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Abstract

We present the latest developments in modeling 3D biomedical data via the Medial Scaffold (MS), a 3D acyclic

oriented graph representation of the Medial Axis (MA) [LK07, SP08]. The MS (and associated 3D MA) can

be computed as the result of the singularities of a geometric wave propagation simulation. We consider here some

of the potential applications of this shape model in the realm of biomedical imaging. We can reconstruct complex

object surfaces and make explicit the coarse-scale structures, which are ready-to-use in a number of practical

applications, including: morphological measurement for cortex or bone thickness, centerline extraction (curve

skeleton) for tracheotomy or colonoscopy, surface partitioning for cortical or anatomical surface classification,

as well as registration and matching of shapes of tumors or carpal bones. The MS permits to automatically and

efficiently map an unorganised point cloud, i.e., simple 3D coordinates of point samples, to a coherent surface

set and associated approximate MA. The derived MS is used to further recover significant medium and large

scale features, such as surface ridges and main axial symmetries. The radius field of the MS provides an intuitive

definition for morphological measurements, while the graph structure made explicit by the MS is useful for shape

registration and matching applications.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—

1. Introduction

Shape understanding and modeling is a central task in
biomedical imaging and associated applications. We present
the latest development in modeling 3D free-form biomedical
data via the Medial Scaffold (MS) [LK07, CK08, CLK09],
a 3D acyclic oriented graph representation of Harry Blum’s
Medial Axes (MA), which is closely related to the Voronoi
Diagram and its dual the Delaunay Tessellation (in Com-
putational Geometry), Molecular Graphs (in Computational
Chemistry) and Critical Nets (in Crystallography) [LK]. The
MS (and associated 3D MA) can be computed as the result
of the singularities of a geometric wave propagation simula-
tion.

† Corresponding Author.

Among the various 3D data input forms and initial shape
representations available in biomedical applications, the un-
organised point cloud — i.e., an arbitrarily large set of points
sampling the surface of objects of interest, with no other in-
formation than their associated 3D coordinates — is one of
the most common type of input and is the most flexible: ob-
jects represented by either volumetric voxels or polygonal
meshes can easily be sampled into point clouds. Further-
more, data acquisition such as via scanning, segmentation, or
obtained from 3D reconstruction algorithms typically yield
geometric information in the form of a set of points.

We present a general approach to model biomedical free-
form objects starting from 3D unorganised point clouds by
using the MS representation, a hierarchical organisation of
the 3D MA into a graph-like structure (Fig. 1). The MS
permits to automatically and efficiently map an unorganised
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Figure 1: From (a) a point cloud sampling a carpal bone,

to (b) its 3D MA where colors indicate the time flow (dis-

tance to point generators, giving a visualisation of local

thickness), to (c) the corresponding MS made of two types

of curves, in relation to object surface ridges (in blue) and

junctions of MA sheets (in red).

point cloud to a coherent surface set and associated approx-
imate MA [LK07, CLK09]. This resulting MA is used to
further recover significant medium and large scale features,
such as main surface ridges and axial symmetries. The out-
come is ready to use in a range of biomedical applications:
(i) morphological measurement (such as bone thickness), (ii)

centerline extraction (to model tubular shapes, such as for
colonoscopy), (iii) feature detection (of high-curvature re-
gions and ridges), (iv) surface partitioning (for anatomical
surface classification), (v) registration for quantification and
matching (of molecules, dendrites, bones, tumors).

This paper is organised as follows. We briefly survey re-
lated skeleton and symmetry-based 3D shape modeling ap-
proaches in §2. We then recall and summarise the definition
of the MS as a generic 3D shape representation in §3. We
further discuss various applications of our approach in §4
with an emphasis on surface meshing, shape understanding
and shape matching, in the context of cortical thickness mea-
surement, biomedical centerline detection, carpal bone reg-
istration. Finally in §5 we outline clinical cases where we
propose that the MS can significantly improve the technical
outcome, such as in medical simulation, orthopedic surgery,
head trauma modeling, tracheobronchial air-flow modeling,
and radiation oncology for tumor shape/volume analysis. We
also cover further details on the MS, especially with regards
to its computation, in Appendix A.

2. Medial Representations in Biomedical Imaging

The most common form of medial representation is Harry
Blum’s Medial Axis (MA) first studied in 2D in the 1960’s
[Blu73] and in 3D since the 1980’s; while it has been used
in many fields, the biomedical field has been a major area of
concern from the onset [LK]. For many years, this was re-
stricted to 2D applications, including the shape characterisa-
tion of chromosomes, cells, microscopy preparations, slices
of tissue from scans [LL92, LL93]. With the advent of in-
creasing processing power, graphics capabilities and sensors
modalities, the biomedical field, especially since the 1990’s
and with respect to imaging, turned its eye towards the rep-
resentation of volumetric information, and in particular how
to capture the shape of various molecular structures, cells,
tissues, bones, objects of interest.

3D medial representations applied to biomedical data can
be organised in terms of four main technologies: (i) Voxel-

based: processing directly a discrete grid of voxels ap-
proximating the volumetric shape, (ii) Geometry-based: us-
ing computational geometry methods to recover intersect-
ing pieces of manifolds (medial sheets bounded by curves
ending at nodes), (iii) Model-based: predetermined medial
primitives are retro-fit to the data, and (iv) Curve-based: a
simplification of (2D) medial sheets to capture the (1D) main
topological features of objects. In what follows we refer to
recent works which are specialised for biomedical applica-
tions.

Voxel-based. In this category, the input data is usually some
pre-segmented volumetric image in the form of voxels repre-
senting the object of interest (aka the “sugar-cube” model).
This volume is then shrunk (thinned) to discard some vox-
els while selecting only those which approximate a “skele-
ton” of the interior of the shape. The classical work in this
area originates from mathematical morphology and related
approaches. The typical algorithm computes a distance map
from the boundary and identifies those voxels being at equal
distance from that object boundary. Pseudo-Euclidean and
Euclidean metrics are commonly used, as well as thinning
where the volume is iteratively peeled off preserving only
those voxels approximating the MA [B∗, SBS].

Geometry-based. Here the data is usually in the form
of a point cloud — a set of point sample coordinates
— or pre-segmented in the form of sets of meshed sur-
faces, such as a triangulation of the boundaries of ob-
jects under scrutiny. Computational geometry principles are
then applied to compute an exact or approximate MA.
The classical example here takes the form of first com-
puting a Voronoi Diagram (VD) for the point cloud seen
as a set of generators G of a distance map L(r,G) =
minGi∈G ‖Gi − r‖. Then, each point generator, Gi, de-
fines a Voronoi region VR(Gi), the set of points closer
to Gi than to any other generators of G: VR(Gi) =
{

r ∈ RI 3 , L(r,Gi)≤ L(r,Gj) , ∀G j ∈ G−Gi

}

; the Voronoi

diagram for m generators is then defined as the collection
of all Voronoi regions: VD = {VR(G1), . . . ,VR(Gm)}. The
set of boundaries of these regions is taken as a medial rep-
resentation of the generators (a graph in 2D and hyper-
graph in 3D), which is then usually simplified by pruning
away branching structures connected to the bounding sur-
face of the sampled object, a result often called Voronoi

skeleton [Sze, AC].

Model-based. In this category an a priori shape model, in
the form of primitives like deformable superquadrics or gen-
eralised cylinders, is used in a retrofitting process of the in-
put volumetric data, but such that the medial representation
of these models is constrained. Pizer et al. have used exten-
sively a fixed-topology but deformable (2D) sheet-like me-
dial model for 3D image segmentation [S∗03, P∗] referred
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Figure 2: The medial scaffold (MS) as shape representation. (a) The proposed dual-scale MS representation to model the

MA of the underlying shape. The coarse-scale MS is a hypergraph capturing the main topology while the fine-scale MS
is a mesh capturing the geometric details. (b) Example for a hand point cloud (data from Polhemus Fastscan, 38,219 points)

which is automatically meshed into 76,437 triangles using the initial MS for that point set. (c) The regularised MS contains

37 sheets, 131 curves, and 108 vertices (front and back views shown). (d) Some surface regions made explicit from the MS
(back hand view). We can directly map medial sheets (loops in the MS graph) to the associated surface regions (generators of

the underlying MA symmetries).

to as the M-rep. Each such sheet is itself sampled by a few
nodes called medial atoms which are connected together in
the form of a 2D simple graph structure. Each medial atom
is also doubly linked to an approximation of the local bound-
ing surface of the object being represented. An M-rep is thus
articulated as each medial atom possesses some degrees of
freedom (rotation, elasticity). The initialisation of M-reps
can be performed, e.g., by first computing an approximate
Voronoi skeleton.

Curve-based. In comparison to the general form of the 3D
MA as a set of intersecting (2D) medial sheets, the curve

skeleton is a connected set of (1D) curvilinear centerlines
inside the object, and is used to capture an approximation of
that object’s main structures [CM06, T∗09, P∗09]. Although
a curve skeleton provides a much simplified form of me-
dial representation, it cannot capture general shape features,
such as surface ridges, and is restricted to objects which re-
semble connected tubular forms, such as when approximat-
ing the human body for animation purpose, or in specialised
biomedical applications like for colonoscopy.

A main bottleneck of using the MA to represent and
model 3D free-form objects is its instabilities — a slight per-
turbation of the object’s boundary can add a large but unsta-
ble branching structure to the MA. This issue has been re-
cently addressed by representing the MA as the MS and
regularising the MS by moving it towards its transition

points where local topological events occur [GK09].

3. Medial Scaffold (MS) as Shape Representation

The Medial Axis (MA) represents 1st order symmetries be-
tween generators of a geometric wave propagation in space
— alike light waves which die upon meeting each others: a
process also referred to as “grass fire” propagation [Blu73].
In other words, if we consider the classical eikonal (in
3D Euclidean space) for the wavefront φ(x,y, z, t) [Sta72]:

||dφ||2 = 1/c2, the MA points are those where wavefronts
collapse or first intersect, i.e., where the eikonal first be-
comes singular — for time collision minima or shortest in-
tersecting geodesic paths. The wavefront propagation itself
is simulated using the same point to set distance mapping
used to define the VD, i.e., L(r,G)=minG∈G ‖G− r‖. Thus,
for point generators, like the surface samplings we consider
here, the MA symmetries have same trace (geometry) as
the boundaries of the VD. However, the MA adds a time
dimension to its trace — i.e., the time of meeting wavefronts
or travelled distance to generators — and thus can be thought
of as a vector-valued VD. In 3D the MA takes the form
of a complicated set of connected surface patches: the me-
dial symmetry surfaces and their intersection in curves and
nodes. There is an equivalence between the time values of
meeting wavefronts and the radii of maximal balls touching
the surface at sample points, such that the centres of these
balls precisely trace MA points. We use the An

k notation to
refer to such maximal balls with k-th order of contact at n

surface (or sample) points [GK04]. A3 and A3
1 shock curves

delimit A2
1 MA sheets; for a point cloud, A3

1 curves are
identical to Voronoi edges, their A4

1 endpoints are Voronoi
vertices, and their duals are Delaunay triangles through the
n=3 sample/contact points. A3

1 curves are computed from
a sequence of critical points of the radius flow (the radius
of maximal balls projected on the MA): sources for MA
sheets (A2

1-2) are paired to find sources for shock curves (A3
1-

2), which in turn are paired to find A4
1 endpoints. An in-depth

analysis can be found in the paper by Leymarie and Kimia
which presents a “geometry-based” set of results and im-
plementation [LK07]. A “voxel-based” implementation has
also been studied by Leymarie in his PhD thesis [Ley03,
Ch.5].

For any given object input, the MS is a simplified ori-
ented 1D graph structure defined to represent the 3D MA
in its most compact form, while preserving its uniqueness.
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Figure 3: MS for modeling bone shapes. (a) The re-meshed surface of a hip bone (132,538 points, 264,927 triangles, point

cloud data from Cyberware); the regularised (interior) MS (299 sheets, 475 curves, and 349 vertices), sheets colored by radius

(distance field), which intuitively suggests the thickness measure; axial curves in red, ribs of ridges in blue) and corresponding

surface regions. (b) Mandible data (35,555 points meshed into 71,105 triangles); MS sheets colored by radius field; MS
axial and rib curves, MS sheet components, and the ridge points (red) on the shape surface. (c) Vertebral data (9,589 points

meshed into 19,193 triangles); MS sheets colored by radius field and by components; surface regions correspond to MS
sheet components; and the detected ridge points. Observe how the salient features of the bone shapes are well captured in the

regularised MS, which is useful for further diagnosis applications.

(a) (b) (c) (d)

Figure 4: MS for modeling the cortex shape (from within). (a) Brain (WM) point cloud (110,797 points) meshed into 220,477
triangles. (b) MS sheets colored by radius (distance) field, where the dark blue regions correspond to high curvature folding.

(c) MS sheets colored by individual components, where corresponding surface boundary components are shown in (d).

The MS explicitly represents only the singularities of the
time (or radius) function along the MA trace together with
boundary conditions and junctions taking the form of a set
of special nodes connected by special curves (Fig. 2). These
singularities — the sources, relays and sinks of the time flow
along the MA — and their curvilinear connectivity paths
— as indicated by the time flow — are taken as the special
nodes and curves building the acyclic graph structure we call
the MS [LK07]. The MS preserves the nice properties of
the MA, and thus provides for a compact representation of

shape itself. Specifically the MS graph structure can be ef-
fectively regularised by applying a set of transforms (graph
edit operations) to simplify it toward MA transition points

[GK09,CK08]. These are higher order symmetry points sim-
ulating a change of topology of the MA under a continuous
deformation. This provides a formal framework to deal with
varying scales of sudden changes in topology, from pertur-
bations due to noise to those due to articulated motions. The
MS is also a natural structure to conduct shape characterisa-
tion and recognition tasks [CK09]. In Appendix sec:app we
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Figure 5: MS for modeling tubular and axial biomedical shapes. (a) Aorta (3,843 points) meshed into 7,651 triangles, where

the MS sheets are colored by radius (distance) field; MS axial curves in red and rib curves in blue; and the MS sheets and

corresponding shape surfaces are colored by components. (b) Dendrite (12,478 points) meshed into 18,025 triangles; the MS
sheets and corresponding surface components. (c) Bronchial tree (84,615 points and 168,918 triangles) and its MS. Observe

how close the medial sheets approaching the object boundary capture the details of shape. (d) Colon (104,392 points) meshed

into 186,538 triangles and its MS. The axial curves after regularisation lead to an automatically computed centerline useful

for virtual colonoscopy.

Figure 6: MS for detecting salient surface ridges. (a) The MS sheet boundary at an A3 rib curve maps to the ridge on

the object surface. (b) Local configuration of mapping the “ridge vector” from an A3 rib to the ridge (see text). (c) Result of

ridge detection on a face (11,748 scan points, data from MPII). Ridge points are in red and the two ridge region curves are in

cyan and yellow, respectively. Observe that only coarse-scale “convex” ridges (from within the face mask) such as the nose are

detected, while other fine-scale features are suppressed. A similar analysis from outside leads to the detection of coarse scale

valleys.

provide more details on the computation and regularisation
of the MS.

4. MS for Biomedical Shape Modeling

We discuss a wide extent of applications by representing
biomedical and anatomical shapes using the MS, ranging
from surface meshing of input point clouds, shape under-
standing via extracting salient axial symmetries and high
curvature surface ridges, and object registration by match-
ing the corresponding compact MS graph structures.

4.1. Surface meshing for morphological measurements

Meshing input point cloud into surface meshes. The MS
is typically first applied to the raw input point cloud to auto-
matically retrieve a useful surface set. The part of the com-
puted MS which maps to local symmetries of points near

the object’s surface is used to obtain a Delaunay triangu-
lation of that surface; this method makes minimal assump-
tions on the data, and can deal with surfaces which may be
non-oriented, non-continuous (with sharp surface features),
which may have holes and boundaries, or which are smooth
and bounding solids, in the same framework [CLK09], mak-
ing it particularly suited for biomedical imaging where the
surfaces encountered can have various topologies and ge-
ometries. The remaining parts of the MS — not used to
reconstruct a surface mesh — then provide for a useful ap-
proximate MA of the underlying object.

Morphological Measurement. The radius field of the
MS makes explicit the radial dimensions of solid shapes,
thus providing a generic and efficient way to quantify the
thickness of objects. Fig. 3 (2nd column) shows examples of
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(a) (b)

Figure 7: The MS (and associated MA) was computed for cortical thickness measurement. The input MR brain scan, from

the OASIS dataset, is first segmented via a method by Chang and Tao [CT10]. (a) The gray matter (GM), of the cerebral cortex,

bounded by two surfaces (namely, the “inner surface” (IS) and the “pail surface” [CT10]) are then extracted. (b) The MA of

the GM permits to recover well the trace of the ridges of the GM, thus providing a consistent and robust approach to measure

cortical thickness. Here the MA is colored by the distance to its two boundary surfaces, which is half of the GM thickness.

bone thickness, while Figures 4 and 7 show cortical thick-
ness measurements.

4.2. Making explicit salient axial structures

Detection of salient axial symmetries of shape. The A3
1 ax-

ial curves of the MS (red curves in Figures 2, 3, 5) corre-
spond to the axial symmetries of the shape, which is the trace
where three (or more) medial sheets intersect.

Centerline detection. Further simplification and reduc-
tion of the MS, e.g. by shrinking medial sheets following
a medial geodesic function [DS06], lead to a simplified 1D
form of a curve skeleton (Fig. 5). This is useful in medical
application such as human tracheobronchial tree modeling
and path planning in virtual colonoscopy.

4.3. Making explicit salient surface structures

Ridge detection. Ridges are important salient features of a
free-form object where its surface bends sharply. Mathemat-
ically, a ridge curve is made of surface points where the mag-

nitude of the largest principal curvature attains an extremum

along its corresponding lines of curvature. The MS makes
explicit surface ridges, in that medial sheet outer bound-
aries (A3 ribs, blue curves in Figures 2, 3 and 5) directly
correspond to such ridges. Specifically, a set of ridge points
can be computed by mapping an A3 rib curve to the corre-
sponding ridge curve on the surface. Such mapping is guided
by a “ridge vector” (red arrows in Fig. 6(b)), which can be
computed from a bordering medial sheet element (polygonal
patch S) toward each corresponding ridge point on the sur-
face: each such patch S can be associated with two boundary
sample points (Ga,Gb), which together with S define a fan-
like region perpendicular to S. The collection of such fans
is then used to trace by interpolation the surface ridge. In
Fig. 6(c), many salient convex face features such as the nose,
chin, eyebrows, cheeks, and lips are made explicit by the
ridges. Fig. 3(b,c) illustrates convex ridge detection on bone

shapes (mandible and vertebral). When applied “outside” the
object’s surface, the same ridge analysis maps valley lines of
concavities.

Shape Partitioning. The MS sheet components make
explicit a partition of the underlying object on the basis of
its MA symmetries. Fig. 4 gives an example for sulci and
gyrus classification and Fig. 5.(a and b) give partitions of the
branching components of an aorta and a dendrite.

4.4. Shape matching and registration

Registration and matching of anatomical shapes. The
compact graph structure of the MS provides a simple and
useful representation to perform shape matching and regis-
tration computations. Fig. 8 illustrates an example of match-
ing carpal bones. This is useful for producing a computa-
tional atlas of shapes. In particular, this shape matching ca-
pacity is useful in the quantification and registration of tu-
mors, permitting to accurately determine their volumetric
behavior, as will be discussed in the next section.

5. Case Discussions: The MS in Medical Applications

We now discuss the potential of the MS in a variety of clin-
ical/medical applications. We outline each application case-
by-case and point to the benefits of using the MS.

Medical simulation – mandible. In medical simula-
tion, the key training application is the development of dy-
namic anatomy visualisation for teaching, computer-assisted
surgery (CAS), and treatment planning [A∗03, IM05]. Us-
age of patient-derived anatomy and physiology makes the
simulation relevant to patient specific planning and clinical
intervention. For example, modeling human mandible from
patient data and superimposing it on a human patient sim-
ulator (HPS), requires matching two sets of landmarks on
a virtual mandible and a real target-specific mandible. We
argue that landmarks on mandible and related shape charac-
teristics, such as geodesic distances between landmarks and
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Figure 8: The MS of two carpal bones (Courtesy of Dr. Crisco, RI Hospital) and the matching results in (c) [CK09].

(a) (b) (c) (d)

(e) (f) (g)

Figure 9: From raw CT data to virtual (a-c) head model

and physical (d) head phantom. (e-h) A simulation using the

MS on a dataset of 272,171 points meshed into 462,521
triangles. (e) The MS radius field which reflects bone thick-

ness. (f) The MS with 317 sheets and corresponding surface

partitioning in (g).

ratios of the measured distances, can easily be expressed us-
ing the MS (e.g., Fig. 3(b), and recent results (e.g., [Hea08])
could be improved and refined with this new approach.

Orthopedic surgery. The maturing area of designing
custom-made prosthesis for hip joint revision arthroplasty
nowadays employs Computer-Aided Design and Manu-
facturing technologies (CAD-CAM) [D∗07]. This requires
prosthetic devices that are designed and manufactured with
high precision to match anatomical and biomechanical char-
acteristics of a patient. The quality of the custom-made pros-
thesis depends on the accuracy of the segmented relevant
structures: pelvis and femur. An error of segmentation, a
crucial component on the imaging, visualisation, and model-
ing pipeline, may greatly impact the final prosthesis design.
Similarly, the quality of modeling of the segmented pelvis
and femur that follows for the virtual simulation of the re-
constructed joint, and manufacturing process for the reali-
sation of a prosthesis, depends on the ability to derive the
correct curvature and thickness of the bones, and to quan-
tify shape characteristics. This requires storing information

about shape and landmarks which can be made explicit by
the MS (e.g., Fig. 3(a), thus offering ways to improve exist-
ing processes of hip joint custom-made design of prostheses
in CAD-CAM systems.

Modeling head trauma under blast. Anatomy and medi-
cal image based high-fidelity computational modeling can be
used to analyse trauma injury to the brain, lung, spinal cord,
gastrointestinal track, due to blast explosion and impact in
both civilian and military population [IPT06]. Physical head
phantom that include, skin, skull, CSF and brain (with pons
and ventricles), built with materials that best mimic biome-
chanical properties of the actual tissue of these head struc-
tures, are used to collect time-varying data for head trauma
under simulated conditions to study traumatic brain injuries
(TBI). This type of novel approach for the testing of virtual
models in simulating head trauma resolved by FEM, which
is based on creating a realistic head phantom used to collect
physical evidence, provides unique insights into the under-
standing of the complexity of head injuries. In Fig. 9, we
depict the results of the following prototyping steps: (i) 3D
segmented and reconstructed, from a CT scan (in this case)
models of brain, skull, and facial features on the skin; (ii)

models are converted into CAD format files; (iii) models are
verified with 3D measurements and fit; (iv) rapid prototype
patterns for head structures are created. This process can be
greatly improved when using the MS to model the proto-
typing steps (Fig. 9(e-g)). Hence, we could have better con-
trol of capturing landmarks, shapes, required thickness of the
modeled structures, all features which are made explicit by
the MS.

Modelling air-flow in the tracheobronchial tree. Sim-
ulation of the air-flow inside the tracheobronchial tree can
provide patient specific modeling of air motion inside the
lungs [K∗07]. The geometry, shape, length and dimensions
of anatomical structures vary among individuals, different
age groups, and gender [GW86]. It is crucial to extract a
correct computational model of the geometry and topology
of the tracheobronchial tree for the biomechanical model to
work correctly. Accurately segmented patient-specific mod-
els, obtained from 4D CT data, could also be represented by
theMS and made ready for modeling mechanical properties
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of the pulmonary system. The MS can provide more flexi-
ble, elegant representations that will allow quantification and
tracing of features. This simulation framework can be ap-
plicable for lung radiation therapy planning, tumor motion
prediction, and assessment of malfunction of lung tissue.

Quantification of tumor volume/shape for image-

guided radiation therapy. In radiotherapy, segmentation is
used to derive tumor volume and to compute radiation dose
to eradicate the tumor and protect the normal tissues sur-
rounding the tumor. There is a lack of standardised approach
to automate the segmentation of a tumor, evaluate its vol-
ume, and quantify the treatment response. There are various
available segmentation techniques, such as those provided
by the National Library of Medicine Insight Segmentation
and Registration Toolkit (ITK) (www.itk.org). In a study,
a variety of segmentation methods should be tested, includ-
ing hybrid [I∗04] and skeletal [TK09] ones where each tu-
mor will be delineated using a number of algorithms with a
range of parameter settings. The MS can then be applied to
quantify the differences in volume and selected shape fea-
tures, and the results can further be validated against ground
truth, where volume and shape are derived from a surgical
pathology specimen.

In the variety of applications, as we described in selected
examples, we argue that the MS is an elegant and generic
tool, capable of playing a similar role as once the march-
ing cubes algorithm did [LC87], in modeling the surfaces of
complex shapes in biomedicine. In addition, the MS pro-
vides means to quantify a variety of shape features, thus
combining modeling and feature quantification in one uni-
fied approach.

6. Conclusion

We have reported on our progress in using and refining the
classical medial representation of shape — Blum’s Medial
Axis (MA) — in the form of a compact 3D graph structure:
the Medial Scaffold (MS), recently introduced in Com-
puting [Ley03, LK07, Cha09, CLK09]. This representation
of shape permits to efficiently map large unorganised point
clouds to useful surface meshes at a fine scale, and make ex-
plicit a number of salient shape structures at larger scales,
including surface ridges, surface and volumetric parts, lo-
cal shape thickness. We have also illustrated biomedical ap-
plications of this shape representation framework, includ-
ing examples of morphological measurements, shape anal-
ysis and registration. The next step for this work is to further
demonstrate, and improve where needed, the technical out-
comes in specific biomedical applications, such as combined
accuracy and efficiency control in clinical scenarios.
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Appendix A: Medial Axis and Scaffold

In this appendix we summarise the important properties of
the MS many of which it inherits from the MA, and we
also summarise how the MS is computed for the applica-
tions presented in this paper.

The MA is a generic representation of shape which is
used to study the highly regular and inorganic objects, for ex-
ample found in crystals or crafted by humans and machines,
as well as the irregular, more free-form and organic objects
found in biomedical applications, such as bodies, tissues,
leaves, arteries, cells, macro-molecules [LK]. The principal
properties of the MA which makes it a good candidate as a
generic shape representation can be listed as follows [LK07]:
(a) it is intuitive in representing elongated and branching ob-
jects; (b) it encodes the varying width of forms via the radius
function associated to each MA point; (c) useful boundary
features are made explicit by the MA extremities, includ-
ing curvature extrema, corners, ridges, valleys; (d) other ge-
ometric and topological features are made explicit, includ-
ing holes, necks, branching and looping sub-structures; (e)
it provides a hierarchy of scales of sub-parts via the (MS)
branching graph structures; (f) it is complete in the sense
that, before pruning its graph sub-structures or regularising
it, the original object trace is always recoverable by a reverse
wave propagation initiated at the MA points and limited by

(a) (b) (c)

Figure 10: From (a) a point cloud sampling a prism, to (b)

its 3D MA where colors indicate the radius flow (distance

to point generators, giving a visualisation of local thick-

ness), to (c) the corresponding MS made of two types of

curves, in relation to object ridges (in blue) and junctions of

MA sheets (in red). (Adapted from [Ley03], Fig. 2.1.)

the associated radius values; (g) shape dynamics (perturba-
tions, deformations, growth and kinematics) are made ex-
plicit via the graph layout and associated radius flow.

In 3D applications, the MA suffers from being a compli-
cated set of intersecting surfaces (A2

1 sheets). The MS pro-
vides a formal and efficient way to represent the MA as a
graph made of 1D structures only built from medial curves of
two main types: axial curves (A3

1 always shown in red in our
figures) where A2

1 sheets intersect and rib curves (A3 always
shown in blue in our figures) which delimit surface ridges.
The MS is built from special points along these two types
of curves where the radius function goes through extrema:
these are the singularities of the radius flow along the MA
curves. Because of the looping topology of the MA, where
any A2

1 sheet is necessarily bounded by either (i) sets of A3
1

curves (connected via A4
1 endpoints) or (ii) sets of A3

1 and A3
curves (connected via A4

1 and A1A3 endpoints), the MA can
be recovered from the MS, where the missing information
about the interior of the A2

1 sheets can be regenerated from
the radius flow along each of the MS graph loops (identi-
cally bounding an original A2

1 sheet) which provide bound-
ary conditions for each MA sheet [LK07]. Thus in 3D the
MS offers an ideal way to “compress” the redundant in-
formation still present in the MA, while making available
the graph structure essential in applications for the study of
shape (Fig. 10).

In terms of computations, as we elaborated in §1 and §3,
the most practical way is to start from a point cloud which
is assumed to sample a pre-segmented object. Each initial
point sample is seen as a generator Gi of a 3D Euclidean
(spherical) wave propagation. As wavefronts propagate, the
initial MA contacts are found for closest pairs of genera-
tors, the sources of medial sheets, denoted A2

1-2. These initial
sources for the construction of the MA are efficiently com-
puted as mid-points of pairs of generators defining a maxi-
mal ball (i.e., not including any other generator). Leymarie
and Kimia have showed how such computed MA sheet
sources can also be paired to directly compute the initial in-
tersection of the corresponding MA sheets: the sources of
MA axial curves denoted A3

1-2 [LK07]. Each such pair of
A2

1-2’s provides a unique triplet of generators (3 initial point
samples) which together can be used to compute a candi-
date A3

1 source of an axial curve at the barycenter of the
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Figure 11: This figure illustrates how a MS curve (at the

junction of 3 MA sheets) is associated to a surface tri-

angle in a deformation simulating a reverse sampling pro-

cess [CLK09]. Each time pairs of point samples (generators

of a wave propagation) collide, an MA sheet can be asso-

ciated to a (Delaunay) edge. Once 3 associated such pairs

have been identified, what only remains is the corresponding

MA curve and its associated (Delaunay) triangle.

corresponding triangle — taking as triangle vertices the 3
generators. Again, if this candidate point is at the locus of
a maximal ball (not including any other generators) it re-
mains as a valid MA (and MS) point (Fig. 11). Different
configurations of barycenters (with corresponding triangles
being acute or obtuse) then lead to an iterative pairing of
A3

1-2 sources of axial curves to define unique quadruplets of
generators from which candidate axial curve endpoints are
obtained at their respective barycenters, each made of 4 gen-
erators; the corresponding tetrahedra being of three possible
types (as a function of the location of the barycenter in or out
the tetrahedron). Each such candidate which is at the center
of a maximal ball defines an MA (and corresponding MS)
vertex denoted A4

1. An iterative process of pairing A3
1 axial

curves then takes place as a function of the different possi-
ble configurations of triangles and tetrahedra of generators.
The process is guaranteed to terminate with the exact and
full set of special MA points needed to construct the MS.
The latter is defined as a connected and oriented graph set
by the linking curves through all A3

1-2 sources and A4
1 end-

points; the A2
1-2 sources of MA sheets, now redundant, can

then be discarded.

The above process defines the initial step in computing
and using the MS in practical applications. The second step
consists of using a subset of all A3

1 axial curves to construct
a polygonal approximation of the surface bounding the pre-
segmented object. This can either be done (i) without rely-
ing on the initially segmented bounding object surface (in
the case where only point samples were reliably obtained)
[CLK09] or (ii) with knowledge of the true object surface:
in either case, any A3

1 axial curve which crosses the bound-
ing surface neighborhood can be separated from the rest of
the MS. This “segregation” process reliably produces two
sub-structures for the MS: (a) one in association to a trian-
gulation of the bounding surface where each individual A3

1
curve is mapped to a surface triangle, and (b) a graph ap-
proximation of the MA of the segmented object (Fig. 12).

Note that the resulting MS approximates the MA inside
as well as outside the object; in all our examples in this paper
we only illustrate the interior MS (or corresponding interior

(a) (b)

(c) (d)

Figure 12: Illustration of the MS segregation process (af-

ter [Ley03, Ch.6]). (a) A set of 3,200 points are uniformly

distributed on a pair of planes, one of which is deformed by

an elongated Gaussian kernel; (b) side-view of the corre-

sponding full MS; (c) the MS sub-parts not crossing the

object’s surface neighborhood; (d) the results of this shock

segregation are two-fold: (i) the reconstructed surface and

(ii) its corresponding MS hypergraph.

MA). Both the interior and exterior MS sub-parts are use-
ful in practice: for example in the cortical study, the interior
MS makes explicit convex regions and surface ridges while
the exterior MS makes explicit concavities, deep folds and
valleys. When holes exist in the segmented object, the “exte-
rior” and “interior” MS will remain connected after segre-
gation, via sub-structures corresponding to each hole; these
can in turn be used to repair the object’s segmentation for
further use and analysis, e.g. to improve registration results.

The third step is to structurally simplify the MS in a
step by step fashion by regularisation [CK08, Cha09]. At
each iteration, a transform which simplifies the MS topol-
ogy most, and modifies the corresponding shape least, is
selected. The iterative regularisation stops when a prede-
fined criteria is reached, such that the application of further
transforms becomes prohibitive, for example by requiring to
modify the object’s shape by too large an amount.

All our examples in this paper start from unorganised
point clouds which are processed via these three steps: (i)
full MS computation [LK07], (ii) segregation of the parts
directly crossing the object surface [CLK09], (iii) simpli-
fication by regularisation [CK08]. These computations are
either automatic or with minimal human interaction on pa-
rameter selection. For example, in the surface segregation
step (ii), a parameter dmed is automatically estimated by tak-
ing the median of inter-sampling distance from the full MS
[CLK09]. In the regularisation step (iii), the stopping crite-
ria is obtained by counting the number of sampling points
ns associated with each MS loop (or MA sheet) and se-
lecting a threshold (on the maximum object surface size) ei-
ther automatically by histogram analysis or imposed manu-
ally [CK08]. Other parameters are similarly either estimated
from the data, or can be left set by the user.
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