
Eurographics Symposium on Point-Based Graphics (2007)
M. Botsch, R. Pajarola (Editors)

A Parallelly Decodeable Compression Scheme for Efficient
Point-Cloud Rendering

Ruwen Schnabel Sebastian Möser Reinhard Klein†

Computer Graphics Group, University of Bonn, Germany

Abstract
We present a point-cloud compression algorithm that allows fast parallel decompression on the GPU for interac-
tive applications. We achieve bitrates of less than four bits per normal-equipped point. Our method enables hole-
free level-of-detail point rendering. We also show that using only up to two bits per point, high-quality renderings
can still be obtained if normals are estimated in image-space. The algorithm is based on vector quantization of an
atlas of height-fields that have been sampled over primitive shapes which approximate the geometry.

Categories and Subject Descriptors (according to ACM CCS): E.4 [Coding and information Theory]: Data com-
paction and compression I.3.3 [Computer Graphics]: Display algorithms I.3.3 [Computer Graphics]: Digitizing
and scanning I.3.3 [Computer Graphics]: Bitmap and framebuffer operations

1. Introduction

The development in 3D laser scanning technology has led to
relatively low-cost devices capable of easily capturing very
large scenes, such as buildings, streets, historical artifacts
or industrial compounds. With the increasing availability of
these devices even to small and medium sized businesses
grows the demand for efficient algorithms to handle the huge
datasets generated by the scanners. Let alone reconstruction
and visualization, even seemingly simple tasks such as stor-
age itself often pose a challenge for these gigantic models.
More importantly though, in spite of increasing bandwidth,
it is still difficult to share these large datasets across a net-
work. We believe that in this context high compression rates
are of major importance since we expect the size of datasets
to grow much faster than e.g. hard-disk transfer rates in the
future, while the increased computational demand of decom-
pression is met well by the continuous and impressive gains
in GPU processing performance. It is therefore desirable to
have a format for this data that achieves very high compres-
sion rates while lending itself to quick decompression and
rendering at the same time.

In this paper we present a novel algorithm that achieves
just that: Point-cloud data is decompressed parallelly on the

† e-mail:{schnabel,moeser,rk}@cs.uni-bonn.de

Figure 1: Michelangelo’s St. Matthew rendered interactively
at 3.31bpp including normals.

GPU and is rendered at interactive rates. For large models
the compression rates of our scheme are similar to state-of-
the art sequential point-cloud compressors. The main fea-
tures of our algorithms are:

Bitrate We show that interactive high quality rendering at
about 5-10fps on current hardware is achieved with less than
four bits per input point including normals (see Fig. 1).

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org

Schnabel et al. / Parallelly Decodeable Point-Cloud Compression Scheme

Normal estimation Our system allows trading compres-
sion of normals for image-space normal estimation. This
way coding of point positions alone suffices to obtain realis-
tic renderings and point-clouds can be interactively rendered
from less than two bits per point.

Level-of-detail Our method uses progressive compres-
sion and inherently supports level-of-detail.

In our method, the point-cloud is decomposed into
patches that are each approximated by a primitive shape,
i.e. either a plane, sphere, cylinder, cone or torus. The fine-
scale geometry is then encoded as height-fields over these
patches. These height-fields are compressed progressively
using image-based methods.

The shapes provide a close approximation of the geometry
for arbitrary models, but the shape information can also be
used to allow some primitive user interaction, such as sup-
pressing the rendering of selected items, moving or copy-
ing them. In scenes such as buildings, cities or other man-
made environments these shapes are predominant and often
are closely related to semantic entities. Moreover, in these
scenes, the overall compression rate can be higher since the
geometry is even more closely approximated by shape prim-
itives.

2. Previous work

One of the first approaches combining compression with di-
rect rendering was the QSplat system [RL00] which is based
on a hierarchy of bounding spheres, giving a level-of-detail
representation. The positions and radii (as well as other at-
tributes) are delta coded in the hierarchy to reduce memory
consumption. They require 6 bytes per input point with nor-
mal.

Botsch et al. [BWK02] use an octree as hierarchy for com-
pression as well as rendering and sample the characteristic
function of the surface into this representation. To encode
the hierarchy in a coarse to fine manner, only the subdivi-
sions of non-empty cells have to be stored in byte codes. This
way they require less than 2 bits per leaf node. The num-
ber of leaf nodes is directly linked to the resolution of the
finest octree level, since the characteristic function is con-
tinuous. Therefore, in general, more leaf nodes than original
points are required to represent a model at its full precision,
leading to much higher bitrates. To reduce the required grid
precision, in each leaf, they store small offsets in normal di-
rection, quantized to additional 2 bits.

Kalaiah and Varshney [KV05] use a statistical represen-
tation of the point-cloud to define a level-of-detail hierar-
chy. The hierarchy is constructed by computing a PCA of
the point positions for each node and than dividing along
the most significant axis. The parameters of the PCA, i.e.
the local frame and the variances, are quantized to 13 bytes
per node. Since leaf nodes represent a cluster of points, the

hierarchy requires only about 8-9 bits per input point. The
rendering of a node is based on quasi-random sampling of
the encoded Gaussian distribution. By precomputing a se-
quence of quasi-random numbers for a unit Gaussian distri-
bution the sampling can be shifted to the vertex shaders of
the GPU. The decoding of the node parameters however has
to be done by the CPU.

Krueger et al. presented DuoDecim [KSW05], a point-
cloud compression algorithm suitable for real-time GPU de-
compression. They resample the original point-cloud into a
grid composed of Trapezo Rhombic Dodecahedra (TRD).
Since a cell in a grid of TRDs has no second order neighbors,
adjacency relations between cells can be encoded very effec-
tively in only 2.25 bits. Thus, for compression of the grid,
continuous runs of neighboring occupied cells are stored
based on the simple adjacency relations. For decompres-
sion, several of these runs can then be processed on the GPU
in parallel. The method achieves high compression rates of
about 3bpp for positions and 5bpp for normals while intro-
ducing only a small sampling error. However, several grids
have to be stored independently to obtain a level-of-detail
representation.

Compression of point-sampled geometry without hav-
ing direct rendering in mind has also been studied exten-
sively. Most related to our approach is the work of Ochotta
et al. [OS04]. They partition the point-cloud into patches
parameterizable over a plane. Similar to us, they resam-
ple the geometry as height-fields over these planes. Then
they use progressive wavelet image compression on these
height-fields to achieve bitrates of 2-3bpp for point posi-
tions. Other approaches in this area include the tree-based
methods given in [HPKG06] [SK06] and the algorithm pro-
vided by [WGE∗04]. While all these methods are progres-
sive and achieve high compression rates, in contrast to our
approach, decompression is sequential and cannot be per-
formed on the GPU for interactive rendering. Nonetheless
our algorithm is able to achieve similar bitrates on large
models.

The height-field geometry representation employed in our
system is a well known concept that, besides its use in com-
pression (see above), spectral analysis [PG01], simplifica-
tion and reconstruction [BHGS06], has also been used for
rendering. Ivanov and Kuzmin [IK01] propose the use of
planar range images as rendering primitive in a hardware
pipeline. However, they use a large number of very small
patches and do not consider any compression. Ochotta and
Hiller [OH06] designed a rendering system based on height-
fields that achieves high quality renderings at interactive
rates. However, they too, do not consider compression or
level-of-detail.

3. Overview

Our method is an asymmetric compression algorithm that
is based on vector quantization of the height-fields’ Laplace

c© The Eurographics Association 2007.

120

Schnabel et al. / Parallelly Decodeable Point-Cloud Compression Scheme

Figure 2: Different stages in our compression algorithm. a)
The object is decomposed into parts corresponding to shape
primitives. b) Height fields over the primitives are generated
to describe fine scale details. c) Laplace pyramids are com-
puted for each height field d) Pyramid levels are encoded
with vector quantization.

pyramids. The first step is the decomposition of the input
point-cloud into parts parameterizable over a primitive shape
(depicted in Fig. 2 a)). To this end we employ a recently
proposed efficient RANSAC shape detection scheme that we
have extended with regard to selecting shapes more suitable
for compression (see sec. 4).

Once the decomposition has been obtained, the geometry
will be represented as an atlas of height-fields that have been
resampled on a regular grid located in the domain of the re-
spective primitive [PG01] [OS04] (Fig. 2 b)). Note that these
height-fields are allowed to have irregular boundaries and we
store with each field a binary occupancy mask to encode the
existence of surface samples in the corresponding grid cells.
Since height-fields are basically equivalent to grey-scale im-
ages we also refer to the height-fields as images throughout
this work.

Each height-field is filtered and downsampled to yield a
collection of equally high image-pyramids (Fig. 2 c)). Start-
ing with the coarsest pyramid level, the images of all shapes
are simultaneously vector quantized. The quantized versions
are then upsampled and subtracted from the next finer res-
olution images, resulting in difference images. Such differ-
ence images are then successively vector quantized for each
pyramid level (see Fig. 2 d) and sec. 5).

Decompression then simply replaces codebook indices
with codebook vectors and sums up as many difference im-
ages as required to reconstruct a selected pyramid level. This
can be done efficiently on the GPU using dependent texture
lookups (see sec. 6). The resulting height-fields are then re-
converted into point-clouds for rendering.

During rendering, level-of-detail is realized by choosing
a pyramid level for each patch such that the level’s resolu-
tion guarantees a hole-free point rendering. Should a hole-
free rendering require a higher resolution than available,
a lower resolution framebuffer is chosen as render target.
These lower resolution images are later scaled and merged
into the target resolution to obtain the final rendering. During

this image processing, normals can also be generated from
the stored depth information (see sec. 7).

4. Decomposition

We decompose the input data using the robust RANSAC-
based approach that was suggested in [SWK07]. Here we
will only shortly review this algorithm and then present the
extensions we implemented with regard to compression.

The point-cloud P = {p1, . . . , pN} is decomposed into
subsets Si associated to shape primitives Φi as well as a
single subset R containing any remaining points that could
not be assigned to a shape. Thus, after decomposition P =
S1∪ . . .∪SA∪R. In the following we will use the terms shape
and primitive interchangeably.

RANSAC shape detection is a probabilistic algorithm that
randomly generates shape hypotheses. These hypotheses are
tested against the point-cloud by evaluating a score function
σ. Primitives achieving maximal score are extracted itera-
tively from the point-cloud in a greedy manner. Each time a
primitive has been extracted, all compatible points forming a
connected component on the surface are removed from P and
collected in a subset Si. In order to heuristically ensure that
only parameterizable patches are created, a point is consid-
ered compatible if it is within a distance of ε and its normal
does not deviate by more than α degrees from the respective
shape normal. After removing the compatible points, the al-
gorithm is restarted on the remaining points until no more
shapes can be found.

The output of the method can easily be adjusted to spe-
cial application requirements by defining a suitable score
function σ. In our case we wish to extract shapes that, be-
sides approximating a large number of points, should also
have a short boundary in the shape’s parametrization do-
main. The motivation behind this is that the boundary will
have to be encoded by the compression later on, and more
complex boundaries will lead to higher encoding cost. Thus,
we define the score function as

σ(P,Φ) = |S(P,Φ)|−β|B(S(P,Φ))|,

where Φ is the primitive, S(P,Φ) is the largest set of compat-
ible points forming a connected component and B(S(P,Φ))
is the set of boundary points in the primitive’s domain. The
parameter β≤ 1 allows adjusting the influence of the bound-
ary points.

The decompositions sorts outliers and points belonging
to very scarcely sampled regions into the set of remaining
points R. These points can safely be ignored in all further
processing.

5. Compression

After the shape primitives have been obtained, the height-
field atlas has to be generated. To this end, the point-cloud

c© The Eurographics Association 2007.

121

Schnabel et al. / Parallelly Decodeable Point-Cloud Compression Scheme

is resampled on a regular grid in the domain of each shape.
Recall that the compressed point-cloud will consist only of
these resampled positions, so that care has to be taken to
avoid visible gaps between the edges of different shape prim-
itives. As was observed by Ochotta et al. in [OH06], in order
to obtain hole free rendering, it suffices to have the patches
slightly overlap.

5.1. Resampling

The height-field patches are regularly sampled in the
parametrization domain of the respective shape primitive.
To establish the location and extent of the resampling grid
for each patch, all points assigned to a shape are projected
onto the respective primitive and a bounding box is found
for all these projected points in the parametrization domain.
In order to preserve the original number of points, the res-
olution of each resampling grid should be chosen such that
the number of occupied cells equals the number of projected
points of the respective patch. The result of the resampling is
a regularly sampled height-field or grey-scale image together
with a binary mask specifying the valid image entries.

We find the height-field’s resolution and the binary mask
of occupied cells in a joint iterative process. The initial res-
olution of the grid is set to the average distance between a
projected point and its nearest neighbor. In each iteration the
projected points are sorted into the grid and a morphologi-
cal closing operation is used to fill small holes in the result-
ing occupancy mask. Then, similar to a binary search, if the
number of occupied cells after the closing is larger than the
original number of points, the resolution is set to the mid-
dle value between a lower bound and the current resolution.
Otherwise the resolution is increased analogously. After the
correct resolution has been determined, the constructed bi-
nary mask is dilated once to ensure a slight overlap between
neighboring patches in space.

Now, for each occupied cell a height value has to be com-
puted. These height values are obtained by intersecting a ray
in direction of the shape primitive’s normal with the moving
least-squares (MLS) surface for each masked cell [AA03].
Using the MLS surface has the advantage that different
patches use a consistent surface definition across patch bor-
ders, which ensures that no edges will be visible in the re-
sampled point-cloud. In addition, the MLS surface can also
be used to obtain normals, which can be stored along with
the offset value if desired. Point normals are encoded relative
to the primitive’s normal using spherical coordinates. Using
the primitive’s normal as reference results in a low entropy
for the polar angle, as it will usually be close to zero.

5.2. Filtering

The acquired height-fields are successively filtered and sub-
sampled to obtain image pyramids. The levels of these pyra-
mids constitute the levels-of-detail supported by our method.

A level Pi of the pyramid is obtained as Pi =↓ g(Pi−1), where
g is a low-pass analysis filter and ↓ denotes subsampling. P0
is the original image. Rather than storing the pyramid levels
independently we use the Laplacian pyramid representation
introduced by Adelson and Burt [AB81] to achieve better
decorrelation (and thus compression). A level of the Lapla-
cian pyramid is the difference between the corresponding
level of the image pyramid and the upscaled lower resolu-
tion level. Thus a level Li of the Laplacian pyramid is given
as Li = Pi − h(↑ Pi+1), where h is a synthesis filter and ↑
denotes upsampling. Only on the coarsest level l, Laplacian
and image pyramid are identical, i.e. Ll = Pl . We can then
reconstruct a level Pi from the Laplacian pyramid by recur-
sively applying Pi = Li +h(↑ Pi+1).

Originally, Adelson and Burt suggested to use Gaussian-
like filter kernels for g and h in the pyramid construction.
However, Gaussian analysis filters also require Gaussian
synthesis during reconstruction of pyramid levels. With a
GPU implementation of the reconstruction in mind, we use
the CDF 5/3 [CDF92] wavelet instead, as in this case the
low-pass synthesis filter simply is a bilinear interpolation,
which is natively supported in the hardware.

5.3. Vector quantization

Vector quantization works by replacing small tiles of the
original image with indices into a codebook [GG92]. The
codebook simply contains a set of representative tiles. The
main reason to use vector quantization in our method is that
this simple scheme directly lends itself to parallel decom-
pression while achieving high compression ratios. To obtain
the decompressed image all indices can be replaced with the
vectors from the codebook independently and concurrently.
In principle, all this amounts to are dependent texture look-
ups on the GPU.

Several related approaches have also used vector quanti-
zation to enable fast decompression. Beers et al. [BAC96] in-
troduced the concept to the computer graphics community in
the context of texture compression and Levoy et al. used vec-
tor quantization for Light field rendering [LH96]. In [SW03]
Schneider et al. showed that the scheme can also be applied
to compression and rendering of volume data.

Thus, to achieve compression we apply vector quantiza-
tion to the pyramid levels Li [HH88]. For the vector quan-
tization the height-fields are decomposed into small vectors
corresponding to square tiles of side length x. Each vector
carries a mask, that has been generated from the occupancy
bitmap, to identify any missing values. No vectors are gen-
erated for empty regions in the patch.

The key to high compression rates is to find a small code-
book together with a mapping from original tiles to code-
vectors such that the distortion introduced by the replace-
ment is minimized. Let C = {ci, . . . ,ck} be a set of code-
vectors and D = {di, . . . ,dN} be the set of data-vectors (or

c© The Eurographics Association 2007.

122

Schnabel et al. / Parallelly Decodeable Point-Cloud Compression Scheme

image tiles respectively), then distortion is measured as the
root mean square (RMS) error:

R =

√√√√ 1
N

N

∑
i=1

‖di− cM(i)‖2,

where M : N → N is the mapping assigning code-vectors to
data-vectors.

In our system the user specifies a maximal RMS error
Rmax prior to compression, such that a codebook and map-
ping have to be found accordingly. While we treat different
pyramid levels independently, on each level we use a com-
mon codebook across all shape patches, i.e. the data-vectors
D are collected on the respective level from all patches in
the atlas. We do not quantize across scales for two reasons:
Firstly, we can avoid accumulating quantization errors if we
compute the levels of the Laplace-pyramid using the pre-
viously quantized lower resolution images. Secondly any
codebook across scales has to be large enough to achieve
an error less than Rmax on L0. This leads to an overly ver-
bose codebook on coarser levels and, consequently, to large
code-vector indices requiring many bits.

5.3.1. Codebook generation

We base the codebook generation on the LBG algorithm
[LBG80]. It is well known however that a naive implementa-
tion of this method exhibits extremely poor runtime perfor-
mance. We employ simple strategies to alleviate this prob-
lem without notably degrading compression performance:
Firstly, we quickly obtain an initial codebook using a tree
structured vector quantization (TSVQ) approach [GG92].
Secondly, the codebook of the TSVQ is refined with the gen-
eralized Lloyd algorithm. The Lloyd iterations are acceler-
ated through approximate nearest neighbor computations.

TSVQ The TSVQ proceeds hierarchically, as described e.g.
in [LGK∗01] [SW03] [KV05]. Since the codebook will be
further optimized after the TSVQ, we stop adding code-
vectors once a distortion less than γRmax has been achieved.
We empirically found γ = 1.5 to be a good choice.

Lloyd The codebook as well as the mapping created by the
TSVQ are far from optimal. Therefore it is worthwhile to re-
fine the code vectors with subsequent iterations of the gener-
alized Lloyd algorithm. The Lloyd algorithm finds an opti-
mal mapping M by assigning each data-vector to its near-
est code-vector. Optimal code-vectors are then computed
as the centroid of all data-vectors which they are to repre-
sent. This is repeated until convergence. Even though the
Lloyd algorithm significantly reduces the RMS error that
was achieved by the TSVQ, it usually is unable to reach
Rmax without adding additional code-vectors. Therefore we
interleave Lloyd and TSVQ until Rmax is reached. In each
iteration TSVQ is used to generate additional code-vectors
in relevant locations [SW03].

Approximate Lloyd Finding the nearest code-vectors in
each iteration of the Lloyd algorithm is a very expensive
operation, which is why we resort to an approximation in-
stead: We find the list of m nearest code-vectors for each
data-vector in the first iteration and then restrict the search
for the nearest code-vector to this list in all subsequent iter-
ations. This way the search is significantly accelerated and
the runtime is indeed now dominated by the first iteration.
However, a small error is introduced, since code-vectors may
change in between iterations such that at some point the list
may no longer contain the true nearest neighbor.

Scalar quantization After the codebook generation, the el-
ements of the code-vectors additionally undergo scalar quan-
tization into eight bits per element. This way they can be
stored in single component textures on the GPU.

5.4. Hierarchy

In principle, it is possible to store the compressed pyra-
mid levels as two dimensional arrays of code-vector indices.
However, this would imply saving indices even in empty re-
gions of a level. Since the occupancy masks may indeed con-
tain large empty areas, this wastes a lot of space with useless
information. Thus it is significantly more efficient to use a
quad-tree representation of the pyramid, in which only the
occupied areas have to be stored.

5.4.1. Quad-tree

Traditionally, each node of the quad-tree would contain a
code-vector index together with a list of pointers to the exist-
ing child nodes. The list of pointers can be replaced by four
bits specifying the existing children if the quad-tree nodes
are stored in breadth- or depth-first order. However, during
decompression we want to be able to process many quad-
tree nodes in parallel on the GPU, and while such a repre-
sentation is very space efficient, it is not well suited for par-
allel processing due to the sequential nature of the traversal
order. Thus, in the spirit of the well-known recursive data
pattern [MSM04], to enable efficient parallel decompression
we store instead a pointer to its parent together with two
bits specifying its child relation. We keep the levels of the
quad-tree in separate arrays, such that the pointers actually
are offsets into these arrays. This representation allows us to
process each node on a level in parallel with all other nodes
of the same level at the cost of additional pointers in the leaf
nodes.

Parent pointers The encoding of parent indexes in the
quad-tree nodes may become problematic if the images are
very large, and therefore indices into large arrays would have
to be stored. Thus, to avoid spending to many bits on the par-
ent indices, we subdivide every image into square blocks of
side length 2lx (recall that l is the number of pyramid levels
and x is the side length of the quantized image tiles). This

c© The Eurographics Association 2007.

123

Schnabel et al. / Parallelly Decodeable Point-Cloud Compression Scheme

Figure 3: Two consecutive levels of an image quad-tree.
Each quad-tree cell contains x2 pixels. Below the quad-tree
tiles the array for the level is depicted. Each entry stores
a pointer to the parent tile, the child relation and the code-
vector index. Array entries corresponding to partial tiles, i.e.
tiles with incomplete occupancy masks, are sorted to the be-
ginning of the array.

limits the number of bits required to store parent offsets to
2(l−1) on the finest level. Moreover, as a side effect, we can
use these sub-blocks to define the granularity of our level-of-
detail selection. To this end, we also store a bounding box
along with each block.

For a compression using five levels and using a tile side
length of four the expected bits per point required on the
last level for the parent indices can be now be computed as
2(l−1)

x2 = 1
2 . This is still a significant amount which we can

further reduce by sorting the tiles of the last and next to last
level such that nodes that have four children are stored in an
order which allows implicit quad-tree indexing of the par-
ent (and therefore of the child relation as well). This way
we usually save more than 50% of the overhead caused by
parent indexes on the last level.

Occupancy bitmaps The number of bits needed for a node
of the quad-tree now depends on the number of bits required
to encode a code-vector index, the offset into the parent array
and two bits for the child relation. Unfortunately however, it
does not suffice to store the code-vector index alone for de-
compression, as some of the quad-tree cells may only be par-
tially occupied. For these cells a bitmap is used to encode the
occupancy. Please note that we call a quad-tree node partial
if not all of its associated image pixels are occupied, which
is independent of the number of children of the node.

To minimize storage overhead for the occupancy bitmaps,
all partial quad-tree tiles of each level are sorted to the begin-
ning of the level’s array and the corresponding bitmaps are
stored in the same order in a second array. Fig. 3 illustrates
the resulting layout of the data structure. This way, the only
overhead is the number of partial nodes that has to be en-
coded for each level and no additional information is needed
for full nodes.

6. Decompression

The aim of our compression technique is to allow for fast de-
compression on the GPU, which has two advantages: Firstly
only the compressed data has to be sent across the bus to the
GPU during rendering and secondly the high degree of par-
allelism of the GPU’s SIMD structure can be fully exploited.

The decompression of a patch reconstructs the quad-tree
level corresponding to the level of the image pyramid which
has been selected for rendering. As the result of the decom-
pression the reconstructed quad-tree tiles will be stored in a
vertex buffer. The vertex buffer contains four floating point
values per reconstructed point or six if normals are also de-
compressed. These values are the height value h, two coor-
dinates u and v specifying the location of the point in the
primitive’s domain, as well as a value b that is zero if the
point corresponds to a position that was masked out by the
occupancy bitmap. In case of decompressed normals there
are two additional values φ and θ. Since each quad-tree node
specifies an index of a single code-vector, a node decom-
presses into exactly x2 points. Using (u,v) the height and
normal values of the points will be transformed into world-
coordinates with respect to the shape primitive in a vertex
shader during rendering. Points with b = 0 are discarded in
a geometry shader.

Thus, for reconstruction of a level Pj, the arrays of the
quad-tree for level j are uploaded into textures on the GPU.
The reconstructed nodes of the previous level Pj+1 are
copied into textures as well. If the number of nodes in the
quad-tree on level j is k, than kx2 points have to be recon-
structed, since every node encodes a x2 image tile. We use
the new transform feedback OpenGL extension, render kx2

points and perform the decompression of each point in a ver-
tex shader. The transform feedback stores the result of the
vertex shader directly into a vertex buffer which can then
directly be used for rendering without any prior copying.

The decompression vertex shader reads the respective
node information from the quad-tree array. Note that to
achieve maximal concurrency the node information is actu-
ally read many times - once for each point. Due to caching of
the data this causes virtually no overhead however. All that
has to be done for reconstruction is to add the code-vector
entry, which is read from a codebook texture, to the respec-
tive interpolated parent value. The interpolation is handled
automatically in the texture unit. Additionally the point’s co-
ordinates are deferred from the parent coordinates. Note that
the interpolation of parent values is restricted to the values
belonging to the parent node by adjusting the texture coor-
dinates accordingly. This causes a slightly decreased com-
pression performance but offers the advantage that no neigh-
boring quad-tree nodes have to be considered in the decom-
pression. Thus, computations as well as data structures are
significantly simplified.

c© The Eurographics Association 2007.

124

Schnabel et al. / Parallelly Decodeable Point-Cloud Compression Scheme

7. Rendering

In principle, during rendering the decompressed height val-
ues only have to be transformed into 3D coordinates in a
vertex shader and can than be rastered as simple point primi-
tives. However we want to incorporate level-of-detail control
for better performance. Also hole-free renderings of close-
up views is desired.

7.1. Level-of-detail

With our system, level-of-detail control can be achieved
fairly simply: For each patch the distance of the bounding
box to the viewer d is obtained. Since the sampling resolu-
tion of the patch is known this distance can be used to select
the level-of-detail as follows:

lLOD =− log2(

√
2nrpatch

d p
),

where rpatch is the resolution of the patch, n is the distance
to the near plane and p is the side length of a pixel in world
coordinates. This choice guarantees a hole-free rendering
of objects as long as lLOD ≥ 0. For patches with lLOD < 0
we use a hierarchy of coarser framebuffers to obtain hole-
free renderings. The levels of this framebuffer hierarchy are
merged into a single image for each frame.

7.2. Hole-free rendering

To achieve a hole-free point rendering, splatting approaches
such as those proposed in [ZPvBG01] or [BK03] usually
are a first choice. Splatting however requires a normal for
each surface element so that it cannot be directly applied if
normals have to be estimated in image-space. Also splatting
requires the geometry to be rendered in two passes, which
causes significant overhead for large models. The pyramid
of framebuffer images that we employ instead requires only
a single geometry rendering pass followed by a few very fast
image-based passes. This is similar in concept to the point
sample rendering of Grossman and Dally [GD98]. However
we use a different GPU supported depth buffer technique
and propose a new splat-based merging strategy to combine
framebuffer levels.

On the GPU we use a single off-screen framebuffer that
is large enough to contain the images of all pyramid lev-
els. To render into a specific pyramid level only the view-
port needs to be adjusted accordingly. This way each pyra-
mid level has its own, separate depth buffer and therefore
may contain parts that will not be visible in the final image.
Instead of color values, we store the points’ positions and
normals in the framebuffer. Additionally a radius is stored
for each point. The radius r f rag is derived from the resolu-
tion with which the respective patch has been rendered, i.e.
r f rag = 2max(lLOD,0)rpatch. This way each pixel encodes the
parameters of a circular splat.

To merge the pyramid levels into a single image, the

framebuffers are processed from coarse to fine. To this end
the coarse level and the next finer level are bound as textures
and rendered into a new texture with the same dimensions as
the finer level to yield the combined image. A screen aligned
quad is used to start a fragment shader for each pixel of the
combined image.

The fragment shader intersects the splats encoded in the
pixels of a small neighborhood in the coarse image with the
ray corresponding to the combined image’s pixel. The loca-
tion of the intersection is used to evaluate an object-space
kernel for each splat which determines its influence for the
pixel at hand. We use a simple Gaussian gσ kernel with
σ = 1

2 r f rag. The blended contribution b from the coarse level
can thus be obtained as

b =
1

∑i gσ(qi− pi)
∑

i
gσ(qi− pi)ai,

where pi is the position of the splat and qi is the splat-ray
intersection and a denotes any of the attributes position, nor-
mal or radius.

Since it is not guaranteed that splats from the coarse im-
age always occlude those in the finer image, we perform a
depth test before writing the blended coarse image to the re-
sult image. Should the depth test fail, the splat from the fine
image is written.

The blending of pyramid levels proceeds until the finest
resolution has been reached. Then, in a last step, deferred
shading is applied to generate the final on-screen rendering.

7.3. Normal estimation

If the point-cloud was compressed without normal informa-
tion, normals have to be estimated on-the-fly during render-
ing. To this end, we first render the points in the framebuffer
pyramid as described above and then compute the normals
in a second pass [KK05], similarly to deferred shading. This
has to be done before the pyramid levels are merged in order
to obtain valid splats.

In the normal estimation pass, the point positions in
5x5 blocks of pixels are used to estimate normals. We use
weighted least-squares to fit a plane to the points via PCA
of the covariance matrix [HDD∗92]. Again we use the ob-
ject space Gaussian kernel gσ to determine the influence of
the neighbor points, where σ is computed using r f rag of the
center pixel. Since the weights are obtained in object space,
no notable smoothing occurs across edges in the image.

The normal estimation is executed once for all pyramid
levels by drawing a screen-aligned quad over the whole off-
screen framebuffer. After that the merging of levels proceeds
just as described above.

A problem may occur during the normal estimation if ar-
eas of the object are viewed in a grazing angle. Then it can
happen that neighboring pixels contain only points that are

c© The Eurographics Association 2007.

125

Schnabel et al. / Parallelly Decodeable Point-Cloud Compression Scheme

model N Rmax TD TV Q bpp
St. Matthew 186,810,938 0.1mm 1:28 13:14 1.35 (3.31)
Atlas 255,035,497 0.1mm 2:13 15:34 1.03 (2.97)
David 28,184,526 0.1mm 0:11 1:35 1.93 (3.91)
Ephesos 23,073,902 1mm 0:16 0:05 2.37
Industrial 23,207,348 5mm 0:21 0:02 1.75

Table 1: Compression statistics for various models. TD gives
the time for decomposition in minutes and hours. TV Q is the
time for vector quantization. All timings were obtained on
an Intel Core 2 Duo with 2GB Ram. Bpp are measured with
respect to original points. Bitrates in parentheses are for
points and normals. For each model six levels-of-detail were
used. For Ephesos and Industrial no normals were com-
pressed due to their low quality.

so distant to the center pixel’s point that their weight be-
comes zero due to numerical reasons. In such a case the nor-
mal estimation can produce arbitrary results. While this is
a principle drawback of image based normal estimation, in
our case we can greatly alleviate the problem by incorporat-
ing the additional information available in the form of point
normals generated from the underlying primitive shape. This
normal can be used to appraise the angle under which the
point is viewed and the point’s radius can be enlarged ac-
cordingly. Thus, we set

r f rag =
1

< n,v >
2max(lLOD,0)rpatch,

where n is the shape normal of the point and v is the view-
ing direction. Since σ is directly correlated with r f rag the
kernel width is adjusted implicitly as well. Note that the en-
larged r f rag also increases the size of the splats used during
merging of pyramid levels which fills spurious gaps between
splats that can occur for steep viewing angles.

8. Results

In order to evaluate our system we conducted several exper-
iments. Table 1 lists the bitrates achieved by our method for
various models. The bitrates of our method are of the same
order as results reported on smaller models by previous se-
quential coders. Where applicable we compressed normals
with Rmax = 1◦. In all cases we used an image tile side length
of x = 4. Note that our method performs better on larger
models as the codebook costs are better amortized. For all
models, the ε parameter of the shape detection was set to
equal three times the desired RMS. The parameter α was set
to 30 degrees, so that parameterizable patches were found
in all cases. Shape parameters and bounding boxes require
between 0.2-0.3bpp and occupancy bitmaps about 0.4bpp.
Only for the extremely irregularly sampled long-range scans
of Ephesos and the industrial compound (see accompany-
ing video and Fig. 7), the bitmaps take up roughly 1bpp
due to the many holes and complex boundaries in the data.
Due to several scanning artifacts in these scans the normals
computed in a preprocess are of low quality so that they do

not provide significant improvements over our screen-space
estimation scheme. Thus we chose not to compress them.
Also note that for this data it is extremely valuable that our
method is able to adjust the sampling density locally for each
patch, which is impossible to achieve with a global grid as
employed by [KSW05].

In Fig. 5 a comparison of our method with the approach
of Kalaiah et al. [KV05] is given. The error was measured as
described in their work and the peak signal is given by the
bounding box diagonal. While our method performs slightly
worse for low bitrates below 0.7bpp, a high PSNR above 75
is achieved with far fewer bits. For a PSNR of 78 our system
requires less than 50% bits than their method.

In order to asses the effect of the extended set of primitive
shapes, we compared results of our system with all primitive
shape types activated to results for which only planes were
allowed. Obviously the benefit of the extended set of prim-
itives depends on the type of geometry. On the one hand,
for objects in which planar areas dominate or in which nei-
ther planes nor other shapes are actually present, none, or
only a very small, gain can be achieved with the extended
set of primitives (e.g. for the Michelangelo statues). On the
other hand, for objects such as the oil pump (see Fig. 2) or
the industrial compounds in Fig. 4 and 7 the extended set of
shapes is a distinct advantage, improving the bitrate about
12%. Since planes are included in the extended set as well,
we never observed an increased bitrate when all shapes were
activated.

Fig. 6 shows two close-up images generated with our
framebuffer pyramid. Holes are smoothly filled while de-
tail is retained. In the image on the left normals were esti-
mated in image-space before upsampling of the framebuffer
levels. At such a scale small artifacts in the estimated nor-
mals may become visible. Fig. 8 gives some images to il-
lustrate the performance of the normal estimation at other
distances from the viewer. It can be seen that the estimated
normals generally introduce a certain amount of smooth-
ing. For larger distances this smoothing is almost equiva-
lent to screen-space anti-aliasing but for closer views some
of the detail may get lost due to the limited screen resolu-
tion. Note that detail becomes visible when the screen res-
olution roughly matches, or is finer than, the model resolu-
tion (see Fig. 6). The level-of-detail rendering ensures that
this is mostly the case. Estimating normals in screen-space
takes about 6ms per frame. In certain scenes where primitive
shapes are predominant, e.g. the industrial compound shown
in Fig. 7, rendering of shape normals alone already suffices
to create a realistic impression.

On a GeForce 8800 GTX we currently achieve framerates
between 5 to 10 fps for large models, such as Atlas or St.
Matthew. We do not apply any culling techniques besides
frustum culling. For some models back-face culling would
result in considerable speed-up, but since many point-clouds
are non-manifold (e.g. Fig. 4 and 7) back-face culling is not

c© The Eurographics Association 2007.

126

Schnabel et al. / Parallelly Decodeable Point-Cloud Compression Scheme

Figure 4: Some simple interaction trivially supported in our
system. A pipe is highlighted by clicking on it.

Figure 5: The PSNR of our method compared to that of
Kalaiah et al. [KV05] for the David statue.

appropriate in general. We do plan on integrating occlusion-
culling in the future. Decompression speed varies between
5-10 million points per second, depending on the levels that
are decoded. Coarser levels are slower because of the render
call overhead. Compared to our parallelized CPU implemen-
tation this is a speedup of about a factor of 10 (measured on
an Intel Core 2 Duo).

Fig. 4 shows a small example of the interaction that is
supported by our compression format. Parts corresponding
to shapes can easily be suppressed or highlighted for visual-
ization purposes. Moving or duplicating such parts would be
possible as well, but we have not implemented this form of
interaction yet.

9. Conclusion

We have presented a progressive compression scheme for
point-clouds that aims for fast parallel decompression while
achieving lower bitrates than other state-of-the-art compres-
sion algorithms which aim at direct rendering. We have
demonstrated that the decompression can be executed well
on today’s GPUs, enabling inspection of the compressed
geometry in interactive rendering. In order to support effi-
cient parallel processing several compromises in the layout
of the compressed format were made. For instance in the
quad-tree hierarchy every node redundantly stores a pointer
to its parent so that nodes can be processed independently.
We intentionally do not make use of arithmetic or Huffman
coding since streams generated with these techniques can-
not straightforwardly be decompressed in parallel. Conse-
quently, our method could achieve even lower bitrates if par-
allelism were not required. But even as is, our current sys-

tem’s compression rate on large models is of the same order
than that of previous sequential coders.

9.1. Limitations and future work

The level-of-detail obtained with our approach is not suit-
able for very far objects, i.e. objects filling only a couple
of pixels on the screen. This is due to the fact that no fil-
tering takes place across shape borders and the number of
patches is not reduced for distant views. Our approach could
be extended by adding volumetric hierarchies for very coarse
views, resulting in a structure reminiscent of e.g. VS-Trees
[BHGS06]. Exploring these possibilities is a main avenue
of future work. Also, despite the considerable accelerations
proposed in this work, the runtime of the vector quantiza-
tion still poses a problem for very large point-clouds. Future
work will have to further address this issue. We also plan to
accelerate the rendering by incorporating occlusion culling
and reducing the render call overhead for coarse levels by
combining different patches in a hierarchy.

Acknowledgements

The oil-pump model in Fig. 2 appears courtesy of INRIA
and ISTI by the AIM@SHAPE Shape Repository. The St.
Matthew, Atlas and David models are a courtesy of the Dig-
ital Michelangelo Project, Stanford University. The Ephesos
data was kindly provided by Michael Wimmer.

References

[AA03] ADAMSON A., ALEXA M.: Ray tracing point set sur-
faces. In SMI ’03: Proceedings of the Shape Modeling Inter-
national 2003 (Washington, DC, USA, 2003), IEEE Computer
Society, p. 272.

[AB81] ADELSON E. H., BURT P. J.: Image data compression
with the laplacian pyramid. In Pattern Recognition and Image
Processing (1981), pp. 218–223.

[BAC96] BEERS A. C., AGRAWALA M., CHADDHA N.: Ren-
dering from compressed textures. In SIGGRAPH ’96: Proceed-
ings of the 23rd annual conference on Computer graphics and
interactive techniques (New York, NY, USA, 1996), ACM Press,
pp. 373–378.

[BHGS06] BOUBEKEUR T., HEIDRICH W., GRANIER X.,
SCHLICK C.: Volume-surface trees. Computer Graphics Forum
(Proceedings of EUROGRAPHICS 2006) 25, 3 (2006), 399–406.

[BK03] BOTSCH M., KOBBELT L.: High-quality point-based
rendering on modern gpus. In PG ’03: Proceedings of the
11th Pacific Conference on Computer Graphics and Applications
(Washington, DC, USA, 2003), IEEE Computer Society, p. 335.

[BWK02] BOTSCH M., WIRATANAYA A., KOBBELT L.: Ef-
ficient high quality rendering of point sampled geometry. In
EGRW ’02: Proceedings of the 13th Eurographics workshop on
Rendering (Aire-la-Ville, Switzerland, Switzerland, 2002), Euro-
graphics Association, pp. 53–64.

c© The Eurographics Association 2007.

127

Schnabel et al. / Parallelly Decodeable Point-Cloud Compression Scheme

[CDF92] COHEN A., DAUBECHIES I., FEAUVEAU J. C.:
Biorthogonal bases for compactly supported wavelets. Comm.
Pure & Applied Math 45 (1992), 485–560.

[GD98] GROSSMAN J. P., DALLY W. J.: Point sample rendering.
In Rendering Techniques (1998), Drettakis G., Max N. L., (Eds.),
Springer, pp. 181–192.

[GG92] GERSHO A., GRAY R. M.: Vector Quantization and Sig-
nal Compression. Kluwer Academic, Boston, 1992.

[HDD∗92] HOPPE H., DEROSE T., DUCHAMP T., MCDONALD

J., STUETZLE W.: Surface reconstruction from unorganized
points. In SIGGRAPH ’92: Proceedings of the 19th annual con-
ference on Computer graphics and interactive techniques (New
York, NY, USA, 1992), ACM Press, pp. 71–78.

[HH88] HANG H.-M., HASKELL B.: Interpolative vector quan-
tization of color images. IEEE Transactions on Communications
36 (April 1988), 465–470.

[HPKG06] HUANG Y., PENG J., KUO C.-C. J., GOPI M.:
Octree-based progressive geometry coding of point clouds. In
Symposium on Point-Based Graphics 2006 (July 2006), Botsch
M., Chen B., (Eds.), Eurographics.

[IK01] IVANOV D., KUZMIN Y.: Spatial patches - a primitive for
3d model representation. Computer Graphics Forum 20 (Septem-
ber 2001), 511–521(11).

[KK05] KAWATA H., KANAI T.: Direct point rendering on GPU.
In Advances in Visual Computing (2005), pp. 587–594.

[KSW05] KRÜGER J., SCHNEIDER J., WESTERMANN R.:
Duodecim - a structure for point scan compression and render-
ing. In Proceedings of the Symposium on Point-Based Graphics
2005 (2005).

[KV05] KALAIAH A., VARSHNEY A.: Statistical geometry rep-
resentation for efficient transmission and rendering. ACM Trans.
Graph. 24, 2 (2005), 348–373.

[LBG80] LINDE Y., BUZO A., GRAY R. M.: An algorithm for
vector quantizer design. IEEE Trans. on Communications COM-
28, 1 (Jan. 1980), 84–95.

[LGK∗01] LENSCH H. P. A., GOESELE M., KAUTZ J., HEI-
DRICH W., SEIDEL H.-P.: Image-based reconstruction of spa-
tially varying materials. In Proceedings of the 12th Eurograph-
ics Workshop on Rendering Techniques (London, UK, 2001),
Springer-Verlag, pp. 103–114.

[LH96] LEVOY M., HANRAHAN P.: Light field rendering. In
SIGGRAPH ’96: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques (New York, NY,
USA, 1996), ACM Press, pp. 31–42.

[MSM04] MATTSON T., SANDERS B., MASSINGILL B.: Pat-
terns for Parallel Programming. Addison-Wesley Longman,
Amsterdam, Sept. 2004.

[OH06] OCHOTTA T., HILLER S.: Hardware rendering of 3d ge-
ometry with elevation maps. In SMI ’06: Proceedings of the IEEE
International Conference on Shape Modeling and Applications
2006 (SMI’06) (Washington, DC, USA, 2006), IEEE Computer
Society, p. 10.

[OS04] OCHOTTA T., SAUPE D.: Compression of point-based 3d
models by shape-adaptive wavelet coding of multi-height fields.
In Proceedings of the Eurographics Symposium on Point-Based
Graphics (June 2004), pp. 103–112.

Figure 6: Close-up of fine detail on Michelangelo’s Atlas.
Hole free rendering is achieved with our framebuffer pyra-
mid. On the left decompressed normals are used. On the
right normals have been estimated in screen space.

Figure 7: The image on the left has been rendered with nor-
mals estimated in screen-space. On the right only shape nor-
mals are shown.

[PG01] PAULY M., GROSS M.: Spectral processing of point-
sampled geometry. In SIGGRAPH ’01: Proceedings of the 28th
annual conference on Computer graphics and interactive tech-
niques (New York, NY, USA, 2001), ACM Press, pp. 379–386.

[RL00] RUSINKIEWICZ S., LEVOY M.: Qsplat: a multiresolu-
tion point rendering system for large meshes. In SIGGRAPH
’00: Proceedings of the 27th annual conference on Computer
graphics and interactive techniques (New York, NY, USA, 2000),
ACM Press/Addison-Wesley Publishing Co., pp. 343–352.

[SK06] SCHNABEL R., KLEIN R.: Octree-based point-cloud
compression. In Symposium on Point-Based Graphics 2006 (July
2006), Botsch M., Chen B., (Eds.), Eurographics.

[SW03] SCHNEIDER J., WESTERMANN R.: Compression do-
main volume rendering. In VIS ’03: Proceedings of the 14th IEEE
Visualization 2003 (VIS’03) (Washington, DC, USA, 2003),
IEEE Computer Society, p. 39.

[SWK07] SCHNABEL R., WAHL R., KLEIN R.: Efficient ransac
for point-cloud shape detection. Computer Graphics Forum 26,
2 (2007), 214–226.

[WGE∗04] WASCHBÜSCH M., GROSS M., EBERHARD F.,
LAMBORAY E., WÜRMLIN S.: Progressive compression of
point-sampled models. In Proceedings of the Eurographics Sym-
posium on Point-Based Graphics (June 2004), pp. 95–102.

[ZPvBG01] ZWICKER M., PFISTER H., VAN BAAR J., GROSS

M.: Surface splatting. In SIGGRAPH ’01: Proceedings of the
28th annual conference on Computer graphics and interactive
techniques (New York, NY, USA, 2001), ACM Press, pp. 371–
378.

c© The Eurographics Association 2007.

128

