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Abstract
Preoperative neck dissection planning benefits from a smooth, organic visualization of the main blood vessels of
the neck, in particular the carotid artery and jugular vein. While most reconstruction techniques for vasculature
are designed for segmenting the complete vessel tree, our goal is to isolate these specific blood vessels of the neck
from the CT dataset, and to exclude irrelevant vasculature from the visualization.
Pure threshold- and iso value-based reconstruction techniques do not allow such a selective segmentation and
often lead to undersegmentation at the lower parts of the blood vessels, due to inhomogeneous contrast agent
diffusion. In order to avoid staircase artifacts in the visualizations of the reconstructed vascular structures, a
subvoxel accuracy of the reconstruction technique is also required.
We present a model-based reconstruction technique to isolate blood vessels from neck CT datasets using Stable
3D Mass-Spring Models. The results can be visualized directly without staircase artifacts. The interaction needed
for the reconstruction is reduced substantially to only a few clicks along the blood vessels.
The presented method was evaluated with 30 blood vessels from 14 CT datasets of the neck and could be shown
to be accurate, while leading to smooth visualizations of the neck blood vessels.

Categories and Subject Descriptors (according to ACM CCS): I.4.6 [Image Processing and Computer Vision]: Seg-
mentation

1. Motivation

Neck dissections are carried out in the context of tumor
therapy in the head and neck region, in order to eliminate
lymph node metastases. For the preoperative planning of this
surgery, a visualization and quantification of the neck blood
vessels is often required [CDP∗06]. The goal is to detect
abnormalities of the vessels like stenosis or occlusion due
to compression or infiltration by the tumor, and to assess
the complex spatial relationship of metastasis to the vascu-
lar structure. This demands a reconstruction of the relevant
blood vessels from CT datasets of the neck, which can be
used for visualization and quantification.

For the planning of neck dissections, specific blood ves-
sels are relevant for the therapeutic decision (especially the
carotid artery and jugular vein), while other parts of the
vessel tree are less essential for the planning. We therefore
demand an efficient interactive extraction technique which
allows the user to reconstruct specific blood vessels from

the dataset, while irrelevant branches of the vessel tree are
ignored. Additionally, accuracy and a smooth visualization
without distracting staircase artifacts are required for an ef-
ficient and reliable blood vessel assessment.

So far, the large majority of existing approaches to blood
vessel reconstruction is rather general. However, blood ves-
sels of the neck exhibit the following characteristics enabling
and requiring a more specific reconstruction technique:

1. Most blood vessels in the neck are primarily parallel to
the body axis, which leads to nearly circular cross sec-
tions and only slight deviations of the blood vessels cen-
terline from the direction of the body axis.

2. The blood vessels in the focus of this paper have few bi-
furcations, in most cases only the main bifurcation of the
A. carotis and V. jugularis needs to be taken into account.

3. For contrast-enhanced blood vessels, the outline exhibits
a strong gradient, which may however be interrupted at
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curvature points or where an adjacent high-contrast struc-
ture touches the blood vessel.

4. The interior gray value is locally homogeneous, but may
change slightly from slice to slice so that one specific
gray value range across the whole vessel cannot be as-
sumed.

We therefore present a model-based reconstruction tech-
nique dedicated to vascular structures in the neck region, and
to the specific requirements of therapy planning, which in-
clude smooth visualizations without staircase artifacts.

2. State of the Art

A good overview on the field of blood vessels segmentation
is given by [KQ04]. As their survey shows, most blood ves-
sel segmentation techniques result in a binary classification
of the voxels of the dataset. Typical examples are the use
of a sophisticated watershed transformation [HP03], region
growing [SPSP02], statistical classification or neural net-
works. The most serious drawback of all these voxel-based
segmentation techniques is the reduction of the gray scale to
binary information, leading to staircase artifacts when an iso
surface is created directly from the binary mask.

To overcome this drawback, much research has been di-
rected towards smoothing techniques in order to improve
the resulting visualizations [BKP07]. However, smoothing
can only be performed at the expense of accuracy and is es-
pecially problematic for elongated structures such as blood
vessels. Model-based visualization techniques have been de-
veloped to achieve smoother visualizations by model as-
sumptions, e.g. a circular cross-section [OP05, HPSP01].
These techniques have been designed for the visualization
of complex vascular trees, in which the cross-section of indi-
vidual vessels is less essential. For neck dissection planning
however, the shape of the blood vessel’s cross section is an
important indicator for tumor infiltration and must therefore
be visualized correctly.

Sophisticated surface reconstruction techniques operating
on binary segmentation masks are Constrained Elastic Sur-
face Nets [Gib98] or MPU implicits [SNB∗08], which lead
to smoother reconstructions of surfaces from binary segmen-
tation masks, resulting from a preceding voxel-based seg-
mentation technique. However, when the loss of information
by binarisation can be avoided, such a reconstruction tech-
nique is not needed.

Shape model-based segmentation techniques for blood
vessels are often based on generalized cylinders [FVHO04,
FNN∗00]. One recent example is the vessel crawler [MH06].
However, these techniques have not been evaluated with
clinical CT datasets, and hardly any resulting visualizations
are shown.

Level sets are often applied to the segmentation of blood
vessels. However, they are specifically suited for the seg-
mentation of complex-shaped vessel trees, for which shape

model-based techniques would be inappropriate. The pre-
vention of leaking with level sets is based on the size of
branching vessels, rather than on semantics. In favor of com-
putation times, most approaches are implemented using fast
marching, which again leads to a binary segmentation mask.
In [RTT06], levels sets have been applied to the segmen-
tation of neck blood vessels without being able to prevent
leaking to irrelevant branches or staircase artifacts.

3. Method

We employ Stable 3D Mass-Spring Models (SMSMs)
[DTD05] for the segmentation of neck blood vessels, which
enable an explicit modelling of the blood vessel characteris-
tics, and achieve a subvoxel accuracy due to the polygonal
representation.

SMSMs extend conventional mass-spring models by the
use of an additional internal force called torsion force, which
helps to maintain shape stability. The external model forces
of an SMSM are created by sensors at the mass points, drag-
ging their associated masses towards specific image infor-
mation, like gradients or a specific gray value range.

For the segmentation of neck blood vessels, the vessels’
shape coherency across the slices should be exploited to
make the segmentation more robust. Therefore, instead of
using a purely slicewise approach, information from the
neighbouring slices should be used during the segmenta-
tion of each slice. On the other hand, a complete three-
dimensional model is not appropriate, as the global shape of
the blood vessels varies across patients, and a constant gray
value range across one vessel can rarely be found.

We therefore decided to use SMSMs for the blood vessel
segmentation in the following three-stage process:

1. The blood vessel’s center line is created from a set of
markers the user places inside the target blood vessel.

2. Along the center line, the blood vessel is segmented slice-
wise with a cylindrical SMSM, which segments the ves-
sel locally, but uses knowledge from neighbouring slices
for robustness.

3. The results of all slices are connected to the final recon-
struction result.

These stages are now described in detail.

3.1. Generation of the Blood Vessel’s Centerline

To specify the target blood vessel, the user places a set
of markers in the center of the blood vessel (Fig. 1(a)).
The minimum number is one marker for each end point of
the blood vessel, plus one marker for each bifurcation. For
curved vessels, additional markers should be placed at points
of high curvature.

All markers are then connected in the order of their z co-
ordinate by interpolation with cubic B-splines. Due to the
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(a) (b) (c) (d) (e)

Figure 1: Creation of the blood vessel’s skeleton line: (a)
markers placed by the user, (b) interpolated markers for in-
termediate slices, (c) raw skeleton line, (d) calculation of the
inclination vector, (e) annotated skeleton including inclina-
tion directions and initial model radii

body axis parallelity, this results in one marker per slice
and branch (Fig. 1(b)). When a bifurcation exists in the tar-
get blood vessel, a separate skeleton line is created for each
branch (Fig. 1(c)).

After the skeleton line has been generated, the inclination
vector of the blood vessel at each marker position, as well as
the initial radius and local gray value range for the cylindri-
cal model generation are computed. The inclination vector
−→gi at the skeleton point −→pi is computed from the neighbour-
ing skeleton points via−→gi = pi+1−pi−1

‖pi+1−pi−1‖ (Fig. 1(d)). The ra-
dius and the local gray value range for the model initializa-
tion are computed by the following ray casting procedure:

1. Starting from the centerpoint−→pi of the current slice, n rays
are cast in all directions at equidistant angles. For each
ray, the intersection point with the blood vessel contour
is estimated as the first point on the ray, for which the ho-
mogeneity criterion H: | f (−→p )− f (−→pi )| < µ (with f (−→x )
being the average gray value in a 3× 3× 3 environment
around −→x ) is broken. At this point, we place the contour
candidate pG j. (Fig.2(a)) The parameter µ depends on the
standard deviation of the gray values at point −→p , and is
calculated as µ = 0.638 ·σ+43.803, where σ is the stan-
dard deviation of all gray values in the 5×5 environment
of−→p . This function was determined empirically by a lin-
ear regression analysis.

2. Outliers are filtered by a statistical analysis of the x, y
and z coordinates of all contour candidates. A threshold
of 1.6 ·σ was used equally for all directions (Fig.2(b)).

3. In order to correct seed points placed slightly off-center
by the user, the centerpoint is moved to the centroid of
all points pG j , in order to move it more towards the cen-
ter of the blood vessel’s cross-section. In the case of ex-

Figure 3: 2D and 3D view of the model adaptation process.

centric cross sections, this repositioning needs to be re-
peated, because necessary contour points are often elim-
inated by the conservative filtering of the outliers. n = 3
has proved to be a sufficient number of repetitions in our
experiments. The repositioning procedure has no effect
on points which are already located in the centroid.

4. The ray with the shortest distance to the contour is used
as the radius for the circular slice submodel. (Fig.2(c))

5. The local gray value range of the blood vessel at the
current position is estimated from an environment of
3×3×3 voxels around the skeleton point.

The described process results in an annotated skeleton line
of the target blood vessel with one seed point per slice and
branch, containing also the local radii, inclination directions
and local gray value ranges for each skeleton point (Fig.
1(e)).

3.2. Slicewise Segmentation of the Blood Vessel

The annotated skeleton is used to create a cylindrical SMSM
for each slice of the dataset, which is then used to segment
the blood vessel in this slice. The use of a cylindrical model
instead of a 1-slice circular model allows to use the context
information from the neighbouring slices for more stability
with respect to image artifacts, and to deal with the global
inhomogeneity on the other hand. For all datasets, a number
of 4 slices has been a good trade-off between stability on
the one hand, and computation times as well as handling of
global inhomogeneities on the other hand.

From the annotated skeleton, for each of the 4 slices the
individual inclination direction and the radius are used to
generate the circular submodel for this slice. It consists of a
ring with radius ri of gradient sensors modelling the strong
gradient information at the blood vessel’s border. A concen-
tric second ring with radius ri · 0.9 is added, consisting of
intensity sensors, which represent the local homogeneous
interior of the blood vessel. This layer is used to stop the
model from being distracted by neighbouring structures of
higher gradients, e.g. bones. Both layers are connected by
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(a) (b) (c)

Figure 2: Ray casting for the calculation of the initial model radius: (a) initial contour poit candidates, (b) after elimination of
outliers, (c) determination of the initial model radius for the current slice

stiff springs, in order to work as a functional unit as sug-
gested in [DSP∗07]. Both rings of one slice submodel are
contained in a plane through the respective skeleton point
with the normal vector of the plane being −→gi . All four slice
submodels are connected by springs and faces, as shown in
Figure 3.

After the cylindrical SMSM has been created, its adap-
tation to the dataset is started with the simulation parame-
ters shown in Table 1. All parameters have been determined
by experimentation and led to good results for all available
datasets. The model motion is stopped automatically, when
the movement of all masses falls below a given threshold
ε (see Table 1) for 5 simulation steps. Due to the use of a
damping force, the model always converges and stops. The
adaptation of the cylindrical model to one slice is illustrated
by Figure 3.

3.3. Combination of the Results

The described model creation and adaptation process is car-
ried out for all points of the skeleton line. The top and bottom
slices of each cylindrical model have less influence from the
neighbouring slices, and are therefore less reliable than the
center slices. They are therefore discarded, while the center
slices of all resulting cylindrical SMSMs are interconnected
with each-other in the order of their position on the center-
line (Figure 4).

The resulting mesh can be visualized directly, which leads
to smooth visualizations without staircase artifacts.

3.4. Implementation

The described techniques were implemented using the im-
age analysis and visualization platform MeVisLab†, and the

† http://www.mevislab.de

Magdeburg Shape Model Library (MSML) provided by Lars
Dornheim, which contains classes for the creation, simula-
tion and quantification of two- and three-dimensional Stable
Mass-Spring Models.

All mass positions are calculated in the world coordinates
system of the dataset. The associated sensors interpolate the
image data dynamically to achieve subvoxel accuracy.

4. Results and Evaluation

To evaluate the accuracy of the model-based blood vessel
reconstruction, we performed a quantitative analysis based
on 30 blood vessels in 14 clinical CT datasets of the neck.
The resolution of the datasets varied from 0.7 mm to 5 mm
with respect to the slice distance, and between 0.3 mm to
0.8 mm in x and y direction. Among these 30 blood vessels,
large and small radii were represented, as well as vessels
of differing homogeneity w.r.t. the contrast agent diffusion,
in order achieve a realistic representation of typical blood
vessels in the neck.

A gold standard was created for all blood vessels by seg-
menting the vessel with a threshold inside a rough manual
contour, followed by a manual correction of over- and under-
segmented areas. The resulting gold standard segmentations
were verified by a radiologist.

To compare the accuracy of the model-based segmenta-
tion with the accuracy of manual segmentations, we acquired
manual segmentations from two experienced users and mea-
sured their accuracy w.r.t. the gold standard. Subsequently,
the results of our model adaptation were compared to the
gold standard as well.

Table 2 shows that the model’s accuracy w.r.t. the gold
standard is comparable to the average accuracy of the users.
The values for the Hausdorff distance can be attributed to
large slice distances affecting the gold standard. The mean
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Figure 4: Generation of the final 3D segmentation result: (a) slicewise segmentation by the cylindrical SMSM, (b) adapted
cylindrical SMSM for several slices, (c) final combination of the adapted cylindrical SMSMs for all slices

Table 1: Model simulation parameters (according to [DTD05])

Simulation parameter Parameter Value
Simulation step size4t 0.011
Tolerance (stopping criterion) ε 0.055 mm
Max. number of simulation steps n 1100
Damping factor d 0.78

surface distance shows an accuracy of better than 1 mm. Fig-
ure 5 shows examples of successfully reconstructed blood
vessels.

The average segmentation time was approximately four
minutes per blood vessel on a current standard PC (Intel
Pentium 4, 3.2 GHz, 1.0 GB RAM, Windows XP Profes-
sional), depending on the quality of the dataset. The interac-
tion needed was on average 6–9 clicks per vessel, which can
be carried out within 15 seconds.

5. Conclusions

We presented a model-based reconstruction technique for
blood vessels of the neck from CT datasets, with the focus
on both smooth visualizations and accuracy. The presented
method enables the precise segmentation of specific vessels
and ignores irrelevant branches of the vessel, independent of
their size.

Due to the subvoxel accuracy of the model adaptation, the
extracted blood vessels can be visualized directly without
staircase artifacts, while maintaining the segmentation accu-
racy necessary for therapy planning and quantification. The
interaction needed for the extraction could be reduced sub-
stantially from a semi-manual blood vessel segmentation to
a few clicks along the vessel’s centerline. This substantial re-
duction of required interaction time makes the visualization

of the neck blood vessels for therapy planning feasible for
the clinical routine.

Our evaluation shows that a constant set of model param-
eters could be determined that led to satisfying segmentation
results for all examined datasets. Future work aims at a more
extensive evaluation with separation of test and training data,
in order to determine a generalized set of parameters. With
respect to the segmentation technique, next steps include the
improvement of bifurcation handling, as well as the use of
an automatic measurement of the model’s successful adap-
tation, to detect vessel anomalies automatically.
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