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Abstract

In this paper we propose a user interface for the design of 1D transfer functions. The user can select a feature
of interest by drawing one or more strokes directly onto the volume rendering near its silhouette. Based on the
stroke(s), our algorithm performs a histogram analysis in order to identify the desired feature in histogram space.
Once the feature of interest has been identified, we automatically generate a component transfer function, which
associates optical properties with the previously determined intervals in the domain of the data values. By support-
ing direct interaction techniques, which are performed in the image domain, the transfer function design becomes
more intuitive compared to the specification performed in the histogram domain. To be able to modify and com-
bine the previously generated component transfer functions conveniently, we propose a user interface, which has
been inspired by the layer mechanism commonly found in image processing software. With this user interface,
the optical properties assigned through a component function can be altered, and the component functions to be
combined into a final transfer function can be selected.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and RealismSubjects: Color, shading, shadowing, and texture

1. Introduction

Transfer functions are used to map intensity values to opti-
cal properties. In most application domains this mapping is
specified in such a way that features of interest are visually
more prominent, while less interesting features are visually
less prominent or even masked out. Although many tech-
niques for the specification of both 1D and 2D transfer func-
tions have been proposed, until now there exists no widely
accepted intuitive way. Manual setup of transfer functions
is still a difficult task, which is very time-consuming and
error-prone. Since achieved results are hard to reproduce, es-
pecially for 2D transfer functions manual setup by domain
users is not practical. To cope with this problem, a couple
of semi-automatic methods have been proposed. However,
these methods are sometimes not intuitive, i. e., the resulting
transfer functions do not match the intentions of the users,
and they still require time for adaptation. Fully automatic
transfer function specification does not improve the situation
a lot, since these algorithms are neither flexible [PLB∗01],
nor are their results reliable for arbitrary data sets from dif-
ferent domains.

In this paper we propose interaction concepts for speci-
fying transfer functions, which have been motivated by the
work with our medical partners. When collaboratively adapt-
ing visualizations, the physicians had rather high level re-
quests describing the desired visualization. For example,
they asked to visually emphasize certain features of in-
terest by changing their color or degree of opacity, or to
add/remove features from the visualization. To depict the
features of interest, they were often pinpointing to the re-
spective position on the screen, while the histogram, com-
monly used for transfer function specification, was not in
their focus. Besides this image-based way of thinking, it is
also noteworthy that the physicians do not think of a trans-
fer function as one holistic function, but as a list in which
each entry is associated with a feature having assigned a
color and an opacity. This perspective, which is similar to
the component function approach presented by Castro et
al. [CKLG98], does not match with the commonly used
transfer function editors found in most medical applications.
With these editors the transfer function setup is performed in
the histogram domain by adding keys with associated color
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and opacity. To obtain the transfer function, the program in-
terpolates between these keys.

With the interaction metaphor proposed in this paper, we
try to support the approach of the physicians described in the
previous paragraph. By drawing one or more strokes near the
silhouette of the feature of interest, our algorithm automati-
cally generates a 1D component transfer function [CKLG98]
for the identified feature. In order to be able to draw strokes
along a silhouette, the feature obviously needs to be visible
in the rendering. Therefore, we apply an initial black/white
ramp transfer function and support windowing as known
from medical workstations. When applying the windowing,
the user can visually emphasize different features sequen-
tially and is thus able to acquire information about the target
data set. When the desired component transfer function has
been generated, the user may control its optical properties.
To do so, a user interface is proposed, which is inspired by
the layer concept frequently found in image processing soft-
ware. With this user interface, the color as well as the opacity
of each identified component function can be altered conve-
niently. Furthermore, the component functions contributing
to the final transfer function can be selected. When changing
this selection or the optical properties, the rendering is up-
dated on-the-fly in order to provide immediate visual feed-
back. While the combination of these interaction concepts
allows to define 1D transfer functions easily, the proposed
system is still subject to the known limitations of 1D trans-
fer functions, especially it is not possible to separate features
of interest which overlap in the data domain.

2. Related work

Transfer function specification has been an ongoing re-
search topic in the past. Component functions, as described
by Castro et al. [CKLG98], introduce a higher level of ab-
straction into the transfer function design process to allow
a more intuitive transfer function specification. In medical
visualization such an abstraction would be the characteri-
zation of different tissue types. To intuitively extract these
features, component functions can be defined over differ-
ent ranges of data values and finally be combined to the
transfer function. This abstraction is similar to the material
percentage volumes described by Drebin et al. [DCH88]. A
material percentage volume can be generated through clas-
sification, and assigns the percentage of a material present
at each voxel’s location. Based on the material percentage
volumes, composite volumes are generated for rendering by
multiplying the material percentage with the property val-
ues assigned to that material. While Castro et al. [CKLG98]
also discuss some user interface concepts for managing com-
ponent functions, König and Gröller have gone further and
propose an image-centric user interface for transfer function
specification [KG01]. Similar to the component function ap-
proach developed by the same authors, they also choose a
set of intervals in the data domain to which they assign col-

ors, before they combine the resulting component functions
into a single transfer function by considering user-specified
opacities. In contrast to the stroke-based approach presented
in this paper, their approach for specifying data ranges is
an image-centric approach, which is inspired by the design
gallery metaphor [MAB∗97]. The layer analogy exploited
by the user interface described in this paper has also been
used by Rezk-Salama et al. [RSKK06]. They have adapted
a semantic model for a selected application case and use it
to integrate domain-specific knowledge into the user inter-
face in order to hide the complexity of visual parameter as-
signment from the non-expert user. Another layer concept
has been described by Rautek et al. [RBG07]. They propose
how to specify a mapping from several volumetric attributes
to multiple illustrative visual styles by using rules that are
evaluated with fuzzy logic arithmetic. However, they stick
with the concepts known from traditional transfer function
editors to specify the attribute ranges used in the given rules.

In the transfer function bake-off [PLB∗01] different
image-centric and data-centric approaches are compared.
Our approach can be classified as a data-centric approach,
which aims at abstracting from the histogram domain
as much as possible. The technique by Kindlmann and
Durkin [KD98] rated as most promising among those com-
pared in the transfer function bake-off focusses on the ex-
traction of boundary surfaces. It uses the data values and
the first and the second directional derivatives for generat-
ing a transfer function semi-automatically. The method has
been extended by Kniss et al. [KKH02] through widgets and
dual-domain operations. Sereda et al. [SBSG06] also em-
phasize boundaries with a method based on LH histograms.
They identify and display surface representations in his-
togram space and enable the user to assign optical proper-
ties to these surfaces. Lum et al. [LSM06] adapt so-called
filter banks from signal processing in order to generate more
complex transfer functions, which are especially efficient for
classifying noisy features. Similar to the material approach
presented by Drebin et al. [DCH88], they exploit a classifica-
tion based on material percentages, which can be configured
by using a parallel coordinate user interface.

Sketch-based techniques have the potential to classify
features in a volumetric data set directly in image space in-
stead of interacting within the histogram space. One reliable
method is to work on a single slice of the volume and to
specify the contour of the desired feature or region manu-
ally. Tzeng et al. propose a painting interface which allows
the user to directly draw on 2D slices [TLM03, TLM05].
Based on this drawing a transfer function is generated and
a 3D visualization is updated rapidly. Similarly, Huang and
Ma [HM03] allow the user to draw on a 2D slice to initiate
a region growing process. They show that a partial region
growing can be sufficient to derive a 2D transfer function.
Chen et al. [CSSM06] combine 3D sketching with region
growing for segmentation. Initially, they specify a region
of interest by using multiple sketches, then they show how
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(a) (b) (c) (d)

Figure 1: Comparison of difference histograms generated with different weighting paradigms. The goal was to detect the vena
cava (i = 188), which occludes the spinal column (i = 170) in this artificial data set. The distance between the strokes is sdelta
(a). No weighting allows no peak detection (b). Opacity weighting still results in a too high 170s peak (c). Visibility weighting
helps to extract the correct peak (d).

to segment features from this region of interest by seeded
region growing. A similar approach is also described by
Sherbondy et al. [SHN03]. Wu and Qu [WQ07] propose a
framework for combining existing volume renderings by us-
ing genetic algorithms in order to find a transfer function,
which allows to visualize all relevant structures visible in
the source images. They also discuss how to modify exist-
ing transfer functions by using sketching. They determine
the features of interest by comparing the sketched silhouette
to those contours automatically detected in the rendering.
Thus, in contrast to our technique, designing a new transfer
function requires an initial transfer function having certain
properties, i. e., features must be visually separable. Owada
et al. [ONI05] presented an intuitive sketching interface for
segmentation purpose. The user traces the contour of the 3D
target region using a 2D free form stroke. By analyzing the
gradient length along rays cast through the contour, the sys-
tem is able to segment a plausible volumetric region speci-
fied by the stroke. Similar to our approach the system infers
the depth information of the desired region automatically by
analyzing the data. However, in contrast to their technique,
our approach does not require an accurate manual contour
tracing, nor a gradient along the specified segment.

3. Stroke-based volume classification

To make the specification of component functions more in-
tuitive, we propose a stroke-based volume classification al-
gorithm. By using this technique, a feature of interest can be
selected by highlighting parts of its silhouette in image space
with one or more mouse strokes. Since a silhouette may be
rather complex, it is not necessary to sketch the whole sil-
houette, but only a small segment along it.

The stroke-based classification works as follows. Based
on each drawn stroke two further strokes are generated,
which are both parallel to the drawn one and positioned in
the same distance on its opposite sides. The first one, the
inner stroke, covers the feature of interest in image space,
while the second one, the outer stroke, does not cover this

feature (see Figure 1 (a)). Then our algorithm computes ray
histograms for both of these strokes by casting rays through
all points of each stroke. By comparing these histograms, we
are able to identify the range of intensity values, which most
likely represents the desired feature of interest, and we can
generate a new component function associated with that in-
tensity range. Besides generating new component functions,
it is also possible to modify existing component functions.
In the subtraction mode, the identified intensity range is re-
moved from the intensity range of the current component
function. This mechanism allows to further refine the classi-
fication results.

3.1. Stroke specification

When drawing the initial stroke, multiple mouse events at
different positions are generated. For each position, where
an event is detected, a control point is generated to specify
the line strip representing the stroke. The distance sdelta be-
tween the inner and the outer stroke must be specified (see
Figure 1 (a)). As mentioned above, the inner stroke covers
the feature of interest, while the outer stroke should not cover
it. It is obvious that the detection of different features may
require an adaptation of sdelta. For instance, when drawing
a stroke along the silhouette of a blood vessel, which might
be a rather tiny structure in image space, sdelta can be rather
small. In contrast, when detecting a larger scale feature, such
as for instance the femoral bone, the value of sdelta can be
larger. We have decided to let the user interactively spec-
ify sdelta by a horizontal mouse movement. After all strokes
depicting a certain feature of interest have been drawn, the
user can drag the mouse horizontally left resp. right in or-
der to decrease resp. increase the value for sdelta interac-
tively. If sdelta becomes negative, the inner and the outer
stroke switch sides. Thus, in contrast to the work presented
in [ONI05], our approach does not need an accurate tracing
of the silhouette, and the stroke does not need to be drawn
in a predefined direction. Especially the lower required ac-
curacy makes the drawing process quite fast. Furthermore,
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Figure 2: The computed ray histograms are shown for two different positions in the image (a). The left/green histogram contains
the spine-peak only (b), while the right/blue histogram does contain two peaks (c). The desired peak can be extracted with the
difference histogram (d).

to deal with features having a tiny footprint in image space,
we support defining a zooming area with the mouse.

3.2. Difference histogram generation

When the inner and the outer stroke have been defined, a dif-
ference histogram is generated and analyzed. This process
starts with generating ray histograms for each control point
on each of the two strokes. When all those ray histograms
have been generated, pairwise difference histograms are cal-
culated. Since the inner as well as the outer stroke are trans-
formations of the initially drawn stroke, these difference his-
tograms can be generated for their correlating control points.
They are computed by subtracting the bin values of the outer
ray histogram from those of the inner ray histogram. This
results in a histogram having a positive peak for intensity
values mainly present in the inner histogram and a negative
peak for intensity values mainly present in the outer ray his-
togram. To get the final difference histogram, which repre-
sents the intensity distribution for the drawn stroke, we aver-
age over all difference histograms generated for all pairs of
control points.

To facilitate the interpretation of the difference histogram,
we have experimented with different paradigms for weight-
ing the amount with which a voxel contributes to the ray
histogram. A comparison of the three tested techniques is
shown in Figure 1. Figure 1(a) shows the initial situation, the
goal was to classify the opaque vena cava, which occludes
parts of the semi-transparent spinal column. For explanatory
purpose, this is an artificial 8 bit data set with known in-
tensity values; the vena cava has an intensity value of 188,
while the spinal column has an intensity value of 170. In Fig-
ure 1(b) the difference histogram is shown which has been
generated without weighting the voxels, i. e., each voxel has
the same contribution. As it can be seen, many peaks, pos-
itive as well as negative, contribute to the ray histogram.
Since the assigned opacity values are not considered during
the histogram generation, all intensities along a ray have a
footprint in the final difference histogram. Although there is

Figure 3: A cutout of a difference histogram with five com-
ponents (c1-c5). Positive bars (blue) indicate that the inten-
sity values are mainly present in the inner histogram, while
negative (green) bars indicate that the intensity values occur
mainly in the outer histogram.

a peak visible at 188, it is not possible to automatically iden-
tify this one as the desired one. Since the spinal column has
a larger depth extent, more voxels having an intensity of 170
contribute to the histogram, and thus the 170s peak is reason-
ably larger. When incorporating the opacity of each voxel, all
peaks but those of visible features can be omitted from the
difference histogram (see Figure 1(c)). However, the high-
est peak still belongs to the spinal column. Although it has
a much smaller opacity, the greater depth extent results in a
higher peak. Therefore we have chosen to weight the voxels
based on their visibility (see Figure 1(d)), which is initially
modified through the windowing. By incorporating the opac-
ities assigned through the current windowing, we evaluate
the volume rendering integral to compute the visibility for
each voxel along a ray, i. e., the fraction of its emission that
reaches the camera. When computing the ray histograms, we
weight each voxel based on the such computed visibility. As
it can be seen, this makes the desired peak at 188 the most
prominent one, despite there is still a small peak at 170 visi-
ble.
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3.3. Histogram analysis

Figure 2 shows how a ray histogram, generated with visibil-
ity weighting, varies for different positions in image space.
Positive values in the difference histogram indicate intensity
values mainly present along the inner stroke, while nega-
tive values indicate that these intensities are mainly present
along the outer stroke (see Figure 3). To determine the fea-
ture of interest, the highest peak needs to be detected. Un-
fortunately, features in real world data are given by an inten-
sity range which consists of several adjacent positive peaks.
We refer to a set of all adjacent positive or negative peaks
as a histogram component. The cutout of the difference his-
togram shown in Figure 3 contains five components c1 − c5.
While c1, c3 and c5 are positive components, c2 and c4
are negative. A straightforward approach for identifying the
component of interest, i. e., the one belonging to the fea-
ture of interest, would be to choose the one with the largest
relative mass. However, in some cases this is not clearly
defined, since different components with the same relative
mass may exist. In the example shown in Figure 3, c1 and
c5 have almost the same relative mass. Thus, when choosing
the component c5, the also significant component c1 would
be lost, since the components are split by the negative com-
ponents c2 and c4. This occurrence of small negative com-
ponents splitting significant positive components could be
noticed especially when drawing unprecise strokes as well
as when dealing with data sets having a higher bit depth or
high noise occurrence. To handle this issue, we perform a
connected component analysis in order to identify the set of
components most likely representing the feature of interest.
The goal is to merge the disconnected significant compo-
nents into one component that reflects the feature of interest.
To merge the disconnected components, we iterate over all
positive components and test, whether they can be merged
with their next positive neighbor. To evaluate this test, we
introduce a merge factor m f ac. A merge is only possible if
the negative component ck separating two positive compo-
nents ci and c j is sufficiently small, which we express by the
following inequation:

mass(ci)+mass(c j) > −mass(ck) ·m f ac. (1)

By applying this test, we successively merge all possi-
ble positive components. When no further merge steps are
possible, we select the component with the largest mass,
which represents our feature of interest. Thus, for the exam-
ple shown in Figure 3 with m f ac = 100, initially c1 and c3
are merged to c1c3, since 0.44 + 0.005 > 0.003 · 100. Then,
c1c3 is merged with c5, and finally c1c3c5 is selected as the
component with the largest relative mass. For the data sets
we have inspected, a value of m f ac below 500 gave good re-
sults. This shows that the negative peaks are rather small in
comparison to the positive peaks. This must not be the case
when dealing with data having a less good signal to noise
ratio.

Figure 4: Layer interface for modifying component func-
tions. Each layer is specified by a name and some optical
properties: color and opacity. The current appearance of the
layer is depicted by a pictogram. By clicking the eye symbol,
it is possible to toggle the visibility of a layer.

4. User interface concepts

To modify and combine the generated component functions
intuitively, we propose a user interface which has been in-
spired by the layer concept commonly found in image pro-
cessing software. Within those applications, layers are used
to constrain the user interaction to a subset of the visible fea-
tures only. Furthermore, it becomes possible to undo even
complex manipulations by discarding the appropriate layer.
Similar interactions can be performed on component func-
tions in order to make the manipulation more intuitive and
to make reproduction easy. However, in contrast to the layer
concept found in image processing software, the order of
the component functions does not influence the result of the
composition.

The proposed user interface contains a list of layers, rep-
resenting the previously generated component functions. For
instance, the user interface in Figure 4 shows the component
functions used in Figure 7. To reduce the complexity of as-
signing optical properties, color and opacity are the only pa-
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rameters the user has to control, via the color chooser and the
opacity slider assigned to each layer. Based on these param-
eter settings, the associated component function is modified
using a tent peak shape [KG01]. The user-selected color as
well as the user-selected opacity are assigned to the center
of mass of the intensity range, which is associated with the
component function. To achieve a smooth color transition
towards the boundaries of the covered data range, we exploit
the HSV color space. We transform the user-selected color
into the HSV space and divide the V value by two. The re-
sulting darker color is assigned with zero opacity to the mini-
mum and the maximum intensities lying in the associated in-
tensity range. The remaining values are interpolated resp. ex-
trapolated accordingly, which results in a simple tent-shaped
component function. As Castro et al. [CKLG98] have de-
scribed, it would be useful to visualize the impact of a sin-
gle component function. Therefore we render preview pic-
tograms, which are integrated into the user interface and are
updated rapidly (see Figure 4). Once the transfer function
designer is happy with the current layer, s/he may also adapt
the associated name to make it more prominent.

By automatically combining all component functions into
a final transfer function, it is possible to visualize a data set
with all previously setup features. Currently, this combina-
tion is done by using a weighted average based on the opac-
ity, where each color of the final transfer function is com-
puted as follows:

C f inal( j) = ∑i Ci( j)αi( j)
∑i αi( j)

. (2)

i is the index of the current transfer function and j an in-
tensity in the data range. Ci( j) and αi( j) are the optical prop-
erties of the transfer function i for the intensity j. To get the
opacities for the final transfer function, the opacities of the
component functions can be summed. While this approach
achieves good results, also more sophisticated techniques
for combining the component functions could be integrated,
for instance the one presented by Wu et al. [WQ07]. Similar
to the layer processing of image manipulation applications,
where layers can be set to be invisible, the combination of
the component functions can be modified. By clicking the
eye symbol (see Figure 4) a component function can be in-
cluded into or excluded from the final transfer function to
allow a comparison of alternative transfer function designs.
Figure 4 shows the novice version of the user interface. To
give expert users full control, the expert version also con-
tains a traditional transfer function editor, which allows to
adapt the component functions as well as the final transfer
function freely.

Besides the layers associated with previously generated
component functions, the user interface contains one layer,
which is used when drawing the strokes and not considered
during the combination of the component functions. This ba-
sic layer is associated with a ramp transfer function, which

(a)

(b)

Figure 5: Applying our technique to a CT scan of a human
hand. When classifying the skin only one component is sig-
nificant (a); for the bone, several components are automati-
cally merged to get the desired intensity range (b).

covers the whole intensity range and assigns zero opacity
black to the minimum intensity value and white having a
user-defined opacity to the maximum intensity value. By ac-
tivating this layer and applying windowing, it becomes pos-
sible to show all features potentially contained in the data
set. This process is inspired by the proceeding of a radiolo-
gist, who tries to identify features of interest by changing the
windowing of a data set. Thus the transfer function designer
can alter the voxel visibility through the basic layer until the
features of interest become visible. To further support the vi-
sual distinction of intensity values, the color coding of this
special transfer function can be switched from a gray value
gradient to a color value gradient.

5. Results

In Figure 5 the drawn stroke, the derived difference his-
togram as well as the resulting classification for different
features of the hand data set are shown. Figure 5 (a) shows
the results achieved when classifying the skin. As it can be
seen, the histogram analysis reveals one connected compo-
nent representing the feature of interest. Since its center of
mass is slightly shifted to the left, the resulting tent-shaped
component function is also slanted to the left. Figure 5 (b)
shows the difference histogram generated when classifying
the bone structures of the hand data set. In this case three
components are potential candidates for the feature of in-
terest. Since they are separated by negative components,
our connected component analysis algorithm as described in
Subsection 3.3 fixes the situation and helps to associate the
merged component with the feature of interest.

By applying our technique to the baby data set shown
in Figure 6, we could extract three layers in less than a
minute. Once these layers have been specified, they can be
changed and recombined easily. Figure 6 (a) shows the basic
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(a) (b) (c) (d)

Figure 6: A 1D transfer function has been generated for the baby data set by using three component functions, which have been
created using the basic layer (a). The bone structures are visualized gray using a high opacity (b), red is assigned to the brain
structures (c), and the skin is rendered semi-transparently (d).

layer with the initial stroke used to classify the bone struc-
tures. Figures 6 (b)-(d) show visualizations of different com-
binations of the generated component functions. Figure 7
shows another application, where we have extracted the lay-
ers shown in Figure 4, which lasted approximately two min-
utes. External users tried the proposed technique on CT an-
giography data and gave positive feedback. Especially, the
ability to directly mark objects in image space was appreci-
ated. Because the 1D transfer function approach constrains
the physicians to distinguish features, which do not overlap
in the intensity range, they missed segmentation capabilities.
Furthermore, the interactive assignment of the optical prop-
erties with the subsequent combination of the layers has been
considered as effective and fun to do. Until now we did not
conduct a complete user study verifying the usability of our
approach.

6. Conclusions and future work

In this paper we have proposed a direct approach for specify-
ing transfer functions for volumetric data. We have demon-
strated how to design 1D transfer functions without interact-
ing in the histogram domain. Our approach allows the user to
identify features directly within the volume rendering, which
leads to a more intuitive specification. With the proposed
user interface, the user is able to select the optical proper-
ties for each feature separately, and it becomes easy to undo
transfer function changes, since the user may decide which
of the selected features should be integrated into the final
transfer function. By using these concepts, we were able to
design 1D transfer functions for different data sets.

In the future several extensions could be investigated. Cur-
rently, only features which can be classified by using 1D
transfer functions can be distinguished. Consequently, sup-
porting the specification of higher dimensional transfer func-
tions or the use of the stroke-based technique for segmenta-
tion would be valuable extensions. Furthermore, in analogy
to the image processing layer metaphor, it should be possible
to choose between different more sophisticated combination

techniques when composing the final transfer function. In-
vestigating how the proposed analysis technique responds to
different degrees of noise is also an open issue.
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