
IEEE/ EG Symposium on Volume and Point-Based Graphics (2008)

H.- C. Hege, D. Laidlaw, R. Pajarola, O. Staadt (Editors)

Memory Efficient GPU-Based Ray Casting for Unstructured

Volume Rendering

A. Maximo1 and S. Ribeiro1 and C. Bentes2 and A. Oliveira1 and R. Farias1

1COPPE - Federal University of Rio de Janeiro, Brazil
2DESC - State University of Rio de Janeiro, Brazil

Abstract

Volume ray casting algorithms benefit greatly with recent increase of GPU capabilities and power. In this paper,

we present a novel memory efficient ray casting algorithm for unstructured grids completely implemented on GPU

using a recent off-the-shelf nVidia graphics card. Our approach is built upon a recent CPU ray casting algorithm,

called VF-Ray, that considerably reduces the memory footprint while keeping good performance. In addition to

the implementation of VF-Ray in the graphics hardware, we also propose a restructuring in its data structures. As

a result, our algorithm is much faster than the original software version, while using significantly less memory, it

needed only one-half of its previous memory usage. Comparing our GPU implementation to other hardware-based

ray casting algorithms, our approach used between three to ten times less memory. These results made it possible

for our GPU implementation to handle larger datasets on GPU than previous approaches.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Display algorithms I.3.7

[Three-Dimensional Graphics and Realism]: Raytracing

1. Introduction

Direct volume rendering is an important technique for visu-

alizing 3-D data volumes. It provides high quality images

of the interior of the volume data that have valuable con-

tributions in many different areas, such as medical images

analysis, geological data visualization, weather simulations,

or fluid dynamics interactions.

Recently, the increasing capability and performance of

commercial graphics hardware, such as ATI Radeon and

nVidia GeForce, brought hardware implementations of vol-

ume rendering to gain the attention of researchers, as

they allow renderers to achieve interactive frame rates.

Several hardware-based algorithms have been proposed in

the literature [WKME03b, WKME03a, EC05, MMFE06].

Some approaches are based on the cell projection algo-

rithm [WKME03a,MMFE06] and others on the ray casting

algorithm [WKME03b,EC05].

In the ray casting approach for unstructured grids, rays are

casted from the viewpoint through every pixel of the image,

and by line/plane intersection, it is possible to determine all

cells intersected throughout the ray traversal. Every pair of

intersections is used to compute a contribution for the pixel

color and opacity. In the cell projection approach, however,

each polyhedral cell of the volumetric data is projected onto

the screen, requiring the cells to be first sorted in visibility

order. It is done in order to correctly determine the contribu-

tion of each cell for the color and opacity values of the final

image pixels.

The great advantages of ray casting methods are that the

computation for each pixel is independent of the others, and

the traveling of a ray throughout the mesh is guided by the

connectivity of the cells, avoiding the need of sorting the

cells. The disadvantage is that cells connectivity has to be

explicitly computed and kept in memory.

When these two approaches are compared in terms of per-

formance, for smaller datasets, the cell projection approach

performs better [EC05,MMFE06]. For larger datasets, how-

ever, ray casting usually performs better than cell projection

because it does not suffer from the high cost of sorting the

data before the rendering process.

c© The Eurographics Association 2008.

155

http://www.eg.org
http://diglib.eg.org


A. Maximo & S. Ribeiro & C. Bentes & A. Oliveira & R. Farias / Memory Efficient GPU Ray Casting

Although ray casting has been more efficient for large

datasets, their recent implementations on the GPU present

high memory requirements [WKME03b,EC05]. These high

requirements, make the GPU implementations unsuitable for

handling large datasets, i.e. made of several millions of tetra-

hedra. The graphics hardware memory is usually smaller

than the CPU memory, imposing strong limitations in the

store of cell connectivity.

In this paper, we propose a novel hardware-based ray cast-

ing algorithm for tetrahedral meshes that tackles this prob-

lem. Our idea is to take advantage of a recent memory effi-

cient software implementation of ray casting, called Visible

Faces Driven Ray Casting [RMB∗07] – VF-Ray. This algo-

rithm uses a reduced and non-redundant data structure that

provides consistent and significant gains in memory usage,

and explores ray coherence in order to maintain in memory

only information of the most recent traversals. As VF-Ray

used only from 1/3 to 1/6 of the memory used by previous

approaches, it can deal with larger datasets. However, as VF-

Ray was implemented in the CPU, interactive performance

has never been achieved.

In order to achieve interactive performance with VF-Ray,

our hardware implementation uses General Purpose compu-

tation on GPU (GPGPU) [Har04] and the Compute Unified

Device Architecture – CUDA [NVI07] from nVidia. In ad-

dition to the use of graphics hardware, we propose a restruc-

ture in the original data structures of VF-Ray. As a result, our

algorithm is much faster than the original software version,

while using significantly less memory.

Our results show that, when our algorithm is compared to

other recent ray casting hardware-based algorithms, it uses

from 77% to 90% less memory. In this way, our algorithm

could render datasets for which the others failed due to the

lack of memory in the graphics card.

The remainder of this paper is organized as follows. In the

next section we discuss the related work. Section 3 briefly

describes the VF-Ray algorithm. Section 4 describes our

hardware ray casting algorithm and the improvements in its

data structures. In section 5, we present the results of our

most important experiments. Finally, in section 6, we present

our conclusions and proposals for future work.

2. Related Work

Many volume rendering algorithms have been proposed

throughout the years. Volume ray casting is the most popular

one, and several implementations have been developed. Gar-

rity [Gar90] proposes the use of the cell connectivity to com-

pute the ray traversal inside the volume. This approach was

further improved by Bunyk et al. [BKS97], where all cells

are broken into faces, in a preprocessing step. The Bunyk’s

algorithm determine the visible faces, that when projected

on the screen, define the entry point for each pixel, for

the ray casting through the volumetric data. This approach,

however, has to keep some large auxiliary data structures

in memory. In the work by Pina et al. [APCBRF07], two

new data to the ray casting algorithm were proposed, they

achieved significant gains in memory usage. Unfortunately,

their algorithms are slower than Bunyk. The efforts in CPU-

based approaches continue with the recent work of Ribeiro

et al. [RMB∗07] introducing the VF-Ray algorithm. In their

work, instead of keeping the information of all faces in mem-

ory like Bunyk, VF-Ray keeps only a limited set of faces,

in order to bring down the memory footprint. Nonetheless,

VF-Ray stores, in cell and face data structures, some indices

for faces, which we avoid by indexing the faces in a differ-

ent way, as described in section 4.1. Also, they keep a list

of cells for each vertex to properly determine the next cell

when a ray hits a vertex or an edge. This data structure was

replaced in our implementation by a simpler method, in or-

der to avoid this problem. All these approaches, however,

are time-consuming and could not achieve real-time perfor-

mance.

In order to achieve interactive frame rates, graph-

ics processing units (GPUs) have been used [WMFC02,

WKME03a, EC05, BPaLDCS06, MMFE06]. In the last

years, the major increase in the performance and pro-

grammability of GPUs has led to significant increase in

the ray casting performance. Weiler et al. [WKME03a] im-

plemented a hardware-based ray casting algorithm, that is

based on the work of Garrity et al.. This algorithm was

further extended by Espinha and Celes [EC05]. The orig-

inal algorithm uses the pre-integration technique to eval-

uate the final color, while Espinha and Celes approach

uses the partial pre-integration technique [MA04]. Bernar-

don et al. [BPaLDCS06] proposes a hardware-based algo-

rithm based on Bunyk’s implementation and depth peel-

ing to render non-convex unstructured grids. On the other

hand, Weiler et al. [WMKE04] propose the use of tetrahe-

dral strips, in order to deal with the problem of storing the

whole dataset in GPU memory.

In the scope of projection algorithms, there are some soft-

ware implementations [MHC90, FMS00] that provide flex-

ibility and easy parallelization. The GPU implementations

of projection algorithms, however, are more notorious. One

of the first hardware implementation of cell projection was

proposed by Wylie et al. [WMFC02], and was based on the

Projected Tetrahedra (PT) algorithm by Shirley and Tuch-

man [ST90]. The PT algorithm decomposes the tetrahedral

cells into triangles, according to a projection class, and trans-

mit them to the triangle rendering hardware. Wylie et al. ex-

tended PT algorithm to implement all tetrahedral primitives

directly into the GPU. Further, Weiler et al. [WKME03b]

developed a combined ray casting and cell projection ap-

proach, where the projection is done in a view-independent

way. More recently, Marroquim et al. [MMFE06] proposed

another improvement in the PT algorithm that was imple-

mented almost entirely on GPU and could keep the whole

model in the texture memory, avoiding the bus transfer over-

c© The Eurographics Association 2008.

156



A. Maximo & S. Ribeiro & C. Bentes & A. Oliveira & R. Farias / Memory Efficient GPU Ray Casting

head. Their proposal also used partial pre-integration in or-

der to improve the quality of the image. The work of Calla-

han et al. [CICS05] introduced the Hardware-Assisted Visi-

bility Sorting (HAVS) algorithm which simplifies the CPU-

based processing and shifts much of the sorting burden to

the GPU. More recently, Callahan et al. [CBPS06] used the

HAVS algorithm to provide a client-server architecture that

incrementally stream portions of the mesh from a server to a

client.

3. Visible Faces Driven Ray Casting

The Visible Face Driven Ray Casting algorithm, called VF-

Ray [RMB∗07], deals with unstructured grids composed of

tetrahedral or hexahedral cells. Each tetrahedral cell is com-

posed of four faces and each hexahedral cell is composed of

six faces. The algorithm is based on the following premise:

the storing of the information about the faces of each cell is

the key for memory consumption and execution time. This

information is stored in a face data structure, that includes

the geometry and the face parameters, constants for the plane

equation defined by the face, which is the most consuming

data structure in ray casting.

The basic idea behind VF-Ray is to explore ray coherence,

improving caching performance by keeping in memory only

the face data of the traversals of a set of nearby rays. The

nearby rays, which will be casted through the neighboring

pixels, are under the projection of a given visible face, as

shown in Figure 1. This set of pixels is called visible set.

The algorithm first creates a list of vertices, a list of cells

and, for each vertex, a list of all cells incident to the vertex,

called theUse_set of the vertex. The rendering process starts

by determining the visible faces from the external faces of

the volume. An external face is a face that belongs to only

one cell and is not shared by any other cell [BKS97] and a

visible face is an external face whose normal makes an an-

gle greater than 90o with the viewing direction. The VF-Ray

algorithm processes each visible face at a time, projecting it

onto the screen, determining the visible set. For each pixel

in this set, the ray traversal is done and each pair of inter-

sections is computed. The internal faces are determined by

the intersections and the faces data are stored in a temporary

buffer, called computedFaces. Whenever a ray casted from

the current visible set hits an internal face, already stored

in the buffer, the VF-Ray algorithm just reads the face data

from the computedFaces buffer, without having to recom-

pute the faces parameters. The face data are used to evaluate

the traversed distance d and the entry and exit scalar values,

s0 and s1 respectively. Finally, the cell contribution for the

pixel color and opacity is computed using d, s0 and s1 and

an illumination integral.

VF-Ray algorithm explores ray coherence, using the visi-

ble face information to guide the creation and destruction of

face data in memory. The faces intersected by neighbor rays

Figure 1: Ray coherence for one visible face.

tend to be the same (as shown in Figure 1) and their data are

kept in the computedFaces buffer while the visible set is be-

ing computed. When all pixels in a visible set are processed,

the VF-Ray algorithm clears the computedFaces buffer.

3.1. Handling Degeneracies

Degenerated situations may occur in the ray casting meth-

ods, when a ray hits an edge or a vertex. In Bunyk approach,

the algorithm would check for the next intersection only on

the cells neighboring the current cell faces, and, in this way,

would not be able to continue the ray traversal, generating

incorrect pixels colors. VF-Ray can handle these two situa-

tions by using the Use_set data structure. When a ray hits a

vertex v, VF-Ray can find the next intersection by scanning

the cells belonging to the Use_set of v. When the ray hits an

edge v0v1, Vf-Ray can find the next intersection by scanning

the Use_set of v0 and v1. In this way, VF-ray guarantees that

the image will be correctly generated.

4. Memory Efficient GPU-Based Ray Casting

Our hardware-based ray casting algorithm relies on the

GPGPU implementation concept to parallelize the original

VF-Ray algorithm. The idea behind this concept is to assume

the graphics hardware as a coprocessor capable of perform-

ing high arithmetic intensity tasks, regardless the graphics

board specific computations. The architecture used to imple-

ment our GPGPU ray casting algorithm was CUDA [NVI07]

due to its simplicity and the possibility of exploitation of

all GPU resources. In this architecture, the implementation

is done through kernels, that run in multiple threads. The

threads are grouped in blocks, meaning that threads inside

the same block share the resources of one GPU multiproces-

sor. Each multiprocessor has a Single Instruction Multiple

Data (SIMD) architecture which runs the same kernel in-

structions but operating on different data.

We divide our algorithm in three steps and, as a result, in

three different kernels (see Figure 2). In the first kernel, the

external faces are read and the visible faces are determined.

The second kernel computes the projection of each visible

face, splitting them in pixels on the screen space. Finally,

the third kernel evaluates the ray casting algorithm over each

visible face pixel previously computed.

c© The Eurographics Association 2008.

157



A. Maximo & S. Ribeiro & C. Bentes & A. Oliveira & R. Farias / Memory Efficient GPU Ray Casting

The first kernel is important to reduce the computation

done by the next two kernels. In the first kernel, the com-

putation is bounded to the number of external faces, while

in the second and third kernels, the computation is associ-

ated with the number of visible faces. The latter number is

generally half of the former number.

Figure 2: The three kernels of our algorithm.

4.1. Data structures

Before the three GPU kernels can be processed, we pre-

compute the following data structures. From the list of ver-

tices (vertList) and list of tetrahedra (tetList) of the volu-

metric dataset, we compute the tetrahedra connectivity (con-

Tet) which stores for each tetrahedron face, the tetrahedron

id ti which shares the face. Figure 3 shows the data struc-

ture used by our algorithm, illustrating the first tetrahedron

(tetrahedron0). The vertList contains the x, y and z coordi-

nates and the scalar value s of each vertex. The tetList con-

tains the vertices id vi which composes each tetrahedron.

To avoid building other data structures, we use the vertices

order inside the tetList to determine each tetrahedron face.

The vertices of the face fi are vi, v(i+1)mod4 and v(i+2)mod4.

For example, the face f2 of some tetrahedron ti is composed

by the vertices v2, v3 and v0 of ti, as can be seen in Figure 3.

In addition to these data structures, our algorithm uses the

external faces list (extFaces) pre-computed in the same way

as Bunyk.

The original VF-Ray algorithm stores three vertices in-

dices inside its face data structure. In our algorithm, since

we target to run in GPU limited memory, we store only two

indices for each face created. These indices are the tetrahe-

dron ti and the face fi, which are sufficient to identify the

vertices of each face, as explained above.

4.2. Find Visible Faces kernel

The first kernel reads the external faces from texture mem-

ory and computes the parameters, i.e. plane equation coeffi-

cients, for each one. This computation is called face creation

Figure 3: The basic data structures for our GPU-Based ray

casting algorithm.

and targets to solve two 3x3 linear systems: one to interpo-

late the z coordinate; and another to interpolate the scalar

value s. In this kernel, only the z coordinate interpolation is

done for each external face, once this face is checked as vis-

ible the s value interpolation is made and both interpolation

parameters are stored in the list of visible faces (visFaces).

The visibility for an external face is done by comparing

the z coordinate of the fourth vertex of the tetrahedron, i.e.

the vertex that does not belong to the face, with the z coordi-

nate of its projection on the external face. The fourth vertex

projection is done using the z coordinate interpolation pa-

rameters computed for the external face. The face is visible

if the projected z is smaller than the z coordinate of the fourth

vertex.

Only the visible face parameters are written in CUDA

global memory, that is, the z and s interpolation parameters

are stored in the visFaces list.

The first kernel employs the visible face test, i.e. back face

culling, and face creation for each thread, using the maxi-

mum number of threads available per block. The number of

external faces is fixed for each volume data and thus is the

number of threads across all blocks in this kernel. The com-

putation time and memory footprint spent in the first kernel

correspond to less than 5% of the total (time and memory).

Nevertheless, the main role of this kernel is to reduce the

number of threads that will be used by the next two kernels.

From now on, they will run over the visFaces list instead of

the extFaces list, which is about half the size of the extFaces

list.

4.3. Project Visible Faces kernel

The second kernel reads the coordinates of the vertices of

each visible face from the vertList in texture memory. The

vertices ids to access the vertList are read from the tetList in

global memory. Note that texture components can not be in-

dexed directly, forcing us to store the tetList in global mem-

ory, instead of texture memory, in order to avoid unnecessary

branches.

c© The Eurographics Association 2008.

158



A. Maximo & S. Ribeiro & C. Bentes & A. Oliveira & R. Farias / Memory Efficient GPU Ray Casting

The vertices coordinates are used to project the visible

faces onto the screen space. The bounding box of the pro-

jection is computed and stored in the projected visible faces

list (projVisFaces), which is written in global memory to be

used by the next kernel.

The second kernel uses one thread for each visible face

computation. As the first kernel, this one is performed by

each thread using few resources of a block. Therefore, the

number of threads per block can be maximized and the com-

putation time and memory footprint are unnoticeable.

4.4. Ray Casting kernel

The third kernel reads the visFaces list, computed in the

first kernel, and the projVisFaces list, computed in the sec-

ond kernel. The visible face pixels are determined using the

bounding box of the projection and computing a point inside

triangle test. This test employs simple cross product opera-

tions. For each visible face pixel determined, the ray casting

is triggered using the visible face as the first entry face. All

the pixels will use the face parameters stored in the visFaces

list. From this point, the algorithm travels finding each next

face and computing the ray integration using the same inte-

gration method proposed by Bunyk.

Just like VF-Ray, we store the next faces in the 1D com-

putedFaces buffer. However, our ray casting algorithm is de-

signed to run in parallel taking advantage of the ray coher-

ence inside each thread computation. In order to avoid dy-

namic allocation, the computedFaces buffer is allocated in

CUDA local memory for each thread with a fixed size and it

is indexed by a hash table. The hash index is the z coordinate

centroid of the face, refer to Figure 4 for more details. The

first buffer position is associated with the minimum z coor-

dinate (minZ) of the volume dataset, while the last position

with the maximum z coordinate (maxZ). Figure 4 presents

two near rays processed by the same thread one after the

other. The ray 1 creates four internal faces and the ray 2 reads

them from the computedFaces buffer.

Figure 4: The computedFaces buffer stores previous hits

(red circles) to be read in future hits (green crosses). The

centroid is used to hash the buffer.

Furthermore, the computedFaces buffer stores the tetrahe-

dron id ti and the face id fi apart from the face parameters.

These two indices secure that the face to be read is the face

that was hit, in case of collision in the hash slot. On the other

hand, the original VF-Ray algorithm spends more memory

storing four face indices for each tetrahedron to point to the

computedFaces buffer.

The third kernel divides the CUDA grid in blocks (see

Figure 5) associating one block to one visible face. Each

block is, in turn, divided into threads where each one com-

putes a small set of pixels. The threads with pixels outside

the visible face, or fewer pixels inside, finish their computa-

tion faster than the other threads, but are not wasted. These

threads are warped to other blocks, by the graphics hard-

ware driver, in order to continue the kernel computation.

Unlike the first two kernels, the amount of computation per-

formed in the ray traversal consumes much more resources

of a block, making the computation of all visible face pixels

by one thread impractical.

Figure 5: The CUDA grid scheme used in our implementa-

tion. Each block inside the grid computes one visible face,

while each thread inside the block computes a set of pixels.

4.5. Handling Degeneracies

We treat the degenerate cases differently than the original

VF-Ray. While they use the Use_set list to correctly find

the next tetrahedron for the traversal, we perturb the ray to

get rid of the case, then the next iteration continues with the

same ray direction without this displacement. Our approach

obtains approximate results, but saving the memory spent to

keep the Use_set list.

5. Results

In this section we present the results of the performance and

memory usage of our hardware-based ray casting algorithm.

The algorithm was written in CUDA language, which is an

c© The Eurographics Association 2008.

159



A. Maximo & S. Ribeiro & C. Bentes & A. Oliveira & R. Farias / Memory Efficient GPU Ray Casting

extension of a subset of C programming language. Our ex-

periments were conducted on an Intel Pentium Core 2 Duo

6400 with 2.13 GHz per processor and 2 GB RAM. We used

a nVidia GeForce 8800 Ultra graphics hardware with 768

MB of memory.

The evaluation of our algorithm, that we call VF-Ray-

GPU, was done against recent hardware-based algorithms.

We also compare VF-Ray-GPU with the original version of

VR-Ray that runs solely on the CPU. The idea behind this

last comparison is to: first, how much the use of graphics

hardware can improve the performance over a CPU imple-

mentation; and second, the gain we obtained by using dif-

ferent and more efficient structures. Before evaluating our

results, we give a brief description of the hardware-based al-

gorithms used as baselines for our comparisons.

5.1. Baselines

The following algorithms was used for comparison:

VICP: The View-Independent Cell Projection algorithm

(VICP) was proposed byWeiler et al. [WKME03b]. This is a

hybrid version of a cell projection algorithm. The algorithm

projects the each cell of the dataset, but the integrations in-

side the cells are performed exactly in the same way as the

ray casting does.

HARC: The Hardware-Based Ray Casting algorithm

(HARC) was proposed by Weiler et al. [WKME03a] and

is based on Bunyk et al. [BKS97]. The idea is to store the

adjacency information in texture and compute the contribu-

tion of each cell by accessing a 3D texture indexed by the

pre-integration results. The intersections are computed us-

ing faces normals and the integration uses the pre-computed

gradient for each cell.

HARC-Partial: This algorithm [EC05] is an extension of

the HARC algorithm with partial pre-integration. The algo-

rithm also employs an alternative data structure, in order to

reduce the memory usage.

5.2. Workload

We used four different datasets in our experiments: Blunt

Fin, Oxygen Post and Fighter from NASA’s NAS website,

and F16 from EADS. Screenshots of the datasets are shown

in Figure 6. Table 1 shows the number of vertices, faces,

boundary faces, i.e. external faces, and cells for each dataset.

As we can observe in this table, we used two small size

datasets, Blunt and Oxygen, and two large size datasets,

Fighter and F16. The Fighter dataset used in our experiments

is, in fact, a larger and more precise version of the original

NASA dataset, that we call Fighter+. All the results consid-

ered that the volume dataset is constantly rotating. For small

datasets, we used a viewport of 5122 pixels, and for large

datasets, we used a higher resolution, 10242 pixels, in order

to detail the large number of cells in these volumes.

Dataset # Verts # Faces # Boundary # Cells

Blunt 41 K 381 K 13 K 187 K

Oxygen 109 K 1 M 27 K 513 K

F16 1.1 M 12.9 M 309 K 6.3 M

Fighter+ 1.9 M 22.1 M 334 K 11.2 M

Table 1: Datasets sizes.

(a) (b)

(c) (d)

Figure 6: Datasets: Blunt Fin (a), Oxygen Post (b), Fighter

(c) and F16 (d).

5.3. Small Datasets

In this section we evaluate the performance and memory us-

age of VF-Ray-GPU against the other hardware-based im-

plementations results. We used in this evaluation only the

small datasets, since the other algorithms could not handle

the large datasets.

Table 2 shows the time and memory usage results for the

baseline rendering algorithms and VF-Ray-GPU, for Blunt

and Oxygen. Each two columns for each dataset summarizes

the total memory footprint (in kilobytes) and timing (in mil-

liseconds).

Table 3 shows some memory usage aspects of the algo-

rithms. The number of bytes per tetrahedron needed to store

the volume data (Bytes/Tet); the number of bytes per pixel,

that depends on the final image (Bytes/Pixel); and the total

number of megabytes spent in pre-integration or partial pre-

integration technique (Pre-Int.). These numbers indicate how

the memory usage grows with respect to the dataset size,

the final image precision and the use of pre-integration table

lookup.

c© The Eurographics Association 2008.

160



A. Maximo & S. Ribeiro & C. Bentes & A. Oliveira & R. Farias / Memory Efficient GPU Ray Casting

Algorithm
Blunt Fin Oxygen Post

Memory (KB) Time (ms) Memory (KB) Time (ms)

VICP 118,524 190 249,928 546

HARC 72,267 18 123,245 33

HARC-Partial 22,636 32 50,248 51

VF-Ray-GPU 7,029 186 19,494 370

Table 2: Memory and timing results for VF-Ray-GPU and other hardware-based algorithms.

Algorithm Bytes/Tet Bytes/Pixel Pre-Int

VICP 456 – 16

HARC 160 96 16

HARC-Partial 96 96 1

VF-Ray-GPU 38 – –

Table 3: Hardware-based algorithms memory usage.

When we compare VF-Ray-GPU with the other ray

casting algorithms, HARC and HARC with partial pre-

integration (HARC-Partial), we can observe that, our algo-

rithm uses only about 33% of the memory used by HARC

with partial pre-integration and about 12% of the memory

used by the original HARC algorithm. However, VF-Ray-

GPU is slower than both hardware ray casting implementa-

tions. This is due mainly to the ray traversal technique.

The main difference between the two hardware ray casting

algorithms and VF-Ray-GPU resides on the ray traversal and

integration techniques. The ray traversal in HARC is done

using pre-computed normals per face and gradients per tetra-

hedron. In VF-Ray-GPU approach, computations over the

face’s parameters replace the use of normals and gradients

for the ray traversal. The HARC’s ray integration technique

uses the pre-integration (or partial pre-integration) method to

evaluate each cell contribution. VF-Ray-GPU algorithm, on

the other hand, uses a volume rendering integral computed

on-the-fly. The use of faces slows down the VF-Ray-GPU,

nevertheless, it reduces the memory used per tetrahedron by

more than 50%, compared with the two HARC algorithms.

This type of memory footprint is fundamental when dealing

with large volume datasets.

When we compare VF-Ray-GPU with the hybrid algo-

rithm, we observe that VICP algorithm uses 16 times more

memory and is slower than VF-Ray-GPU for Oxygen. VICP

being a hybrid algorithm, uses all necessary data for ray cast-

ing and it also employs part of the cell projection calculation,

which makes it the most memory consuming algorithm.

5.4. Large Datasets

In this section we evaluate the performance and memory us-

age of VF-Ray-GPU for large datasets. One of the most im-

portant results of our work is that from all hardware-based

ray casting algorithms, VF-Ray-GPU was the only one that

could render F16 and Fighter+. The GeForce 8800 Ultra

does not have enough memory, required by the other ray

casting algorithms.

In Table 4 we compare VF-Ray-GPU with VF-Ray. The

table shows the memory footprint (in kilobytes) and the to-

tal execution time (in millisecond) for the two large datasets

rendered by VF-Ray-GPU (GPU) and the original VF-Ray

algorithm (CPU). As we can observe in this table, in com-

parison with the original VF-Ray, our algorithm runs about

4 times faster and uses about 50% less memory. The per-

formance gain is due to the parallel nature of our ray casting

algorithm, while the data restructuring improves the memory

usage.

Datasets
Memory (MB) Time (ms)

CPU GPU CPU GPU

Fighter+ 876 426 16263 3081

F16 499 239 2515 804

Table 4: Memory footprint and timing comparison between

VF-Ray-CPU and VF-Ray-GPU algorithms.

6. Conclusions

In this work, we have proposed a novel hardware-based ray

casting algorithm, based on a memory-aware software im-

plementation of ray casting, VF-Ray. The main contribu-

tion of our proposal was to provide ray casting in hardware

graphics with low memory usage in order to handle large

datasets. Besides the low memory consumption, our algo-

rithm also allows the handling of some degenerate cases,

produced by the hardware implementations that are based

on previous ray casting approaches, like Bunyk approach.

We compared our algorithm with other recent hardware-

based volume rendering algorithms, based on the ray casting

paradigm, and on a hybrid version mixing ray casting and

cell projection. For smaller datasets, our algorithm is slower

than the ray casting approaches, but uses from 77% to 90%

less memory. When compared to the hybrid approach, our

algorithm is faster and uses about 95% less memory.

For larger datasets, our algorithm could render datasets

for which the others failed, due to the lack of memory in the

graphics card. Our results show a linear increase in the ex-

ecution time with the increase in the dataset size, indicating

c© The Eurographics Association 2008.

161



A. Maximo & S. Ribeiro & C. Bentes & A. Oliveira & R. Farias / Memory Efficient GPU Ray Casting

that the algorithm is scalable to larger datasets. In addition,

our algorithm was faster than the original VF-Ray, while us-

ing significantly less memory.

As future work we intend to use the thread synchroniza-

tion scheme of CUDA to handle non-convex meshes. An-

other future work is to use the partial pre-integration tech-

nique, in order to improve rendering quality.

7. Acknowledgments

We would like to thank Claudio Silva for providing us the

Fighter and F16 datasets (Fighter from Neely and Batina –

NASA, and F16 from Udo Tremel – EADS-Military). We

also acknowledge the grant of the first and second authors

provided by Brazilian agencies CNPq and CAPES, respec-

tively.

References

[APCBRF07] ALINE PINA, CRISTIANA BENTES, RI-

CARDO FARIAS: Memory efficient and robust software

implementation of the raycast algorithm. In WSCG’07:

The 15th Int. Conf. in Central Europe on Computer

Graphics, Visualization and Computer Vision (2007).

[BKS97] BUNYK P., KAUFMAN A. E., SILVA C. T.: Sim-

ple, fast, and robust ray casting of irregular grids. In

Dagstuhl ’97, Scientific Visualization (Washington, DC,

USA, 1997), IEEE Computer Society, pp. 30–36.

[BPaLDCS06] BERNARDON F. F., PAGOT C. A., AO

LUIZ DIHL COMBA J., SILVA C. T.: GPU-based Tiled

Ray Casting using Depth Peeling. Journal of Graphics

Tools 11.3 (2006), 23–29.

[CBPS06] CALLAHAN S. P., BAVOIL L., PASCUCCI V.,

SILVA C. T.: Progressive volume rendering of large un-

structured grids. IEEE Transactions on Visualization and

Computer Graphics 12, 5 (2006), 1307–1314.

[CICS05] CALLAHAN S. P., IKITS M., COMBA J. L.,

SILVA C. T.: Hardware-assisted visibility sorting for un-

structured volume rendering. IEEE Transactions on Vi-

sualization and Computer Graphics 11, 3 (2005), 285–

âĂŞ295.

[EC05] ESPINHA R., CELES W.: High-quality hardware-

based ray-casting volume rendering using partial pre-

integration. In SIBGRAPI ’05: Proceedings of the XVIII

Brazilian Symposium on Computer Graphics and Image

Processing (2005), IEEE Computer Society, p. 273.

[FMS00] FARIAS R., MITCHELL J. S. B., SILVA C. T.:

ZSWEEP: an efficient and exact projection algorithm for

unstructured volume rendering. In VVS’00: Proceedings

of the 2000 IEEE Symposium on Volume visualization

(New York, NY, USA, 2000), ACM Press, pp. 91–99.

[Gar90] GARRITY M. P.: Raytracing irregular volume

data. In VVS’90: Proceedings of the 1990 workshop on

Volume visualization (New York, NY, USA, 1990), ACM

Press, pp. 35–40.

[Har04] HARRIS M.: GPGPU – General-Purpose

computation using Graphics Hardware, 2004.

http://www.gpgpu.org/.

[MA04] MORELAND K., ANGEL E.: A fast high accuracy

volume renderer for unstructured data. In VVS ’04: Pro-

ceedings of the 2004 IEEE Symposium on Volume visual-

ization and graphics (Piscataway, NJ, USA, 2004), IEEE

Press, pp. 13–22.

[MHC90] MAX N., HANRAHAN P., CRAWFIS R.: Area

and volume coherence for efficient visualization of 3d

scalar functions. In VVS’90: Proceedings of the 1990

workshop on Volume visualization (New York, NY, USA,

1990), ACM Press, pp. 27–33.

[MMFE06] MARROQUIM R., MAXIMO A., FARIAS R.,

ESPERANCA C.: GPU-Based Cell Projection for Interac-

tive Volume Rendering. In SIBGRAPI ’06: Proceedings

of the XIX Brazilian Symposium on Computer Graphics

and Image Processing (Los Alamitos, CA, USA, 2006),

IEEE Computer Society, pp. 147–154.

[NVI07] NVIDIATM: CUDA Environment –

Compute Unified Device Architecture, 2007.

http://www.nvidia.com/object/cuda_home.html.

[RMB∗07] RIBEIRO S., MAXIMO A., BENTES C.,

OLIVEIRA A., FARIAS R.: Memory-Aware and Efficient

Ray-Casting Algorithm. In SIBGRAPI ’07: Proceedings

of the XX Brazilian Symposium on Computer Graphics

and Image Processing (Los Alamitos, CA, USA, 2007),

IEEE Computer Society, pp. 147–154.

[ST90] SHIRLEY P., TUCHMAN A. A.: Polygonal ap-

proximation to direct scalar volume rendering. In Pro-

ceedings San Diego Workshop on Volume Visualization,

Computer Graphics (1990), vol. 24(5), pp. 63–70.

[WKME03a] WEILER M., KRAUS M., MERZ M., ERTL

T.: Hardware-Based Ray Casting for Tetrahedral Meshes.

In Proceedings of the 14th IEEE conference on Visualiza-

tion ’03 (2003), pp. 333–340.

[WKME03b] WEILER M., KRAUS M., MERZ M., ERTL

T.: Hardware-based view-independent cell projec-

tion. IEEE Transactions on Visualization and Computer

Graphics 9, 2 (2003), 163–175.

[WMFC02] WYLIE B., MORELAND K., FISK L. A.,

CROSSNO P.: Tetrahedral projection using vertex shaders.

In VVS’02: Proceedings of the 2002 IEEE Symposium on

Volume visualization and graphics (Piscataway, NJ, USA,

2002), IEEE Press, pp. 7–12.

[WMKE04] WEILER M., MALLON P. N., KRAUS M.,

ERTL T.: Texture-encoded tetrahedral strips. In VV ’04:

Proceedings of the 2004 IEEE Symposium on Volume Vi-

sualization and Graphics (Washington, DC, USA, 2004),

IEEE Computer Society, pp. 71–78.

c© The Eurographics Association 2008.

162


