
Eurographics Symposium on Point-Based Graphics (2006)
M. Botsch, B. Chen (Editors)

Interactive Out-Of-Core Texturing
with Point-Sampled Textures

Tamy Boubekeur Christophe Schlick

LaBRI - INRIA - CNRS - University of Bordeaux

Abstract
The visualization of huge 3D objects becomes available on common workstations thanks to highly optimized
data-structures and out-of-core frameworks for rendering. However, the editing, and in particular, the tex-
turing of such objects is still a challenging task, since usual methods for optimized rendering are not easily
amenable to interactive modification. In this paper, we introduce the idea of point-sampled textures, and show
how to interactively texture such a huge model at various scales, without any parameterization. An adaptive
in-core point-based approximated geometry is first created by employing an efficient out-of-core point-sampling
algorithm. This simplified geometry is then used for an interactive and multi-scale point-based texturing.
Finally, a feature-preserving kernel is used to convert the point-based model into a global 3D texture which
can be applied back on the initial huge geometry. Our technique thus provides a flexible tool to generate,
edit and apply size-independent textures to a wide range of huge 3D objects thanks to point-based methods.

Example: Starting from a large (8M polygons here) out-of-core geometry (left), our technique generates an adap-
tive in-core point-based approximated geometry (150k samples) that is used for interactive multi-scale texturing
(middle). The so-defined “point-sampled texture” is then upscaled with a feature-preserving kernel, and applied
on the initial geometry (right).

1. Introduction

The interactive texturing of 3D objects is a key step in the
editing of the final object appearance in computer graphics
productions. As usual with interactive tools, the size of the
in-core model must be kept low since the dynamic informa-
tion added during the interactive editing process would break
any highly-optimized data-structures, from on-GPU vertex
buffer objects to out-of-core representations of large objects.

In recent years, meshes of hundred millions of polygons
have become quite common, with the achievement of high-
quality 3D acquisition devices. So it seems quite natural for
the user to be able to edit the appearance (diffuse color, spec-
ular value, etc) of the full resolution model, while preserv-
ing the small geometric features accurately captured by laser
range scanners. Note that even if some scanners provide the

color information during the scanning process, this informa-
tion can rarely be directly exploited since the captured ap-
pearance strongly depends on the lighting conditions. More-
over, the user may want to define different surface attributes
than the acquired colors or to add some informative features
(e.g. try to focus attention on a specific part of an object). For
this purpose, the need for an interactive texturing technique
able to manage gigantic objects has grown and this was the
motivation of the work presented here.

Our approach at a glance: The goal we try to reach is to
interactively texture objects that are too huge to provide an
interactive framerate when loaded and edited directly. We
propose a multi-scale framework, illustrated on Figure 1, es-
sentially composed of three steps:

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

T. Boubekeur and C. Schlick / Interactive Out-Of-Core Texturing with Point-Sampled Textures

Figure 1: Framework for out-of-core interactive texturing.

1. Out-of-core point-sampling: by performing an out-of-
core point-sampling of an initial huge object, we are able
to represent arbitrary topology from various kinds of sur-
face definition (polygonal soups, indexed meshes, un-
organized point clouds), without dealing with any local
structure-preserving operator, usual in mesh representa-
tions

2. Interactive texturing: the attributes of the so-defined in-
core point cloud are then edited with usual point-based
editing tools; this simplified object can be locally re-
fined (from the original large geometry or from the brush)
for specific complex features, taking benefit of the easy
multi-scale insertion of samples in a point cloud

3. Point Sampled Texture: at any time, the in-core textured
point set can be casted to a point-sampled texture (PST)
and either be applied to the original large object through
an out-of-core streaming process or directly used for per-
pixel look-up at rendering time, such as with ray-tracing.

For the sake of simplicity, we will essentially discuss here
the construction of one single color texture. But, as usual
with texturing tools, complex texture may be built incremen-
tally by assigning different textures for different material
channels, to get more complex shading (appearance com-
position with specular, ambient, emissive and/or diffuse tex-
tures, see Figure 8).

The main choice we have done with this framework is to
consider volumetric textures. Using 2D textures would have
required global or piecewise parameterization, a process far
from being simple in the case of large objects. Moreover,
since we propose a multi-scale approach, samples are often
inserted in the in-core point set during the editing, which
would make the construction of a consistent parameteriza-
tion even more complicated. In such a case, dealing with 3D
textures makes it straightforward to compute the color of a
given point, even if it does not lie exactly on the in-core sur-
face. Furthermore, 3D textures easily handle procedural tex-
tures, such as Perlin or Wavelet noise [Per85, CD05], which
offers a large variety of additional effects.

Previous Work: Direct interactive texturing of 3D objects
has been an issue in computer graphics for many years. One
of the first complete framework for interactive 3D painting

was the WYSIWYG painting tool of Hanrahan and Haeberti
[HH90]. Their system allows the user to interactively paint
colors and materials directly on a 3D model, introducing a
simple brush metaphor. The authors were yet pointing the
usefulness of such a system for 3D scanned models.

Recently, the idea that 3D textures could be an interest-
ing alternative to usual 2D textures in a painting tool has
been independently developed by DeBry et al. [gDGPR02]
and Benson and Davis [BD02] who introduced the idea of
octree textures. The main idea is to set a per-node color at
each level of the octree hierarchy and use it to color an ob-
ject embedded in its volume. Note that octree textures may
be interactively constructed or sampled from an existing tex-
ture [LHN05], without requiring any parameterization. An-
other great advantage of octree textures is their local control,
which is not usual with solid textures, that are often globally
defined by some procedural function.

One simple construction of a space-to-color function
from samples has been introduced with the reaction-
diffusion method of Turk [Tur91], who efficiently obtained a
color evaluation at a given location using a simple weighted
average of the neighboring samples, an idea later used in the
Photon Mapping [Jen96]. Several commercial packages pro-
pose 3D brushes for texturing and modeling [Ali06, Rig06,
Pix06] but do not address the problem of applying them on
huge objects.

Another characteristic of our approach is to inten-
sively use point-sampled geometry [PZvBG00, ABCO∗01,
PKKG03]. This permits to take benefit from most of the
point-based tools for surface editing [ZPKG02, AWD∗04].

2. Adaptive Out-of-core Simplification

The typical input of our algorithm is a polygonal soup
[Lin00]. Alternatively, other large object representations can
be used, like indexed meshes, by considering only the list
of vertices, or point clouds (registered data sets from range
scanner without surface reconstruction).

By sampling the original mesh, we are able to accurately
select the resolution of the in-core object in order to target
an interactive framerate, independently of the input model
size. While some efficient out-of-core methods for resam-
pling perform a mesh-to-mesh conversion, we rather think
that, since this in-core object will be used only for interme-
diate processing, a more flexible representation, such as a
point set, is a better choice. Furthermore, according to our
texturing pipeline (see Figure 1), the in-core object will be
used itself for defining a 3D texture. So, we do not want our
final texture function depending of any underlaying surface
topology produced by a given simplification method.

The last reason, but not least, is that the user must keep
the control of the resolution, and be able to locally up-sample
the in-core model from the original large one. In such a case,

c© The Eurographics Association 2006.

T. Boubekeur and C. Schlick / Interactive Out-Of-Core Texturing with Point-Sampled Textures

(a) (b) (c)

Figure 2: Clustering by non-uniform m-grids. (a) The model
is first partitioned in a coarse grid during an out-of-core
streaming pass. (b) Then, a local sub-grid is generated in
intersected cells, with a resolution chosen according to the
local density. (c) Finally, a reduced set of samples is gener-
ated by clustering in a second out-of-core streaming pass.

using a mesh-free representation, such as point sets, makes
the insertion of new samples far more simple and efficient,
while meshes would have required a complex local remesh-
ing step, prone to artifacts.

To fulfil our constraints, we introduce a fast out-of-core
simplification method. Ideally, this algorithm should handle
two user-defined parameters: a target size tuned to ensure
interactive framerate depending on the workstation capaci-
ties, and an adaptivity factor which controls the local density
variation in the final simplified object, useful when the input
large object is non-uniformly sampled.

We compose a new algorithm, somewhere between uni-
form clustering, such as the quadric-based simplification of
Lindstrom [Lin00], and accurate adaptive ones, such as the
octree-based clustering of Schaefer and Warren [SW03]. The
former cannot easily ensure an output size in the case of non
uniformly-sampled surfaces because of the fixed grid reso-
lution, while the latter requires costly processes such as the
pre-ordering of the large mesh and the intensive dynamic up-
date of an in-core octree.

Out approach is based on the idea of multi-grids. A multi-
grid of order m (noted m-grid) is defined as a tree of grids,
where each node carries m3 children, organized in a grid
structure. For instance, a uniform grid of size 2563 can be
expressed either as a 256-grid of depth 1, a 16-grid of depth
2, a 4 grid of depth 4, or as 2-grid of depth 8 (the latter, being
the classical octree). In fact, multi-grids can be decomposed
in two families: uniform multi-grids [CP97] where the value
m is the same for each node, and non-uniform multi-grids,
where the number of children may vary between 0 and m for
each node (see Figure 2). Basically, previous uniform clus-
tering approaches can be seen as instances of a more general
simplification scheme, based on multi-grids. We choose to
use a two-pass algorithm to cluster our huge object into a
non-uniform multi-grid G of depth 2.

First streaming pass: The first pass is performed in or-

der to initialize the first level of G and to estimate, for each
cluster i, the density γi (which is the number of input sam-
ples falling in the cluster i, see Figure 2(a)). As an input, the
user provides the file where the mesh to texture is stored, a
bounding box (i.e. the level 0 of the multi-grid) and a tar-
get size n for the in-core model. If the bounding box is not
known, a preliminary out- of-core streaming pass is required.
The resolution of the level 1 is m3

0 (see Figure 2(a)), with
m0 = 3

√
n. In the worst case of triangles randomly placed in

the bounding box, this heuristic would lead to exactly n in-
tersected clusters. However, our input objects are surfaces,
which means that the number of intersected grid cells grows
rather quadratically than cubically with the resolution. So,
after this first filtering of the object through the memory, n0
cells are intersected with n0 � n (in our tests, the following
upper and lower bounds have been observed quite system-
atically: n1/2 ≤ n0 ≤ n2/3). We call these cells 1-nodes (i.e.
children of the multi-grid root). In order to speed up the re-
maining steps of the algorithm, all the input samples falling
in the same 1-node are stored in a temporary file, attached to
the node (see Figure 1).

Second streaming pass: Our sampling method for the
second level has been inspired by quantification techniques
in image processing (e.g. histogram equalization). For each
1-node i, we estimate a target sub-grid of size ri (see Fig-
ure 2(a)), according to γi and a global user-defined value α.
Actually, we map ri on [n/n0 −α,n/n0 +α] by setting:

ri =
n
n0

+α(
2γi − γmax − γmin

γmax − γmin
)

The value α corresponds to the adaptivy factor: the larger α
is, the higher the γ-variation of ri will be. If α = 0, there is
no adaptivity and ri = n/n0 for all 1-nodes (uniform dis-
tribution assumption); in this case, our algorithm behaves
like the Lindstrom one [Lin00], with the additional benefit
that the high-resolution grid is generated only near the sur-
face thanks to the first pass, which allows higher resolution
for the same amount of memory. We instantiate a sub-grid
of resolution r3/2

i (quadratic heuristic) for each 1-node. The
cells of these sub-grids are called 2-nodes. Then, we per-
form the second streaming pass from the temporary files,
and cluster the samples according to the 2-nodes. At the end
of the streaming process, each 2-node contains a final point-
sample, storing its average position (either simply computed
as the centroid of all the samples clustered in the node, or
by using some quadric based approximation [GH97]), and
optionally, its average normal, that will be used for in-core
texturing (see Figure 2(c)). If there is no normal information
in the input, it can be classically generated by a principal
component analysis [HDD∗92].

This efficient mesh-to-point-sample simplification algo-
rithm reaches the target size specified by the user with less
than 1% of error in all our tested examples, and our exper-
imental results show that the adaptivity does not strongly
influence this result.

c© The Eurographics Association 2006.

T. Boubekeur and C. Schlick / Interactive Out-Of-Core Texturing with Point-Sampled Textures

Figure 3: Multi-scale painting. Left: After having roughly
painted on it, the user selects an area (in blue) of the low-res
sampled object. Right: A local refinement is performed, by
up-sampling the selected area from the original large model.
Newly inserted samples are textured according the current
PST defined by the in-core point set; the user can now paint
smaller features.
3. Interactive multi-scale Texturing

The in-core point set can now be textured using flexible
point-editing tools. We have chosen the PointShop3D soft-
ware [ZPKG02] for defining the per-sample attributes inter-
actively. Among other advantages, this system allows to ap-
ply bitmaps on the point cloud and to smooth-out features, as
well as resampling the sample set according to the resolution
of the applied textures. During the interactive texturing, the
resolution of the in-core model can exhibit a lack of details
for particularly accurate features. In this case, we re-use the
temporary file generated at each 1-node during the sampling
step (see Section 2) rather than streaming the whole original
object, and up-sample the local area that requires more de-
tails. This illustrates the multi-scale behavior of our system:
the user can initialize the texture at a global scale and then re-
fine the model locally, while using the already defined points
for inferring an initial PST for newly added points (see Fig-
ure 3). This construction uses the same point-sampled tex-
ture definition as for final surface coloring at full resolu-
tion, and it is described in the next section. The choice of
point-based surfaces for intermediate representation is here
very important: by avoiding any explicit topology, the local
up-sampling does not require any local remeshing. Figure 3
gives an example of texturing with local up-sampling from
the original large model for adding smaller details:

1. the user first selects the area to up-sample,
2. all 1-nodes of G are tested against this selection,
3. the sub-grids of intersected 1-nodes are refined,
4. the files associated to these nodes are streamed through

these new sub-grids.

Alternatively, the user may specify to resample at the origi-
nal resolution, and so all the samples of the files associated
to the intersected 1-nodes are kept. The selection is removed
and the set of samples obtained are inserted in the active
point cloud and colored by the current PST, so far defined
by in-core samples (see next section). The resolution of the
in-core point cloud can also be increased in order to fit the
resolution of the brush one [ZPKG02, AWD∗04]. Figure 4
shows how a bitmap can be inserted in our PST at its exact
resolution with this local up-sampling.

At any time, if the in-core model becomes itself too large
for maintaining an interactive frame-rate, a down-sampling
is performed, again on a per-1-node basis, by replacing
the Least Recently Used (LRU) area by a unique sample,
and storing the edited piece of surface on the disk. Lat-
ter, if the user comes back to this part of the object, the
area is reloaded, and an LRU down-sampling is again per-
formed until reaching interactivity. In pratice, it can be use-
ful to maintain a ring of 1-nodes at current resolution around
the currently edited piece of surface (i.e. 1-neighborhood
safe, whatever the LRU selection). This simple LRU down-
sampling rule makes the PST itself scalable.

4. Non-Uniform Point-Sampled Textures

Once the point set texture has been generated, the question
is: “How to extrapolate the set of samples in order to use it
at a higher definition?”. Actually, this problem frequently
arises in the field of surface reconstruction. In particular,
variational implicit surfaces methods are ubiquitously rec-
ognized as quality approximation methods for a set of sam-
ples with attributes [TO02]. Usually, an iso-surface is finally
extracted after fitting a function f :

� 3 → �
to the set of

samples. In our case, the problem is simpler as we do not
need iso-surface extraction, and just keep the function defin-
ing the implicit surface as a 3D texture.

Several function basis are available for filling the space
with point-sampled attributes. Radial Basis Functions or
Moving Least Squares [AGP∗04] provide smooth 3D fields
and can be evaluated locally. Unfortunately, in our case, the
final evaluation of the function may potentially be done sev-
eral hundred million times for either coloring the original
file or directly shading pixels during ray tracing for instance.
Thus, we rather adopt a simpler and more efficient approach
that takes advantage of a very important feature of our PST:
contrary to implicit surfaces used for geometric reconstruc-
tion, we do not need a signed value. In this case, a variation
of the seminal idea of Turk for pattern creation [Tur91] can
be adapted to our more general problem.

Figure 4: Topology-free painting with up-sampling. Left:
The integration of bitmaps in the low resolution model (100k
samples) can be done either by coloring existing surfels (left
rose) or locally up-sampling the model to reach the brush
resolution (right rose). Right: The high resolution mesh (7M
polygons) textured with the edited point set. Note the dif-
ference in sharpness between the two roses, when the up-
sampling is performed.

c© The Eurographics Association 2006.

T. Boubekeur and C. Schlick / Interactive Out-Of-Core Texturing with Point-Sampled Textures

(a) (b) k = 5 (c) k = 16

Figure 5: Point-sampled texture filtering. (a) A simple point-
sampled texture. (b,c) Color texturing on a human face. The
k-neighborhood used for space-filling intuitively drives the
smoothness of the PST.

We define a point-sampled function fS over the point
set S as follows: for each point p, fS(p) should return the
corresponding texture attribute (usually color). Let Sp =
{s1, ...,sk} the k nearest samples of p. Each sample si han-
dles a position pi and an attribute ci. We define the value
fS(p) of the PST as:

fS(p) =
∑k

i=1 ωp(pi) ci

∑k
i=1 ωp(pi)

Note that the size of the k-neighborhood influences the sup-
port radius of the reconstruction: a large value of k will
smooth out the so-defined attribute function and can be used
as an intuitive global filtering parameter for users (see Fig-
ure 5). In our implementation, k is user-defined. The func-
tion ωp(pi) is a decay function that controls the influence
of the k-neighborhood of point p. A typical choice for ω is
a Gaussian function, as in the Confetti system [PS04]. Nev-
ertheless, in the context of large object texturing, selecting
a less computationally intensive function is often interest-
ing. We choose the standard uniform cubic hermite polyno-
mial, usually recognized as a good and fast approximation
of Gaussian-based kernels:

∀t ∈ [0,1] h(t) = 1−3t2 +2t3

The kernel function ωp(pi) uses the previous polynomial
simply adapted to Sp, and is hence defined as:

ωp(pi) := h
(

|p− pi|
maxk(|p− pk|)

)

Note that the kernel function is extremely inexpensive, but
the feature preserving control by k may filter out some high
frequency details present in the texture. When this is an is-
sue, singular weight kernels (i.e., Dirac behaviour near zero)
can be used. Alternative feature-preserving kernels may also
be chosen among the huge set of kernels developped over
the years, in the image processing community.

Texture Antialiasing: The up-scaling of the PST does
not exhibit artifacts thanks to the smooth filtering provided
by the kernel function. However, in the case of ray-tracing,
when the texture is directly used for evaluating the color of a
pixel, the down-scaling of the PST may lead to aliasing. Us-

ing cone tracing instead of ray tracing is a common (but ex-
pensive) solution to prevent such aliasing. In our case, cone
intersection can be speeded up by replacing the evaluation of
fS(p) by the average of the samples falling in the sphere Φ,
centered at the intersection point. The diameter of Φ is cho-
sen as the object-space size of the pixel at the intersection
point. This special evaluation is performed as soon as more
than one ray sample intersects Φ.

5. Implementation and Results

We have implemented our framework as a plug-in for
PointShop 3D. In all our tests, we use a PiV Intel 2.4GHz
with 512 MB of memory and an UDMA hard-drive.

Implementation: When PST look-up is mandatory (e.g.
refinement from temporary files or final texturing of the orig-
inal large model), a kD-Tree is built over the current in-
core point-set. This structure allows a fast k-neighborhood
query for finding Sp. The typical size of our in-core point set
is between 100k (after out-of-core simplification) and 500k
(worst case observed after all the local refinements involved
in a whole texturing session). This induces a very fast gen-
eration of such a tree (less than one second in all our tests).
Our m-grid resampling scheme is implemented on a pointer-
based tree, where each node carries a reference to its children
nodes, as well as an average texture value. Note that only
the 1-nodes (i.e. root and its children) are stored in memory
during texturing (local sub-grids are instanced only at refine-
ment time). Most steps of the algorithm (second streaming
pass during sampling, interactive refinement during textur-
ing, and feedback of the texture on the initial model) are
dealing with the set of temporary files generated at loading
time (see Figure 1) and are implemented with multi-threads.
This allows to take benefit from multi-core CPUs and multi-
CPUs that are more and more present on common worksta-
tions.

Performance and Analysis: The feedback on the high-
resolution object is really important when texturing its low-
resolution version. So, a key property of an out-of-core tex-
turing method is to be able to efficiently apply the gener-
ated texture on the initial object, in order to offer the user
a fast quality control of his work. Table 1(a) gives the sam-
pling time for different models. Globally, our simple sam-
pling scheme is limited by the hard-drive when reading the
data (about 60% of the total processing time), and not by
any update of data structure, since nodes are created stati-
cally, and never removed or collapsed during the interactive
process [SW03].

While our simple density-based filtering does not bound
curvature error in the simplification, we still obtain better
results than the Lindstrom algorithm [Lin00], for a com-
putational cost which is dramatically reduced compared to
the arbitrary depth octree technique of Schaefer and War-
ren [SW03] (see Section 5). Note that a bounded curvature

c© The Eurographics Association 2006.

T. Boubekeur and C. Schlick / Interactive Out-Of-Core Texturing with Point-Sampled Textures

error is possible if wished by the user, by simply employing
a third out-of-core streaming pass. However, since we dot
not perform an extreme simplification, this is not necessary.

Globally, for the same number of final samples, our ex-
perimental results on the different models used in this pa-
per show that our approach is about two times slower than
the grid method of Lindstrom [Lin00] but provides much
nicer results. Note that the Lindstrom method is not easily
amenable to local interactive refinements, intensively used
in our system. Similarly, our approach is about five times
faster than the octree-based method of Schaefer and War-
ren [SW03].

Models Tri. Time
Lion 6.5M 3.85s

Raptor 8M 4.69s
David 56M 16.5s

StMatt. 372M 190.5s
Atlas 500M 276.9s

(a)

Samples Evaluations
4M 28M

4504 2.0s 15.1s
15216 3.7s 21.7s
49482 4.9s 29.1s
146686 5.7s 35.5s

(b)

Table 1: (a) Timings for out-of-core simplification. The tar-
get size was set to 100k point samples, and was reached in
all cases with less than 1% of error. (b) Texture look-up tim-
ings for a given number of evaluations over a sampling at a
given resolution.

Table 1(b) exhibits the look-up time with a target large
model at two different resolutions. Obviously, the average
look-up time is independent of the input model size. But
more surprisingly, it appears that the size of the internal
point-set does not strongly influence the average look-up
time. Actually, in practice, the kD-Tree query remains a low-
cost operation for the size of our typical in-core point sets.
This can be explained by the fact that large models already
contain fine features, more particularly in the normal field.
Thus, in practice, users will not have to “trick” the texture
for obtaining a more complex visual effect when painting,
and will only focus on surface color at a different resolution
as mentioned by DeBry et al. [gDGPR02]. In other words, a
large part of what we usually call “visual detail” is already
present in the huge geometry of input objects (see Figure 8).

Comparison: To our knowledge, no system has been pro-
posed for interactive painting on huge objects that do not fit
into memory. Nevertheless, among the contributions of this
paper, PST can easily be compared to octree textures. Basi-
cally, the main advantage of PST over octree textures was to
allow the user to interactively refine directly from the orig-
inal surface, without being constrained to the grid topology
induced by octrees (See Figure 4). Simple point sets allow
greater flexibility and very quick variation in the density of
sampling (which are very frequent when the user wants to
texture a given area more accurately [gDGPR02]) where a
very deep octree would have been necessary. Last but not
least, octree textures cannot represent efficiently fine color
features which are not axis-aligned. However, the uniform

structure of octree textures allows efficient on-GPU imple-
mentations [LHN05], which is more difficult for our non-
uniform point-sampled textures. Of course, in such a situa-
tion, our PST can be straightforwardly resampled in an oc-
tree texture for real-time shading. But, we rather focus on
very large objects, for which the color is usually encoded in
the data-structure, on a per-sample basis, for efficient render-
ing [RL00, DVS03, GM05]. For instance, objects shown on
Figure 6 and 7, rendered with QSplat, have been generated
from large polygonal meshes and textured on a per-vertex
basis.

6. Conclusion and Current Work
We have proposed a new simple method for interactive tex-
turing of large objects. Our method produces a 3D texture
function, interactively defined over a set of samples of the
original large object. By introducing point-sampled textures
as flexible texture definitions, our framework proposes a
novel simple and multi-scale texturing system, and can be ei-
ther used for fast rough painting or precise interactive textur-
ing of large objects. Produced textures are output-sensitive
and do not depend of the input large object size. All exist-
ing and future point-based texturing tools can be used for
painting the models. Convincing results have been obtained
either for coloring large meshes in the context of real-time
visualization (see Figure 6 and 7) or defining more complex
shading for high-end computer-graphics (Figure 8).

The major drawback of our system is also its strength:
this is a parameterization free tool for texturing large ob-
jects, which means flexibility and efficiency as demonstrated
throughout this paper, but which also implies that its prac-
tice is slightly different from usual 2D painting softwares
[Ado06] and requires for artists to change their habits. This
is also the reason why 3D painting is still an active research
field: retrieving in 3D the accuracy of popular 2D painting
packages is a challenge that would also induce new inter-
action metaphors. Future work includes the extension to in-
teractive multi-scale freeform modeling of gigantic objects,
still using points as an intermediate representation. We also
plane to investigate appearance multiresolution in the PST
itself as well as on-the-fly spectral analysis of the PST.

Acknowledgments We thank the Computer Graphics
Group of ETH Zurich for providing PointShop 3D, and the
Digital Michelangelo Project and the Aim@Shape network
for providing models (Aim@Shape models are modified).

References
[ABCO∗01] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN S., LEVIN D., SILVA

C. T.: Point set surfaces. IEEE Visualization (2001).

[Ado06] ADOBE: Photoshop, 2006.

[AGP∗04] ALEXA M., GROSS M., PAULY M., PFISTER H., STAMMINGER M.,
ZWICKER M.: Point-based computer graphics. ACM SIGGRAPH Course (2004).

[Ali06] ALIASWAVEFRONT: Maya, 2006.

[AWD∗04] ADAMS B., WICKE M., DUTRÉ P., GROSS M., PAULY M., TESCHNER

M.: Interactive 3d painting on point-sampled objects. In Point-Based Graphics (2004).

[BD02] BENSON D., DAVIS J.: Octree textures. In ACM SIGGRAPH (2002).

[CD05] COOK R. L., DEROSE T.: Wavelet noise. In ACM SIGGRAPH (2005).

c© The Eurographics Association 2006.

T. Boubekeur and C. Schlick / Interactive Out-Of-Core Texturing with Point-Sampled Textures

[CP97] CAZALS F., PUECH C.: Bucket-like space partitioning data structures with
applications to ray-tracing. In ACM Symposium on Computational Geometry (1997).

[DVS03] DACHSBACHER C., VOGELGSANG C., STAMMINGER M.: Sequential point
trees. ACM SIGGRAPH (2003).

[gDGPR02] (GRUE) DEBRY D., GIBBS J., PETTY D. D., ROBINS N.: Painting and
rendering textures on unparameterized models. In ACM SIGGRAPH (2002).

[GH97] GARLAND M., HECKBERT P. S.: Surface simplification using quadric error
metrics. In ACM Siggraph (1997).

[GM05] GOBBETTI E., MARTON F.: Far voxels. ACM SIGGRAPH (2005).

[HDD∗92] HOPPE H., DEROSE T., DUCHAMP T., MCDONALD J., STUETZLE W.:
Surface reconstruction from unorganized points. In ACM SIGGRAPH (1992).

[HH90] HANRAHAN P., HAEBERLI P.: Direct wysiwyg painting and texturing on 3d
shapes. In ACM SIGGRAPH (1990).

[Jen96] JENSEN H. W.: Global illumination using photon maps. Rendering Techniques
(1996).

[LHN05] LEFEBVRE S., HORNUS S., NEYRET F.: GPU Gem’s 2: Octree Textures on
the GPU. 2005.

[Lin00] LINDSTROM P.: Out-of-core simplification of large polygonal models. In ACM
SIGGRAPH (2000).

[Per85] PERLIN K.: An image synthesizer. In ACM SIGGRAPH (1985).

[Pix06] PIXOLOGIC: Z brush, 2006.

[PKKG03] PAULY M., KEISER R., KOBBELT L. P., GROSS M.: Shape modeling with
point-sampled geometry. ACM SIGGRAPH (2003).

[PS04] PAJAROLA R., SAINZ M.: Confetti: Object-space point blending and splatting.
IEEE TVCG (2004).

[PZvBG00] PFISTER H., ZWICKER M., VAN BAAR J., GROSS M.: Surfels: Surface
elements as rendering primitives. In ACM SIGGRAPH (2000).

[Rig06] RIGHTHEMISPHERE: Deep paint 3d, 2006.

[RL00] RUSINKIEWICZ S., LEVOY M.: Qsplat: a multiresolution point rendering sys-
tem for large meshes. ACM SIGGRAPH (2000).

[SW03] SCHAEFER S., WARREN J.: Adaptive vertex clustering using octrees. In Pro-
ceedings of SIAM Geometric Design and Computing (2003).

[TO02] TURK G., O’BRIEN J. F.: Implicit surfaces that interpolate. In Proceedings of
Shape Modeling International (2002).

[Tur91] TURK G.: Generating textures on arbitrary surfaces using reaction-diffusion. In
ACM SIGGRAPH (1991).

[ZPKG02] ZWICKER M., PAULY M., KNOLL O., GROSS M.: Pointshop 3d: An inter-
active system for point-based surface editing. In ACM SIGGRAPH (2002).

(a) David (56M poly-
gons)

(b) 200k samples
for interactive
texturing

(c) 56M textured poly-
gons

Figure 6: Interactive multi-scale texturing of the David
model. (a) Original large mesh. (b) Interactive multi-scale
texturing with our system. (c) Application of the PST to the
original model and real-time visualization (QSplat).

(a) Atlas 500M poly-
gons

(b) 275k samples for
interactive texturing

(c) 500M textured
polygons

Figure 7: Recoloring Michelangelo’s Atlas. (a) Original un-
colored large mesh. (b) Interactive multi-scale texturing with
our system, using several photos from the original statues
and a sample set of stone textures. (c) Application of the
PST to the original large model and real-time out-of-core
visualization.

Figure 8: Point-sampled texture for high-quality rendering.
Top left: original mesh (6.5M polygons). Bottom left: diffuse
and specular interactive multi-scale texturing with our sys-
tem (50k point samples). Right: offline rendering of the orig-
inal mesh (6.5M textured polygons) with our point-sampled
textures (diffuse and specular component).

c© The Eurographics Association 2006.

