to be the bottle-
neck in our approach. It is therefore crucial to minimize the
sampling operations for the octree. Strategies for this will be
discussed in the following subsection.

3.2. Performance Optimizations

An efficient method to increase the rendering performance is
to adapt the sampling rate for the point data to the underlying
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Figure 4: The images show a time step of a galaxy formation simulation for three different view points. The interstellar gas
density was modeled on a structured grid and the point data presents stars that formed within the galaxy.

data characteristics, for example by skipping ray-segments
that do not intersect any points. Therefore the rays are in-
tersected with the leaf nodes during ray traversal. Since we
do not store bounding box coordinates for the nodes within
the index or data textures, we must compute this informa-
tion on-the-fly. First the depth / of the octree at an initial
sample location x is obtained via the octree texture lookup
and from this information the bounding box coordinates of
the leaf node are computed as

X — Qx min
21 (Qx,mux - -Qx,min)

—1
Xmax = Xmin + 2 (Qx.mwc - Qxﬁmin)v

Xmin = Qx,min + |_ J (QX,maX - Qx,min)

and similar for the y and z coordinates. Here | | denotes the
floor function and Qyuax, Qin are the root level extensions of
the octree. The resulting ray-segment is tested for intersec-
tion with the points stored in the leaf node and it is skipped
completely in case no intersection occurs.

The ray-segments should be sampled with a sample dis-
tance that corresponds to the smallest point that influences
that region. This could still result in an computational over-
head if the box is large compared to size of this point. The
overhead could be reduced using a pre-integrated volume
rendering approach [EKEQ1b] for the point data.

We chose a different approach that works for rotation-
ally symmetric points and allows us to reduce the number
of point sampling operations to one per segment. Therefore
each of the point centers that is stored at the node is pro-
jected onto the ray as shown in Figure 5. If this projection is
contained in the intersection of the ray and the leaf node, its
intensity and opacity contribution is computed based in the
distance r of the center to the ray. In principle every function
that depends solely on r and has support in [0, rp], were rp is
the point radius, is admissible. It could for example be given
by a user-defined one-dimensional texture. We currently use
a Gaussian decay in the opacity of the form

oc(r)w{ exp(—K(er)z) s r<np

0 : r>np

Once the intensity for each point within the node is obtained,
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Figure 5: In order to reduce the number of samples required
to reconstruct the point data, the point centers are projected
onto the viewing ray. If the projection is within the intersec-
tion of the ray and the leaf node, the intensity and opacity
of the point is computed based on the distance between the
center and its projection onto the ray. This reduces the num-
ber of necessary octree sampling operations to one per ray-
segment.

the resulting contribution can be computed using Equation 1
and 2. Notice that this step requires a view-dependent sorting
of the points within the leaf. Currently we omit this step in
order to increase the rendering performance. In our experi-
ence this usually does not result in noticeable visual artifacts,
since only small spatial regions are affected.

As a further acceleration technique we implemented a
two-pass hybrid rendering approach for large point sets,
compare Figure 6. In the first pass points outside a user-
defined region of interest (ROI) are rendered as textured
splats perpendicular to the viewing direction and blended
into an 16-bit offscreen render buffer that is equipped with
an additional depth buffer. The ROl is currently defined by a
radial camera-distance threshold. The depth buffer is written
for every newly rendered splat, which leads to the correct
result, since the points are rendered in back-to-front order
using a CPU-octree data structure.

The offscreen frame- and depth buffer is accessed in the
fragment shader in the second pass that performs the actual
GPU-raycasting step. The rendering of the grid and point
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Figure 6: Two pass rendering approach that allows to
trade-off between image quality and rendering performance.
Points outside a user-defined region of interest are ren-
dered using hardware-accelerated texture splatting, whereas
points inside the region are rendered via the computationally
more intensive GPU-assisted raycasting approach.

data is carried out as discussed above until the depth stored
in the offscreen buffer is reached, corresponding to the depth
of the closest splat outside the ROI. At that location the re-
sulting color from the first pass is added according to Equa-
tion 3 and 4. From this point on only grid data is integrated.
Of course the resulting pixel intensity differs from the cor-
rectly blended one in the case that more than one point is
intersected outside the ROI, but for distant regions the vi-
sual artifacts are usually not noticeable. Increasing and de-
creasing the region of interest allows an adjustable trade-off
between rendering performance and image quality.

4. Result

We tested the rendering performance on a Windows XP
system with a Nvidia Geforce 8800 GTX graphics card
equipped with 768 Mbytes of graphics memory. The shader
was implemented with the OpenGL Shading Language. The
splats in the hybrid rendering approach discussed at the end
of Section 3.2 have been implemented using OpenGL point
sprites.

We used a threshold of 8 points per node for the tests.
The screen resolution was 830 x 520 pixels. The first data
set is a time step of a cosmological reionization simulation,
see Figure 1. The grid data was given on a 256° structured
grid and the point data consists of about 1.5 * 10° points.
The dimensions of the octree’s index and data textures were
256 x 256 x 50, respectively 256 x 256 x 5 texels. We tested
the rendering performance for three different cases: for the
case that all points were rendered as point sprites, the hybrid
rendering approach that uses textured splats for points in the
second half of the data volume, and the case that the whole
data was rendered using the GPU-raycasting approach. The
resulting rendering performance was 6.3, 3.3, respectively
2.1 frames per second.

The second data set is a time step of a galaxy formation

simulation, see Figure 4. The grid data was given on a 256°
structured grid and the point data consists of about 1.2 10°
points. The dimensions of the octree’s index and data tex-
tures were 256 X 256 x 47, respectively 256 x 256 x 4 tex-
els. The achieved rendering performance for this data was
6.6, 3.4, respectively 2.3 frames per second.

A direct visual comparison of the hybrid rendering ap-
proach for different regions of interest is given in Figure 7.
In the left image, rendered using point sprites for all points,
artifacts in the near field are clearly visible. The image on the
right was rendered with the GPU-based approach that does
not suffer from the artifacts due to incorrect depth sorting.
In the middle image only points in the near field were ren-
dered with the GPU-based approach, while in the far field
point sprites were employed. Subtle differences between the
images are visible only in small background regions.

5. Conclusions and Future Work

In this paper we presented an approach for GPU-assisted
raycasting of combined grid and unstructured point data
sets. The point data is stored in a GPU-octree data struc-
ture to efficiently access it during ray traversal. The approach
achieves high image quality, since it is capable of pixel accu-
rate depth sorting of the different data components. All com-
putations, including the blending operations are performed
in full 32-bit floating point precision. The approach further
supports analytical expressions for point shading that do not
necessarily have to be rotationally symmetric.

We proposed several acceleration techniques to increase
the rendering performance that is affected by the number of
octree’s index and data texture lookup operations. We ap-
plied adaptive sampling and skipping of ray segments that
contain no point data. We further presented a technique that
reduces the number of sampling steps of the octree down to
one sample per ray-segment for rotational symmetric point
shading by projecting the centers of the points onto the ray.
In that case the color and intensity distribution is computed
by a radial function. We further proposed a two-pass render-
ing mode, in which points outside a user-defined region of
interest are rendered as hardware-supported OpenGL point
sprites. In the second pass they are combined with the high-
quality GPU-based raycasting that accesses the point data
in the octree only within the region of interest. This allows
significant performance gains while introducing only minor
artifacts due to incorrect depth sorting for small background
regions.

As future work we will incorporate a multi-resolution ap-
proach for the particle data by storing coarse points at the
internal nodes, representing the points of the subtree nodes.
We also plan to support more than 4 attributes per point by
using multiple texels per point in the data texture. We will
further extend the algorithm to support multi-resolution grid
data.

(© The Eurographics Association 2007.
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Figure 7: The images show a comparison of the image quality obtained for the hybrid rendering approach discussed in Sec-
tion 3.2 for different extensions of the region of interest. In the image on the left is the result for a vanishing region of interest,
so all points were rendered as textured splat. The artifacts in front are clearly visible. The image in the middle is the result for
a region of interest corresponding to half the extension of the data volume and for the picture on the right all point data was

rendered solely with the GPU-assisted ray-casting approach.
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