
Volume Graphics (2005)
E. Gröller, I. Fujishiro (Editors)

End-to-End Data Reduction and Hardware Accelerated
Rendering Techniques for Visualizing Time-Varying

Non-uniform Grid Volume Data

Hiroshi Akiba†, Kwan-Liu Ma† and John Clyne‡

†Institute for Data Analysis and Visualization, University of California at Davis, U.S.A
‡Scientific Computing Devision, National Center for Atmospheric Research, Colorado, U.S.A

Abstract
We present a systematic approach for direct volume rendering terascale-sized data that are time-varying, and pos-
sibly non-uniformly sampled, using only a single commodity graphics PC. Our method employs a data reduction
scheme that combines lossless, wavelet-based progressive data access with a user-directed, hardware-accelerated
data packing technique. Data packing is achieved by discarding data blocks with values outside the data interval
of interest and encoding the remaining data in a structure that can be efficiently decoded in the GPU. The com-
pressed data can be transferred between disk, main memory, and video memory more efficiently, leading to more
effective data exploration in both spatial and temporal domains. Furthermore, our texture-map based volume ren-
dering system is capable of correctly displaying data that are sampled on a stretched, Cartesian grid. To study the
effectiveness of our technique we used data sets generated from a large solar convection simulation, computed on
a non-uniform, 504×504×2048 grid.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications I.3.1 [Com-
puter Graphics]: Graphics processors I.3.3 [Computer Graphics]: Viewing algorithms E.4 [Coding and Information
Theory]: Data compaction and compression

1. Introduction

Studying time-evolving phenomena is critical for solving
many scientific and engineering problems. The ability to in-
teractively visualize and explore complex dynamic features
contained within time-varying data is absolutely essential to
ensure their correct interpretation and analysis, to provide in-
sights, and to communicate those insights with others. How-
ever, a time-varying data set from a computational fluid dy-
namics simulation, for example, can contain an enormous
amount of information in the spatial, temporal and variable
domains; a single time step may contain hundreds of mil-
lions of grid points, while the temporal data set may occupy
terabytes of storage in aggregate. Visualizing static volumes
of this scale is challenging enough without the added diffi-
culty imposed by the temporal dimension. The principal im-

† {akiba|ma}@cs.ucdavis.edu
‡ clyne@ncar.ucar.edu

pediment to visualizing time-vary data arises from the need
to manage and transfer time-steps between storage hierar-
chies from the potentially capacious, but slow, rotating disk
arrays to the small, but high-performing, video memories.

This paper presents a systematic approach to direct vol-
ume rendering temporal data based on a combination of two
user-directed data reduction strategies. First, a multiresolu-
tion data representation scheme, developed in our previous
work, is employed to enable progressive access to the nu-
merical simulation’s raw floating point outputs [Cly03]. A
low-overhead packing scheme is then engaged to provide a
second level of data reduction. The combination of these two
user-directed data reduction techniques allow the researcher
to effectively make speed/quality tradeoffs, enabling the in-
teractive visual exploration of terascale sized data using only
a lowly desktop PC.

The reduced space requirements can be exploited to fit
more time steps in computer memory, enabling interac-

c© The Eurographics Association 2005.

http://www.eg.org
http://diglib.eg.org

Hiroshi Akiba & Kwan-Liu Ma & John Clyne / Data Reduction and Rendering Techniques for Visualizing Time-Varying Data

tive animation of the data’s temporal domain, for exam-
ple, or reduce the bandwidth requirements for data trans-
ferred between memory hierarchies, further aiding interac-
tive performance. Our multiresolution scheme reduces de-
mands for disk storage, the CPU’s memory, and the inter-
connect between these storage systems, while our texture
packing scheme, which supports decoding (unpacking) on
the GPU, further reduces demands on main memory, video
memory, and the graphics bus that connects these devices.

In addition to our data reduction strategies, we also
present a method to volume render data sampled on a non-
uniformly spaced, stretched Cartesian grid. In an effort to
reduce simulation time and storage requirements some nu-
merical fluid flow models employ stretched grids, allow-
ing higher sampling densities to be focused where they are
needed. We have devised an efficient method for correctly
volume rendering stretched grids by again exploiting the
flexibility of programmable graphics hardware.

Thus the main contributions of our work are two fold.
First, we demonstrate a comprehensive volume rendering
system that incorporates end-to-end data reduction strate-
gies to curtail the demands on numerous system storage re-
sources, permitting the exploration of vast time-varying data
sets using only a PC equipped with a current generation
graphics card. Secondly, we present an efficient hardware-
accelerated method for rendering data sets computed on
stretched Cartesian grids.

2. Related Work

The problem of time-varying data visualization has received
increasing attention. Various data encoding, reduction, and
rendering techniques have been developed. One class of
techniques treats time-varying volume data as 4D data. For
example, Wilhelms and Van Gelder [WV94] encode time-
varying data with a 4D tree (an extension of octree) and use
an associated error/importance model to control compres-
sion rate and image quality. Linsen et al. [LPD∗02] introduce
a more refined design based on a 4th-root-of-2 subdivision
scheme coupled with a linear B-spline wavelet scheme for
representing time-varying volume data at multiple levels of
detail. Woodring et al [WWS03] visualize 4D data by slicing
or volume rendering in the 4D space. The resulting hyper-
plane and hyperprojection can display some unique space-
time features.

Another class of techniques separates the time dimension
from the spatial dimension. Shen and Johnson [SJ94] intro-
duce differential volume rendering which exploits temporal
coherence of the data and compresses the data in a substan-
tial way, but it is limited to a one-way, sequential browsing of
the temporal aspect of the data. Ma et al. [MSSS98] integrate
non-uniform quantization with octree and difference encod-
ing and speed up rendering by sharing subtrees among con-
secutive time steps. Shen et al. [SCM99] refine the design

deriving a hierarchical data structure called the Time-Space
Partitioning (TSP) tree, which captures both the spatial and
temporal coherence from a time-varying field. It uses an oc-
tree for partitioning the volume spatially and a binary tree
for storing temporal information.

Several other techniques are also worth mentioning. West-
ermann [Wes95] encodes each time step separately using
wavelet transforms. The result is a compressed multiscale
tree structure also providing an underlying analysis model
for characterizing the data. By examining the multiscale
tree structures and wavelet coefficients, it is possible to per-
form feature extraction, tracking, and further compression
more efficiently. Anagnostou et al. [WAA00] exploit tem-
poral coherence to render only the changed parts of each
slice and use run-length encoding to compress the spatial
domain of the data. Lum et al. [LMC01] use temporal en-
coding of indexed volume data that can be quickly decoded
in graphics hardware. Sohn et al. [SBS02] compress time-
varying isosurfaces and associated volumetric features with
wavelet transforms to allow fast reconstruction and render-
ing. Schneider and Westermann [SW03] use vector quanti-
zation to compress time-varying data in the spatial domain
with both decompression and rendering done in hardware.

Work closer to our own includes that of Li et
al.’s [LMK03], Kraus and Ertl’s [KE02], and Binotto et
al.’s [BCF03]. Li et al.’s work is concerned with the pack-
ing of a single volume. They pack voxel data into texture
blocks by merging similar voxels and skipping empty space
through a growing algorithm. A BSP tree is then used to or-
ganize the packed texture blocks for efficient loading and
rendering of the visible blocks in the correct order. Their
approach results in lossless compression and faster render-
ing in graphics hardware. Kraus et al. introduce an adap-
tive representation of texture data that stores both indices to
packed data blocks and scaling factors for specifying the res-
olutions of the data blocks. They show that this representa-
tion can be used to encode two, three, and four dimensional
data. Decoding is done with programmable graphics hard-
ware. Binotto et al. [BCF03] effectively pack time-varying
data into a three-dimensional texture which adaptively stores
indices to nonhomogeneous data blocks and values of ho-
mogeneous data blocks. This approach works well when the
target volume data set is highly correlated both spatially and
temporally, which is not the case for our target datasets.

In contrast, our packing approach, described in greater de-
tails in Section 5, is simpler. We adopt a regular partitioning
of the volume, which leads to a lower per-texture-block over-
head and thus better and more predictable interactivity. This
simplification also allows us to perform much faster on-the-
fly packing according to a user defined transfer function.

3. Driving Applications

Our design targets time-varying volume data generated by
flow simulations employing high-resolution Cartesian grids

c© The Eurographics Association 2005.

Hiroshi Akiba & Kwan-Liu Ma & John Clyne / Data Reduction and Rendering Techniques for Visualizing Time-Varying Data

Figure 1: A 2D view of the type of non-uniform mesh used
by the simulation.

that may possess non-uniform sample spacing. Sample co-
ordinates along each dimension of these so called stretched
grids are given by a monotonically increasing (or decreas-
ing) function of the dimension’s topological coordinates.

The flow features of interest in these simulations typically
occupy a relatively small region of the computational do-
main rather than covering the entire domain. A representa-
tive example is the output of a simulation conducted by re-
searchers at the National Center for Atmospheric Research
(NCAR) to model 3D thermal starting plumes descending
through a fully-compressible adiabatically-stratified fluid.
Such plumes are produced by radiative cooling in the outer
layers of the Sun. The simulations help scientists understand
the stability of these plumes, so that they may better estimate
how deeply the plumes penetrate into the solar interior after
being generated in the upper surface layers. Better compre-
hension of the nature of these plumes in turn contributes to
understanding of deep solar convection, its penetration into
the stable layers of the solar interior, and the nature of the
magnetic dynamo operating therein.

To capture the plumes secondary instabilities, a high-
resolution 504×504×2048 stretched grid (see Figure 1) is
employed. The simulation required six-months of compute
time on 112 processors of NCAR’s IBM RS/6000 computer,
and generated a total of nine terabytes of data. We obtained
400 time steps of the data for our study. Five variables in-
cluding density, temperature, and the three velocity compo-
nents, are stored at each grid point. There is also the need to
visualize quantities derived from the model outputs such as
the scalar components of the vorticity field which are com-
puted from the velocity field, further driving up the size of
this data set. Images and histograms for two of the variables
at a selected time step are shown in Figure 2.

4. Overview

Visualizing the plume simulation’s raw floating point data
directly, using a brute-force approach, would require a
formidable graphics supercomputer. Maintaining a frame
rate of only five Hz while animating through a time series
would require a bandwidth of nearly 10.0GBs per second,
for example! Even if the data are quantized to 8-bit quanti-
ties, the transfer rates required alone make desktop PC ex-

Figure 2: Images and histograms of two variables at time
step 380. Top: the z component of the velocity. Bottom: the
square of the horizontal component of the vorticity. In each
histogram, the curve represents the opacity transfer function
used for the corresponding rendering. For both time steps,
most data values lay within a very small range of values.

ploration prohibitive unless substantial, further data reduc-
tion is undertaken.

To make temporal data exploration possible using only a
single PC with commodity graphics hardware, we employ
a combination of aggressive data reduction strategies. Our
three-stage, compression-based visualization process is de-
picted in Figure 3. The first phase of this process is the
conversion of the raw floating point data into multiple res-
olution levels that may be accessed progressively at any de-
sired power-of-two resolution. This is accomplished by us-
ing a lossless, wavelet-based multiresolution scheme devel-
oped by us previously [Cly03]. According to the visualiza-
tion purpose and the computer used, a particular approxima-
tion level is chosen by the user.

In the second stage floating point data are quantized to in-
teger quantities necessary to accommodate texture hardware
volume rendering. Similar to the editing of an opacity trans-
fer function, where uninteresting data values are assigned
transparent opacities, the user then defines one or more inter-
vals of interest from the domain of quantized values. Voxels
possessing values within the user-defined domain of inter-
est are packed in an efficient texture representation scheme
for subsequent rendering. Voxel values falling outside the
interval of interest are discarded. The resulting compact rep-
resentation of the data can be transferred from disk, to main
memory and to video memory more quickly then the uncom-
pressed data. For example, the images shown in Figure 2

c© The Eurographics Association 2005.

Hiroshi Akiba & Kwan-Liu Ma & John Clyne / Data Reduction and Rendering Techniques for Visualizing Time-Varying Data

Raw Data

Multiresolution
 data

Wavelet
compression

Packed 3D
texture data

User-directed
packing

Hardware UnPacking
& rendering

Figure 3: A compression-based visualization process.

correspond to an 80% reduction in data using our packing
scheme.

Finally, unpacking and volume rendering of the com-
pressed integer quantities are performed on the GPU to
achieve interactive visualization. The user can freely explore
in the spatial, temporal, and rendering parameter spaces of
the data. Whenever desired, the user can switch to visualiz-
ing progressively finer approximations of the data, after first
selecting rendering parameters (e.g., transfer functions and
view) at a coarser, more interactive approximation level.

The remainder of this paper describes each of these three
processes in detail, followed by test results acquired with the
NCAR plume data set.

5. Data Reduction

Volume rendering has become increasingly attractive be-
cause of the real-time 3D texture support now found on com-
modity graphics hardware. The performance of texture hard-
ware volume rendering, however, is constrained by fill rates,
texture update rates, texture memory space, and the card’s
support for high-precision processing. Current card technol-
ogy, for example, is capable of moving data between the
main memory and texture memory at about 200-800 MB per
second. The actual transfer rates may depend on the CPU
speed and main memory speed. Presently, the maximum tex-
ture memory space available is 256MBs. Thus scalability
of volume rendering on a single graphics card is limited.
The NCAR dataset, for example, has 504×504×2048 data
points. The quantized version of the data would require over
500MBs to store a single variable, making volume rendering
even a static volume a difficult task without careful texture

management. Rendering of temporal data at interactive rates
would be impossible without some decrease in the data size.

We must therefore rely on aggressive data reduction if we
are to interactively visualize these data. We employ a com-
bination of two data reduction strategies. The first is a mul-
tiresolution scheme that allows the selection of an appropri-
ate resolution level from the raw floating point data. The sec-
ond further reduces the data through a user-directed texture
packing scheme. The combination of approaches allows the
user to freely choose between interactivity and image quality
during the data exploration process.

5.1. Multiresolution Representation

As depicted in Figure 3, the first phase of our visualization
process is the conversion of the raw floating point simula-
tion data into a hierarchical representation that permits the
reconstruction of the sampled data at varying power of two
resolutions. We provide a brief description of this process
below. A detailed description may be found in our previous
work [Cly03].

The multiresolution representation strategy we employ is
based on Haar wavelet transformations that map sampled
data into a space consisting of an overall coarse approxima-
tion of the original data together with the detail coefficients
permitting the coarsened approximation to be refined at vari-
ous scales. Thus it becomes possible to progressively access
the data. That is, the data may be reconstructed at progres-
sively finer resolutions.

The wavelet transformation process is lossless, save for
floating point round off errors. Thus unlike many prepro-
cessing strategies aimed at improving performance, multi-
ple copies of the data are not required. The total number
of wavelet coefficients are equal to that of the number of
samples in the original data. Therefore no additional space
is required by the wavelet representation. Other notable at-
tributes of our data representation strategy include:

• Both the forward and inverse transform are highly effi-
cient. This is an important consideration for very large
data sets. An encoding scheme with long preprocessing
requirements is not practical for terascale sized data.

• The implementation operates out-of-core for both forward
and inverse transforms, permitting extremely large grids
to be processed using only a modest memory footprint.

• Data approximations are produced by reconstructing and
resampling the original data, not by simply subsampling.

For the NCAR data set, we have chosen to generate four
approximation levels; the resolution of each level is shown
in Table 1. Figure 15 shows images for the four resolution
levels of the NCAR plume data set. Much as expected, the
higher the data resolution, the finer the details of the flow
structure that are revealed. Lastly, we note that because of
the efficient computation and lossless nature of the wavelet

c© The Eurographics Association 2005.

Hiroshi Akiba & Kwan-Liu Ma & John Clyne / Data Reduction and Rendering Techniques for Visualizing Time-Varying Data

Table 1: Volume data size from NCAR plume simulation for
each resolution

resolution level dimensions size
3 504x504x2048 2080MB
2 252x252x1024 260MB
1 126x126x512 33MB
0 63x63x256 4MB

transform, we apply the transform as a preprocess, discard-
ing the original data and storing only the transformed data
on disk.

5.2. Data Packing and Unpacking

The objective of data packing is to further reduce the size of
the data obtained from our multiresolution scheme, lessen-
ing demands on the remainder of our visualization pipeline.
Our basic approach is to first partition the volume uniformly
along the x, y, and z directions into a set of equal-size sub-
volumes. The size of a subvolume should be chosen accord-
ing to the data coherency and the capability of the graphics
hardware. A good size to use is experimentally shown to be
between 83 and 323 voxels. Even though packing small sub-
volumes can more effectively capture empty space by better
fitting arbitrarily shaped subregions, small subvolumes can
result in significant storage overhead. The overhead arises
from the need to replicate voxels at the subvolume borders
to avoid incorrect linear interpolation at the boundary, and
also from the size of the auxiliary texture required to address
valid subvolumes.

After partitioning, the subvolumes are packed into a se-
quence of 3D texture blocks, which we refer to as the packed
volume texture. Subvolumes that contain values within the
user-defined range of interest are packed, without loss, while
those outside of the range are discarded. To address the lim-
itations of the fragment shading language, which lacks pro-
visions for a conditional statement, the first texture block is
reserved as an empty volume to which all discarded regions
refer. These empty volumes are subsequently rendered. But
because they are empty they do not effect the final image.
The coordinates of each subvolume are stored in a separate
texture called the address texture. To unpack and render the
volume on the GPU, the address texture must be also loaded
into video memory. Unpacking is very straightforward be-
cause of the regular partitioning of the volume. Figure 4 il-
lustrates a 2D exampling showing the relationships between
a volume, its packed volume texture, and the address texture.
Unpacking is performed during rendering using a fragment
shading program. Unlike previous approaches [LMK03], for
simplicity we reconstruct the whole volume with a one-time
unpacking at the beginning of the rendering step. In this way,

Figure 4: Packing in the 2D case. The original data de-
fined as a W by H image is first partitioned into sub-images.
Each sub-image is stored in the packed texture starting from
the lower left corner. The first sub-image is always an empty
sub-image to which all the uninteresting sub-images refer.
Addresses for sub-images are stored in a separate texture.

the rendering cost is completely independent of the number
of packed volume textures.

6. Stretched Grid Rendering

When 3D texture hardware support is available, sampling
the volume data texture with a collection of view-aligned
polygonal slices typically gives superior results over axis-
aligned slicing necessitated when only 2D texture hardware
is present. These slices, which are uniformly spaced, are
composited using hardware alpha blending to derive the fi-
nal image. When rendering data on a non-uniformly spaced
grid a significantly large number of view-aligned slices may
be needed to capture the fine details in a mesh if uniform
spacing between the polygon slices is maintained. The num-
ber of slices may be reduced, while the image quality pre-
served, if appropriate adaptive spacing between slices is em-
ployed. However, determining the appropriate spacing inter-
val is non-trivial, and may still lead to over-sampling, except
for the case when viewing the volume along one of the pri-
mary coordinate axes. In this case the polygon slices become
aligned with the grid and the best spacing may be inferred
directly from the grid’s sampling.

An alternative to view-aligned slicing is to use axis
aligned slices, as is required by older graphics cards support-
ing only 2D textures. The advantage of this approach when
rendering stretched grids is that the correct sample spacing
between slices can be maintained for arbitrary viewing an-
gles. Figure 6 compares axis-aligned rendering with view-
aligned rendering using the same number of slices. Clearly,
with non-uniformly positioned axis-aligned slices, the re-

c© The Eurographics Association 2005.

Hiroshi Akiba & Kwan-Liu Ma & John Clyne / Data Reduction and Rendering Techniques for Visualizing Time-Varying Data

 0.0

0.45

2

1
0.45 0.55

0.5
1.0

0.0

dn

Texture Coordinates tc(d)Grid Coodinates gc(n)

Stored textures

o x

y

z

Axis Aligned Slices along x axis

Inverse

1 2 3 4 5

3

4

5

1 2 3 4 5

0.50
0.55

1.0

Figure 5: A 5-slice example illustrating correct sampling of
a stretched grid. Slice coordinates are obtained by 1D tex-
ture lookup. For each coordinate axis, a 1D texture stores
the corresponding grid coordinates. The texture coordinates
are derived from an inverse function

Figure 6: Comparing view-aligned rendering (left) and non-
uniformly axis-aligned rendering (right). The number of
slices used for both images are the same.

sulting images are much better as more slices are used in the
region of higher sampling density in contrast to the placing
of uniformly-spaced, view-aligned slices. Specifically, ev-
ery grid point is rendered on a slice that correctly samples
the volume along the viewing axis. In addition, axis-aligned
slicing is computationally less expensive since intersection
points between the volume and slices do not change. The
top images in Figure 5 demonstrate non-uniform slicing for
a simple 5-slice case.

When volume rendering with non-uniformly spaced sam-
ples along the viewing direction, care must be taken to cor-
rectly handle opacity integration. The conventional back-to-
front compositing operation in volume rendering, suitable
for uniform sampling, can be described as:

αout = αi +(1−αi)αin

where αout is the resulting opacity, αi is the opacity at the
sample position i, and αin is accumulated opacity before

Figure 7: Volume rendered images with uniform (top) and
correct, non-uniform sampling (bottom).

reaching the sample position i. For non-uniform slices, we
must adjust αi since attenuation depends on the distance be-
tween two neighboring samples. At each sample point i, αi
should be corrected as follows:

αnew = 1− (1−αoriginal)
di

where di is the average distance between the current slice
and the two immediate neighboring slices. Figure 12 com-
pares with and without opacity correction in the rendering.

Adapting the spacing between polygonal slices as just de-
scribed permits us to correctly sample the volume along a
single axis. Correctly handling the non-uniform sampling
along the remaining two axes requires additional measures.
To address this issue, we again make use of programmable
graphics hardware, mapping the uniformly stored textures
to non-uniform locations on each of the slicing polygons by
employing a fragment program. We accomplish this map-
ping by employing non-uniform texture coordinates, which
are pre-calculated by computing the inverse of the function
that defines the grid coordinates for each major axis, and
then stored as three 1D textures. The bottom images in Fig-
ure 5 illustrate this inverse mapping. During rendering, the
fragment program accesses the coordinate textures and uses
their contents as the coordinates for indexing the original
scalar data textures. Thus the stretched grid is correctly ren-
dered through a combination of positioning slicing polygons
appropriately in space to address the non-uniform sampling
along the principal viewing axis, and by using a simple frag-
ment program and 1D textures to accommodate the non-
uniform sampling along the remaining two axes.

Figure 7 compares volume rendered images of stretched
grid data with uniform and correct, non-uniform sampling.
In the former case the non-uniform grid spacing is simply ig-
nored. The volume aspect ratio changes from 1:1:4 to 1:1:2.
Notice that image quality is maintained with the correct non-
uniform sampling.

7. Test Results

We have implemented the compression-based volume visu-
alization strategy and tested it using a uniformly-sampled
turbulent jet data set and the non-uniform NCAR plume data
set. Experiments were performed on a Pentium4 3.06GHz

c© The Eurographics Association 2005.

Hiroshi Akiba & Kwan-Liu Ma & John Clyne / Data Reduction and Rendering Techniques for Visualizing Time-Varying Data

Table 2: The time in seconds that it takes to pack one time
step for different subvolume sizes.

Subvolume size 23 43 83 163

63×63×256 0.13 0.10 0.07 0.05
126×126×512 0.85 0.45 0.30 0.26
252×252×1024 6.6 3.4 2.3 1.8
504×504×2048 91 36 17 14

Table 3: The sizes of the address texture for different subvol-
ume sizes to pack a 252x252x1024 volume from the plume
data set.

subvolume size 23 43 83 163 323

lookup table size 100M 12.6 M 1.57M 196k 12k

PC with 2GB of memory and an NVIDIA 6800GT PCI Ex-
press graphics card, which has 256MB of video memory. All
rendering was performed to a 512×512 pixel image.

Table 2 shows the time to pack one time step of the NCAR
data for different resolution levels and different subvolume
sizes. Packing the entire 400 time-step plume data set could
therefore take tens of minutes. We view this cost as accept-
able since packing is usually done for a selected subset of
the mid-level data.

Figure 8 shows the compression rate achieved using vary-
ing subvolume sizes for each time step of the omh vari-
able, the horizontal component of vorticity derived from the
NCAR plume data set. The savings decreases as the flow
fills more of the spatial domain in later time steps as can be
easily seen in Figure 13. Later time steps also correspond to
an increased dynamic range of the scalar values over time
as shown in Figure 9. For most of the subvolume sizes sig-
nificant savings are achieved. The optimal subvolume size
for the plume data is 163, while using 23 results in a very
significant storage overhead that outweighs any savings. Ta-
ble 3 lists the storage overhead requirement for each subvol-
ume size. For the 23 case, the lookup table alone consumes
100MBs of space. On the other hand, the overhead for 323

subvolumes drops to 12KBs.

We also studied the effectiveness of our packing scheme
with the turbulent jet data set. Figure 14 shows selected time
steps from this data set. Figure 10 displays the compression
rate achieved. We observe that as with the NCAR plume data
set, significant compression rates are achieved for each of
the subvolume sizes except for the 23 case where overhead
again outweighs any compression savings. The 83 subvol-
umes produces optimal results for all time steps. Lastly, we
note that the compression rate remains more or less constant
for the jet data. Unlike the NCAR plume data, the turbulent
jet simulation has effectively reached steady state and the

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 50 100 150 200 250 300 350 400

C
o
m
p
r
e
s
s
i
o
n

R
a
t
e

Time step

43

83

163

323

16

8

32

4

Figure 8: compression rate for the 400 time-step NCAR data
set for varying box sizes. Using a 23 box does not lead to any
saving and is not shown.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300 350 400

s
c
a
l
a
r

v
a
l
u
e

Time step

minimum scalar value
maximum scalar value

Figure 9: Global minimum and maximum scalar value for
each time step of the plume data set.

volume of the region occupied by the turbulent feature of in-
terest does not change as much as the plume data as can be
seen in Figure 14.

In addition to evaluating compression, we also explored
the rendering performance of the overall system for brows-
ing in both spatial and temporal domains. In case of brows-
ing in spatial domains, interactive browsing is possible for
all four resolution levels by using fewer slices which can still
reveal the overall structure of the volume. Once the spatial
browsing is finished, the refinement process is performed to
increase the picture quality.

Table 4 shows frame rates when browsing in the tempo-

c© The Eurographics Association 2005.

Hiroshi Akiba & Kwan-Liu Ma & John Clyne / Data Reduction and Rendering Techniques for Visualizing Time-Varying Data

 30

 35

 40

 45

 50

 55

 60

 65

 0 20 40 60 80 100 120 140

C
o
m
p
r
e
s
s
i
o
n

R
a
t
e

Time step

43

83

163

Figure 10: compression rate for the 150 time-step turbulent
jet data set for different subvolume sizes. The total size of
packed data is the sum of the subvolume sizes and a lookup
table. We do not obtain any savings by using either 23 or 323

subvolumes so their results are not shown.

Figure 11: Images showing a view used to obtain the per-
formance numbers in Table 4. The left image shows the case
when no warping is performed and the right image shows
the case when warping is performed.

ral domain. In this case, data must be constantly transferred
from main memory or disk to the video memory. Timings
were performed for both in-core rendering, where the data
fit entirely into physical processor memory, and out-of-core
rendering, where the data were processed from disk. In this
set of tests axis-aligned slices were used for rendering and
the number of slices was the same as that as the number of
voxels. Using fewer slices can greatly increase interactivity,
if desired. Level 3 numbers are not shown here because in-
teractive viewing is no longer possible due to the data size.
In level 1 we can see the benefits of packing since we can
fit the entire time sequence in main memory and still main-
tain 1.8 frames per second, whereas without packing only
58 timesteps can be kept in main memory. In level 2, the
benefits of packing is again obvious in terms of frame rate
and memory bandwidth. We can also see from our test re-
sults that correctly sampling (warping) the stretched grid ap-
pears to slow down the frame rates somewhat. However, it

Table 4: Frames per second for temporal browsing the
NCAR dataset. The rendering modes correspond to whether
the non-uniform spacing is considered or not, and whether
data packing was used or not. The maximum number of
timesteps that fit in main memory is shown inside the square
brackets for each case. The starting timestep is 1. The view-
point used is shown in Figure 11. Note that out-of-core num-
bers are not given when the entire 400 timesteps fit in the
main memory.

Level 0: 64×64×256
rendering mode \ data storage in-core out-of-core
No warping, no packing 9.0[400] -
with packing 3.1[400] -
warping & packing 2.5[400] -

Level 1: 128×128×512
rendering mode \ data storage in-core out-of-core
No warping, no packing 4.0[58] 0.3
with packing 1.8[400] -
warping & packing 1.7[400] -

Level 2: 256×256×1024
rendering mode \ data storage in-core out-of-core
No warping, no packing 0.7[7] 0.3
with packing 1.3[197] 1.1
warping & packing 0.7[197] 0.7

is important to note that since the images with and with-
out warping have very different screen coverages, compar-
ing their timing results is generally not meaningful, as the
fill requirements vary with pixel coverage.

Finally, we see from our test results that the cost of de-
compressing the data is relatively small, both for warped and
the unwarped results. Responsive, if not interactive, frame
rates can be maintained for most of the resolutions, regard-
less of whether compression or geometry correction (warp-
ing) is employed, or whether the data are in-core or reside
on disk. We point out that the benefit of compression is the
potential to store more data at various levels of the storage
hierarchy.

8. Conclusion and Future Work

Achieving interactive visualization of large time-varying
volume data requires efficient data transfer through a multi-
level storage hierarchy from rotating disk to video memory,
with each hierarchy component having varying bandwidth
and capacity characteristics. To accommodate this hierarchy,
we have developed a visualization system that relies on a
combination of data reduction techniques that allow us to fit
more data into lower capacity storage components and trans-
fer data between hierarchy levels more quickly. These data
reduction techniques, one wavelet-based, and the other a tex-
ture packing mechanism, are simple to implement and per-

c© The Eurographics Association 2005.

Hiroshi Akiba & Kwan-Liu Ma & John Clyne / Data Reduction and Rendering Techniques for Visualizing Time-Varying Data

mit the user to make effective speed/quality trade-offs. In the
case of our texture-map based compression method, the un-
packing (decompression) procedure is hardware accelerat-
able using today’s programmable GPUs, while our wavelet-
based multiresolution scheme is currently executed entirely
on the CPU.

We have also extended the standard texture volume ren-
dering technique to handle non-uniformed, stretched Carte-
sian grid data, and coupled the rendering with our GPU-
accelerated unpacking step. Both the hardware data unpack-
ing and the warping of the stretched grid have minimal
impact on rendering performance. We have demonstrated
the utility of this system by interactively browsing through
multi-terabyte, time-varying volume data sets using only a
single PC and a commodity graphics card.

9. Acknowledgments

This work has been sponsored in part by the U.S. Na-
tional Science Foundation under contracts ACI 9983641
(PECASE), ACI 0222991, ANI 0220147 (ITR), and ACI
0325934 (ITR), and the U.S. Department of Energy un-
der Memorandum Agreement No. DE-FC02-01ER41202
(SciDAC) and DE_FG02-05ER54817 (SciDAC) and under
Lawrence Livermore National Laboratory Agreement No.:
B523578 (ASCI VIEWS), B537770 and B548210.

References

[BCF03] BINOTTO A. P. D., COMBA J., FREITAS C. M.
D. S.: Real-time volume rendering of time-varying data
using a fragment-shader compression approach. In IEEE
Symposium on Parallel and Large-Data Visualization and
Graphics (2003), pp. 69–76.

[Cly03] CLYNE J.: The multiresolution toolkit: Progres-
sive access for regular gridded data. In Proceedings of Vi-
sualization, Imaging, and Image Processing 2003 (2003),
pp. 152–157.

[KE02] KRAUS M., ERTL T.: Adaptive texture
maps. In HWWS ’02: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hard-
ware (2002), pp. 7–15.

[LMC01] LUM E. B., MA K.-L., CLYNE J.: Texture
hardware assisted rendering of time-varying volume data.
In VIS ’01: Proceedings of the conference on Visualiza-
tion ’01 (2001), pp. 263–270.

[LMK03] LI W., MUELLER K., KAUFMAN A.: Empty
space skipping and occulusion clipping for texture-based
volume rendering. Proceedings of IEEE Visualization
2003 Conference (2003), 317–324.

[LPD∗02] LINSEN L., PASCUCCI V., DUCHAINEAU

M. A., HAMANN B., JOY K.: Hierarchical representation
of time-varying volume data with ’4th-root-of-2’ subdivi-
sion and quadrilinear B-spline wavelets. In Proceedings

of the 10th Pacific Conference on Computer Graphics and
Applications - Pacific Graphics 2002 (2002), p. 346.

[MSSS98] MA K.-L., SMITH D., SHIH M.-Y., SHEN H.-
W.: Efficient Encoding and Rendering of Time-Varying
Volume Data. Tech. Rep. ICASE Reprot No. 98-22, Insti-
tute for Computer Applications in Science and Engineer-
ing, June 1998.

[SBS02] SOHN B.-S., BAJAJ C., SIDDAVANAHALLI V.:
Feature based volumetric video compression for interac-
tive playback. In Proceedings of Volume Visualizationa
nd Graphics Symposium 2002 (2002), pp. 89–96.

[SCM99] SHEN H., CHIANG L., MA K.: A fast volume
rendering algorithm for time-varying fields using a time-
space partitioning (tsp) tree. In Proceedings of the IEEE
Visualization Conference VIS 99 (1999), pp. 371–378.

[SJ94] SHEN H.-W., JOHNSON C. R.: Difference volume
rendering: A fast volume visualization technique for flow
animation. IEEE Visualization (1994).

[SW03] SCHNEIDER J., WESTERMANN R.: Compression
domain volume rendering. In Proceedings of the Visual-
ization 2003 Conference (2003), pp. 293–300.

[WAA00] WATERFALL A. E., ATHERTON T. J., ANAG-
NOSTOU K.: 4D volume rendering with the shear warp
factorisation. In Proceedings of the 2000 IEEE Sympo-
sium on Volume Visualization (2000), pp. 129–137.

[Wes95] WESTERMANN R.: Compression domain render-
ing of time-resolved volume data. In VIS ’95: Proceed-
ings of the 6th conference on Visualization ’95 (1995),
pp. 168–174.

[WV94] WILHELMS J., VAN GELDER A.: Multi-
dimensional trees for controlled volume rendering and
compression. In Proceedings of the 1994 Symposium on
Volume Visualization (October 1994).

[WWS03] WOODRING J., WANG C., SHEN H.-W.: High
dimensional direct rendering of time-varying volumetric
data. In Proceedings of Visualization 2003 Conference
(October 2003), pp. 417–424.

c© The Eurographics Association 2005.

