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Abstract

Quantity of hepatocytes in the liver can reveal a lot of information for medical researchers. In our project, it is

needed for evaluation of the liver regeneration rate. In this paper, we present a processing pipeline for automatic

counting of hepatocytes from images of histological sections. In particular, we propose to introduce a preprocess-

ing step in form of image smoothing. We apply five different smoothing techniques, namely Gaussian smoothing,

nonlinear Gaussian smoothing, median filtering, anisotropic diffusion, and minimum description length segmenta-

tion, and compare them to each other. The processing pipeline is completed by subsequent automatic thresholding

using Otsu’s method and hepatocyte detection using Hough transform. We compare the quantification results in

terms of quality (sensitivity and specificity rates) against the manually specified ground truth. We discuss the re-

sults and limitations of the individual processing steps as well as of the overall automatic quantification approach.

Categories and Subject Descriptors (according to ACM CCS): I.4.6 [Image Processing and Computer Vision]: Seg-
mentation

1. Introduction

Quantification of defined cell types in histology is frequently
needed. One example where quantification of a defined cell
type is necessary is the determination of the hepatocyte pro-
liferation index. The liver has the unique ability to regen-
erate in response to injury or loss of liver mass. One well
accepted way to describe the kinetics of this process is to
quantify the relative proportion of dividing hepatocytes, the
functional parenchymal cells in the liver, at different time
points after the liver injury.

Dividing hepatocytes can be identified by special im-
munohistochemical staining techniques of the hepatocyte
nuclei such as the BrdU-Staining. A sample of the liver,
about 0.5-1cm3 in size, has to be formalinfixed and paraf-
finembedded. After cutting sections of about 4−6µm thick-
ness they are subjected to a special immunohistochemical
staining procedure. Nuclei of dividing cells, hepatocytes, but
also other non-parenchymal stromal cells, are marked in one
color, e.g. red, whereas the nuclei of the non-dividing cells
are marked with a counterstain, e.g. blue. The proliferation
index can be calculated after determining the number of pro-

liferating hepatocytes with a red nucleus and the total num-
ber of hepatocytes with either a red or a blue nucleus.

In the past, the proliferation index was determined by
simple counting of proliferating and non-proliferating cells
using a sample size of 1000 to 3000 hepatocytes. This
is a time-consuming procedure requiring an experienced
observer, who is trained to discriminate hepatocytes from
the other cells types in the liver. With the availability of
digital photography, the counting process can be done on
the image by marking the target cell using a simple im-
age analysis performed with such software as Image Tool
(see http://ddsdx.uthscsa.edu/itdesc.html/ ). The
results of the counting procedure can be documented by sav-
ing the overlay image with the marked target cells.

It is very appealing to develop an algorithm for automated
quantification of defined target cells in histology as the quan-
tification process should be less labor-intensive. When de-
veloping an algorithm for quantification of a defined tar-
get cell type, the key challenge is to achieve a highly re-
producible and unequivocal differentiation between the tar-
get cell and other cells. Furthermore, a number of difficul-
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ties with respect to the image quality have to be overcome.
Images of stained sections are subject to variations in the
color properties (e.g., intensity or saturation) due to small
differences in the histological processing of the tissue sam-
ple, which consists of several non-automatic steps. Varia-
tions may include thickness of the section and contact time
of the section with the different staining solution, but may
also occur during image acquisition (camera settings).

The goal of this study is to obtain a fully automated
method for quantifying the number of hepatocytes on his-
tological images of rat livers. We propose an image process-
ing pipeline that is based on image smoothing as a prepro-
cessing step. We discuss different smoothing techniques for
image preprocessing and compare the overall results to the
images obtained by manual hepatocyte counting, which are
considered as the ground truth.

Figure 1: Flowchart for automatic hepatocyte quantification.

In Figure 1, the overall processing pipeline of our algo-
rithm is depicted. The initial images appear to be quite noisy
and hinder a satisfying direct hepatocyte detection. We pro-
pose to process images first in such a way that the amount of
all other structures besides the hepatocytes is reduced, while
the resulting image still contains all important information
about them. For the applied staining of the hepatocytes, it
can be observed that all of them are visible in the red color
channel, while the proliferating hepatocytes are easily distin-
guishable in the blue color channel. We apply the smoothing
filters to the corresponding channels of the image. Further-
more, we compare five methods for the image smoothing
which described in detail in Section 3.

The second part of our algorithm consists of a sequence
of processing steps that are applied to the smoothed images.
We automatically distinguish between the hepatocytes and
background by utilizing Otsu thresholding, see Section 4.
In order to estimate the number of different hepatocytes in
an image, we still need to take care of non-hepatocyte re-
gions with similar colors and regions with overlapping hep-
atocytes. These problems are dealt with using an edge detec-
tion followed by a Hough transform, see Section 4.

As a result, we obtain circles that depict the position and
size of the detected hepatocytes. In Section 5, we show

the intermediate and final results of our processing pipeline
and compare the results obtained by different preprocessing
methods.

2. Related Work

Although a lot of automatic image processing approaches
for histological sections have been developed, it is difficult
to compare them to each other due to the difference of the
staining methods applied to the data and the related image
analysis problems. Most of the methods in this area are aim-
ing at a precise boundary detection. For example, methods
for nuclei segmentation using basic fuzzy c-means cluster-
ing [LSP03] or adaptive thresholding [PGH∗06] have been
proposed. These methods seem to have difficulties when
dealing with images showing large variability in the histol-
ogy staining.

A more sophisticated approach based on active contour
models [BL98] seems to be less sensitive to staining vari-
ability and produces decent results as long as the nuclei are
non-overlapping. Overlapping nuclei are not handled appro-
priately.

Naik et al. [NDA∗08] proposed to integrate several lev-
els of image information to segment gland and nuclei in
breast and prostate cancer images. For nuclei segmentation
the template matching scheme has been used. The templates
have been selected according to the size and the elliptical
shape of the nuclei, which correlates in some sense to the
last step of our processing pipeline.

Datar et al. [DPC08] proposed to use hierarchical self-
organizing maps to segment four types of tissue, namely
glands, epithelia, stroma, and nuclei, but it is not suitable
for separating the individual cells in order to determine their
quantity.

3. Smoothing Methods

According to the flowchart depicted in Figure 1, the first
processing step is to smooth the histological images. We
have chosen to apply and compare the following techniques
for this preprocessing step: Gaussian smoothing, non-linear
Gaussian smoothing, median filtering, anisotropic diffusion,
and minimum description length (MDL) segmentation. The
MDL approach [Ris87] allows for simultaneous denoising
and segmentation. Our choice has been motivated by the
following considerations. The Gaussian filtering technique
is a simple standard approach to image denoising. Median,
anisotropic diffusion, and non-linear Gaussian filters are
non-linear, denoising, and edge-preserving approaches. In
addition, we decided to use an MDL segmentation technique
with a piecewise constant image model to check, whether a
local spatial segmentation algorithm can give some advan-
tages in this task. In the following, we describe all methods
in more detail.
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3.1. Gaussian Smoothing

The Gaussian smoothing operator is a 2D convolution oper-
ator. It removes detail and noise and thus blurs images. The
idea of Gaussian smoothing is to use this 2D distribution
as a "point-spread" function, which is achieved by convolu-
tion. It uses a kernel that represents the shape of a Gaussian
("bell-shaped") hump. A 2D Gaussian has the form:

G(x,y) =
1

2πσ2
exp

(

−
x2+ y2

2σ2

)

, (1)

where (x,y) are spatial positions and σ2 is the (constant)
noise variance.

3.2. Nonlinear Gaussian Smoothing

This method uses simple non-linear modifications of Gaus-
sian filters [AMG98]. In the literature it is also referred as
bilateral filter. There are several independently discovered
variations and extensions [TM98, PD06, DD02]. Let I be a

signal function and gσx(t) = exp

(

−t2

2σ2x

)

a Gaussian func-

tion, then their convolution product for a pixel p is defined
as follows:

Gσx I(p) =
1

Nqp
∑
q∈Np

gσx(‖ q− p ‖)I(q) (2)

= I(p)+
1

Nqp
∑
q∈Np

gσx(‖ q− p ‖)(I(q)− I(p)) ,

where Np is the neighborhood of pixel p and Nqp =

∑
q∈Np

gσx(‖ q− p ‖).

In order to preserve edges, a weight depending on the dis-
tance in color space between pixels p and its neighbor q is
added to the convolution leading to the following expression:

Gσx,σz I(p) (3)

=
1

Nqp
∑
q∈Np

gσx(‖ q− p ‖)gσz(I(q)− I(p))I(q).

Aurich et al. suggest to use a sequence of three or five fil-
ters to achieve best results and give hints on how to choose
appropriate values for σx and σz [AMG98].

3.3. Median Filter

The idea of median filtering is to examine a sample of the in-
put and to decide whether it is a good representative for the
signal. To do so, a window consisting of an odd number of
samples is used, whose center lies at the currently examined
pixel. For each pixel in the image, the values in the window
are sorted numerically and the median value, i.e., the value
of the sample located in the center of the window after sort-
ing, is selected as the output.

3.4. Anisotropic Diffusion

Anisotropic diffusion filter is a non-linear smoothing filter
that encourages intraregion smoothing while inhibiting in-
terregion smoothing. It was initially formulated by Perona
and Malik [PM90]. The continuous form for anisotropic dif-
fusion is given by

∂I

∂t
= div(g(‖∇I‖) ·∇I) , (4)

where I denotes the image and function g is defined by

g(‖∇I‖) = exp

(

−

(

‖∇I‖

K

)2
)

with flow constant K. The discrete version of Equation (4) is
given by

I
t+1
i − Iti +λ ∑

j∈Ni





(

I
t
i − I

t
j

)

exp



−

(
(

Iti − I
t
j

)

K

)2






= 0,

where λ is a normalization factor. The discrete version is
used to iteratively compute the image values It+1i at itera-

tion step t+1 from the image Iti at iteration step t, where I
0
i

describes the original image values.

3.5. MDL Segmentation

The fundamental idea behind the Minimum Description
Length (MDL) principle is that any regularity in a given data
can be used to compress the data [Ris87]. The image seg-
mentation or image partitioning problem with respect to the
MDL principle can be formulated as follows: Using a speci-
fied descriptive language, construct the description of an im-
age that is simplest in the sense of being shortest [Lec89].
Let L(Mi) denote the language for describing a model Mi
and L(D|Mi) the language for describing dataD given model
Mi. Moreover, let |.| denote the number of bits in the descrip-
tion. The goal is to find the modelMi that minimizes the code
length

Cl = |L(Mi)|+ |L(D|Mi)| .

In terms of image segmentation the code length can be writ-
ten as

Cl = |L(u)|+ |L(I−u)| , (5)

where the model we are looking for is the underlying image
representation (or segmentation) u that minimizes the code
length. The term I describes the initial (or given) image, and
the difference (I−u) between the given image I and the seg-
mentation u corresponds to the noise in the image. The noise
describes the data with respect to model u.

A simple implementation of the MDL principle for image
segmentation was proposed by Leclerc [Lec89]. He assumed
a piecewise constant image and derived the functional (or
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energy term)

Cl =
b

2 ∑
i∈Im

∑
j∈Ni

(

1−δ
(

ui−u j
))

+a ∑
i∈Im

(

Ii−ui
σ

)2

, (6)

where u denotes the underlying image, I the given image,
and σ2 the noise variance. Moreover, δ(x) denotes the Kro-
necker delta, Im denotes the range of the image, and Ni is
the neighborhood of the ith pixel. Coefficients a and b are
constants. The formulated functional Cl is minimized, and
the resulting underlying image is taken as the output.

4. Hepatocyte Detection

Taking the smoothed one-channel images as input, we sepa-
rate the hepatocytes from the background using Otsu thresh-
olding [Ots79]. Otsu thresholding assumes that the image
exists of two classes (foreground and background) and op-
erates on the histogram to find the optimal threshold to sep-
arate the two classes such that the within-class variance of
the resulting classes is minimal. The within-class variance
is computed as the weighted sum of the variances of each
class:

σ
2
within(k) = P1(k)σ

2
1(k)+P2(k)σ

2
2(k), (7)

where k is the threshold and Pi and σ2i are the probability and
the variance of class i, respectively. The output of this step
can be stored in a binary image.

Next, we want to detect the hepatocytes, which appear
in the images in form of round objects of an approxi-
mately known size. To achieve this, we use a Hough trans-
form [Hou59] for circles detection in images. The goal of
a Hough transform is to find (possibly imperfect) instances
of objects within a certain class of shapes (circles in our
case). It uses a voting procedure that is deployed in param-
eter space, where the desired shapes are identified as local
maxima. The parametric equation of the circle is given by

(x,y) = (x0,y0)+ r(cosθ,sinθ).

If the radius r of the circles is known, we need to find the
center coordinates (x0,y0). An accumulator matrix is used to
store the votes. Initially, it is filled with zeros. Then, for each
non-black pixel (x,y) in the input image, the pair (x0,y0)
is calculated and acc[x0,y0] is increased by one. The local
maxima in the resulting accumulator matrix correspond to
the centers of the circular structures in the input image. The
accumulator matrix is smoothed for more adequate result.
To make the search for the circular structures simpler and
faster, we first extract the boundaries from the binary images
obtained by Otsu thresholding using simple Sobel operator
and use the resulting image as input for the Hough transform
algorithm.

Our implementation of the Hough transform is based
on the one from the National Library of Medicine In-
sight Segmentation and Registration Toolkit (ITK) (see

http://www.itk.org/). However, we modified it to avoid
the fixed number of circles as a user-defined parameter. In-
stead, the search for circles stops when the height of the cur-
rently detected maximum in the accumulator array is smaller
than a certain percentage of the first detected maximum.
Each detected circle is checked against the binary image,
and those circles that lie outside the regions are completely
neglected.

Having detected the hepatocytes in form of circles
given by the Hough transform, we can count the cir-
cles and the resulting number is the output of our auto-
matic quantification algorithm. All the above-mentioned al-
gorithms have been implemented, using MeVisLab, Soft-
ware for Medical Image Processing and Visualization (see
http://www.mevislab.de).

5. Results

To discuss the results we obtain using our approach with
the different smoothing methods, we focus on the counting
of the whole number of hepatocytes, which appears to be
a challenging quantification task, as the hepatocytes stained
with blue are often very hard to visually distinguish from the
background.

We have made a series of tests on images from four differ-
ent datasets and estimated the rates of true and false positives
with respect to the ground truth information given in form of
manually specified hepatocytes. The images are RGB im-
ages of size 2576×1932 with 8 bit color depth per channel.
An example image is given in Figure 7. For the tests with
different smoothing techniques we always chose exactly the
same parameters for all the other steps of our pipeline. We
took the following parameters for the smoothing filters. For
Gaussian smoothing σ = 4; for Median filtering the kernel
is 14× 14; for Perona-Malik anisotropic diffusion the time
step size is taken 7.4, the number of steps is 4, the edge pa-
rameter of the diffusivity function is 3.8, in each diffusion
step the image is processed with Gaussian smoothing with
parameter, equal 1.54; for bilateral filtering start values for
σx and σz are 10 and 100 respectively and the chain of sev-
eral filtering steps is used, where σx is increased and σz is
decreased. In addition, we compared our results to the re-
sults that can be obtained without preprocessing. In the case
of no pre-smoothing of the images, we observed that auto-
matic thresholding using Otsu method does not work. We
had to replace it with manual thresholding for each image.
Thus, it was not possible to keep the entire pipeline fully au-
tomated. In fact, it turned out that the selection of the manual
threshold was rather cumbersome, as we needed to tune the
threshold for each image individually and the tuning was not
as intuitive as expected.

For the MDL segmentation algorithm we had to cut re-
gions of 1024× 1024 out of the full-sized images and to
evaluate the true and false positive rates on the smaller im-
ages, since the MDL-based method was implemented on the
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GPU which was limited for a NVidia Quadro FX 4500 video
card to this image size.

The results of our evaluation are presented in Table 1. The
following notations for the headings are used: "Detected"
means the number of circles found by Hough transform;
"TP" is the number of True Positive hepatocytes, which is
the result of the overlay of detected circles and the user ex-
pectations; "FN" denotes the number of False Negative hep-
atocytes, which is the difference between the Ground Truth
Positives and the True Positives; "FP" stands for the num-
ber of False Positive hepatocytes, which is the difference
between "Detected" and "TP"; "TN" is the number of True
Negative hepatocytes, which is calculated as the difference
between FP and the number of Ground Truth Negatives; and
Ground P and Ground N are the number of Positive and Neg-
ative hepatocytes manually specified by the expert. The most
important numbers are the computed sensitivities and speci-
ficities. Sensitivity is defined by TP/(TP+FN) and mea-
sures the proportion of actual positives, while specificity is
defined by TN/(TN+FP) and measures the proportion of
true negatives.

Figure 2: Overlay image for AEE-17-1 processed with
anisotropic diffusion. A huge number of false positives oc-
cur. False positives are the detected circles without the cor-
responding green ground truth mark.

In Figure 5, several examples of our results and the man-
ually defined ground truth images are depicted in an over-
laid fashion. The hepatocytes marked with green dots rep-
resent the ground truth, while the red circles are the output
of the Hough transform after applying our entire process-
ing pipeline. The results for MDL segmentation methods are
presented in Figure 3b. The images visually document the
findings in Table 1.

6. Discussion and Future Work

As can be observed from Table 1, appropriate smoothing as
a preprocessing step allows for reasonable quantification re-

sults. In general, anisotropic diffusion and non-linear Gaus-
sian smoothing appear to be the most suitable methods for
the given type of data. The MDL-based approach allows
to smooth the image and reduce the number of colors (see
Figure 3a) while preserving the important details, which is
necessary to achieve a good segmentation. However, for the
given quantification task, the MDL method does not give
better results, as the overall goal is just the number of hepa-
tocytes and not their perfect boundaries. Hence, the compu-
tational costs for the minimization procedure in MDL seg-
mentation is not justified for our purposes.

Partially overlapping hepatocytes are no major problem of
our approach, as Hough transform detects them correctly in
most cases, see Figure 6b. However, when applying the de-
scribed Hough transform we observed that some false hep-
atocytes are detected that cover only a small area of a cir-
cle, see Figure 6b. These small dark structures are Kupffer
cells, another type of the cells in the liver, that should not
be counted. We need to estimate the area of the overlapping
circles and cells in the binary image and discard those with
small area. This extension of the Hough transform step is a
part of our future work.

We also observe from Table 1 that for image AEE-17-
1 the specificity is extremely low and the number of false
positives is correspondingly high, especially when using
anisotropic diffusion or Gaussian smoothing. The results for
anisotropic diffusion are presented in Figure 2. The prob-
lem is caused by the fact that there exist two different ap-
pearances of hepatocytes in the histological images of our
study (see Figure 6a). The first type has the appearance of
an approximately homogeneous region with blurred or crisp
boundaries. These hepatocytes have a color that is darker
than the background and they can be successfully detected
with our approach. Such cells occur in most of the data sets.
The second type has an appearance with crisp boundaries,
but their interior has about the same color as the background.
In Figure 6a the hepatocytes of the first type are marked with
green and the ones of the second type are marked with red.
For hepatocytes of the second type another processing step
would need to be inserted into the processing pipeline, which
is also a part of the future work.

Another challenge for our future work are images where
portal or central veins are present, see Figure 4. In such a
case the image cannot be processed successfully with Otsu
thresholding, as now there are three main classes in the im-
age: cells, background and the vein structure.

7. Conclusion

We have presented an automatic approach to hepatocyte
quantification from histological images. The proposed pro-
cessing pipeline consists of a smoothing step, an automatic
thresholding using Otsu method, and a Hough transform.
We tested different smoothing methods and discussed the
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Total hepatocytes
Image Smoothing Detected TP FN FP TN Sensitivity Specificity Ground P/N
AEE-15-1 None 224 211 32 13 150 0.87 0.92 243 / 163
AEE-15-1 Gaussian 237 220 23 17 146 0.91 0.9 243 / 163
AEE-15-1 Nonlinear Gaussian 234 222 21 12 151 0.91 0.93 243 / 163
AEE-15-1 Median 227 219 24 8 155 0.9 0.95 243 / 163
AEE-15-1 Anisotropic Diff. 242 224 19 18 145 0.92 0.89 243 / 163

AEE-15-1region MDL 55 49 5 6 21 0.91 0.78 54 / 27

AEE-16-1 None 218 193 22 25 133 0.9 0.84 215 / 158
AEE-16-1 Gaussian 236 202 13 34 124 0.94 0.78 215 / 158
AEE-16-1 Nonlinear Gaussian 221 197 18 24 134 0.92 0.85 215 / 158
AEE-16-1 Median 199 184 31 15 143 0.86 0.91 215 / 158
AEE-16-1 Anisotropic Diff. 228 199 16 29 129 0.93 0.82 215 / 158

AEE-16-1region MDL 43 36 5 7 29 0.88 0.81 41 / 36

AEE-17-1 None 191 149 91 42 82 0.62 0.66 240 / 124
AEE-17-1 Gaussian 329 212 28 117 7 0.88 0.06 240 / 124
AEE-17-1 Nonlinear Gaussian 238 194 46 44 80 0.81 0.65 240 / 124
AEE-17-1 Median 307 211 29 96 28 0.88 0.23 240 / 124
AEE-17-1 Anisotropic Diff. 339 225 15 114 10 0.94 0.08 240 / 124

AEE-17-1region MDL 57 48 7 9 21 0.87 0.7 55 / 30

AEE-18-1 None 225 198 47 27 116 0.81 0.81 245 / 143
AEE-18-1 Gaussian 244 211 34 33 110 0.86 0.77 245 / 143
AEE-18-1 Nonlinear Gaussian 252 222 23 30 113 0.91 0.79 245 / 143
AEE-18-1 Median 246 219 26 27 116 0.89 0.81 245 / 143
AEE-18-1 Anisotropic Diff. 258 222 23 36 107 0.91 0.75 245 / 143

AEE-18-1region MDL 49 44 8 5 21 0.85 0.81 52 / 26

Table 1: Hepatocyte quantification results for four different data sets.

(a) Result of MDL-based segmen-
tation algorithm (before applying
automatic thresholding and Hough
transform). The cell boundaries are
well-preserved.

(b) Overlaying the output of Hough
transform (red circles) with the
manually specified output (green
dots).

Figure 3: A region from image AEE-16-1 with MDL-based preprocessing step.

quantification results. Nonlinear Gaussian smoothing and
anisotropic diffusion turned out to be the most suitable ones.
In general, we achieved reasonable quantification results in
terms of specificity and sensitivity. The pre-smoothing step

was necessary in order to obtain a fully automated approach,
as the subsequent thresholding alone did not produce the de-
sired results.
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Figure 4: An image with a vein structure. Such images have
not been considered in our tests so far.
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(a) Result of manual thresholding without any smoothing filter
applied.

(b) Gaussian smoothing is used as a preprocessing step. As this
smoothing does preserve the boundaries, some False Positives
arise.

(c) Nonlinear Gaussian smoothing is used as a preprocessing
step. Reasonable results are obtained, both in sensitivity and
specificity.

(d) Median filtering is used as a preprocessing step. The number
of False negatives is relatively high.

(e) Anisotropic diffusion is used as a preprocessing step. Rea-
sonable results are obtained, both in sensitivity and specificity.

Figure 5: Overlaying the output of the Hough transform (red circles) with the manually specified output (green dots) for image
AEE-16-1.
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