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Abstract

We present a streaming algorithm for reconstructing closed surfaces from large non-uniform point sets based on
a geometric convection technique. Assuming that the sample points are organized into slices stacked along one
coordinate axis, a triangle mesh can be efficiently reconstructed in a streamable layout with a controlled memory
footprint. Our algorithm associates a streaming 3D Delaunay triangulation data-structure with a multilayer ver-
sion of the geometric convection algorithm. Our method can process millions of sample points at the rate of 50k
points per minute with 350 MB of main memory.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

Keywords: Streaming surface reconstruction, streaming Delaunay triangulation, geometric convection.

1. Introduction
We consider the problem of reconstructing mesh surfaces
from large sets of sample points using a Delaunay triangu-
lation. This geometric data-structure has proved to be par-
ticularly well-suited for devising general and efficient 3D
surface reconstruction algorithms [Dey04, CG06]. Most of
them consider constructing the Delaunay triangulation of
the whole input point set as a preprocessing step. Although
many efficient three-dimensional Delaunay triangulation al-
gorithms have been proposed [LJ05], dealing with data sets
larger than a few millions points remains a challenging is-
sue, mainly because their design is sensitive to the available
memory. It is therefore tempting to discard the global De-
launay triangulation and to resort to more localized data-
structures [BMR∗99, GKS00, DGH01, OBS05]. However,
this can be done to the detriment of robustness, especially
when dealing with non-uniform point samples, and may in-
volve stitching and coherent orientation issues that need to
be addressed at global scale. In this paper, we investigate
a scalable Delaunay-based streaming surface reconstruction
algorithm that overrides these limitations.

A streaming algorithm processes a data stream on-the-fly
using a memory buffer whose size is a fraction of the length
of the stream. Streaming algorithms for large-scale geom-
etry processing have attracted a lot of attention in the past
few years [WK03, ILGS03, ILS05, Paj05, IL05]. They have
proved to be more efficient than external memory algorithms
for handling massive data by minimizing online disk access

operations. The common basic idea of streaming geomet-
ric algorithms is to exploit the spatial coherence of the data
stream, which is the ability for close geometric entities in
space to have close representations in the stream. The suc-
cess of this approach therefore depends on an initial organi-
zation of the input data, that may be more or less advanced
and easy to obtain [IL05].

A streaming approach for constructing Delaunay triangu-
lations of massive point sets in 2D and 3D has been studied
in a recent paper by Isenburg et al. [ILSS06]. Their algo-
rithm relies on a concept of spatial finalization. Space is par-
titioned into regions and each point is associated with the
region in which it falls. Simplices whose circumsphere lies
entirely in regions where all points have been read can be
written to disk immediately and removed from memory. Pro-
vided the stream has sufficient spatial coherence, and there
are not too large circumspheres in the resulting triangula-
tion, the proposed algorithm is capable of processing gigan-
tic point sets with a very low memory footprint, which makes
it suitable for terrain and volumetric data. However, if the
points are distributed on a curve or on a surface, large cir-
cumspheres may delay the certification of simplices as De-
launay and cause performance to collapse.

Certifying tetrahedra as Delaunay appears as the major
bottleneck for constructing the Delaunay triangulation of a
stream of points sampled from a surface on-the-fly. Since the
amount of memory required depends on the surface geome-
try, performance cannot be easily increased through simple
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Figure 1: In (a): Streaming surface reconstruction of a vase model (IGEA model drilled by a cylinder). The sampled surface
is shown on the left. The streaming reconstruction process has 6 steps illustrated on the right, corresponding to the successive
processing of 6 data slices. The concave opening illustrates the ability of the algorithm to adapt to complex topology in each
slice, e.g. with internal surface parts. In (b): Result of a streaming reconstruction of the ASIAN DRAGON model (3.6M points,
100k points per slice, 100 minutes, 350 MB RAM), with the successive slices depicted with alternating colors.

data reorganization. In the context of Delaunay-based sur-
face reconstruction however, one important point is that con-
nectivity relations between points that lie far away are not
necessarily relevant and may be broken, as done in the Crust
algorithm [Ame99].

Our contribution is a streaming surface reconstruction al-
gorithm based on a streaming Delaunay triangulation data-
structure and an adaptation of the geometric convection tech-
nique [Cha03]. The output is a streamable triangulated sur-
face interpolating the input points that is ideally the same
as that would be obtained from the original geometric con-
vection algorithm. One key idea is to introduce extra points
in the triangulation to certify tetrahedra as globally Delau-
nay with a control over the number of data points in main
memory. The input point set is partitioned into slices stacked
along one coordinate axis that are successively loaded into
memory. The streaming surface reconstruction algorithm
alternates the incremental Delaunay triangulation of the
loaded data, a Delaunay refinement process that splits Delau-
nay tetrahedra having too large circumspheres, a local sur-
face reconstruction step using a multilayer geometric con-
vection algorithm, and a memory deallocation step for the
geometric elements that will be no longer accessed.

Our method makes it possible to reconstruct surfaces from
large non-uniform point point sets sampled from closed sur-
faces with a modest memory footprint. The only requirement
is that the data stream is organized into slices with a fixed
maximum number of sample points in each slice, and whose
height is larger than the data resolution. The algorithm in-
volves only one reading pass on the data stream, that is not
required to be complete to start the reconstruction process.
The triangle mesh is reconstructed directly in a streamable
layout, and can be piped to a streaming mesh processor. The
reconstruction process involves no stitching, nor coherent
orientation issues by maintaining a single oriented surface
all along it.

We demonstrate the effectiveness of our method on vari-
ous detailed scanned statues, including preprocessed as well
as raw data. Our algorithm inherits the robustness proper-
ties of the original geometric convection algorithm [Cha03],
that is, it is capable of processing raw scanner data with rea-

sonable measurement noise or small misalignments between
range scans. Note that the described algorithm performs no
subsampling, nor resampling. We concentrate on the ideas
that underpin a streaming approach to the problem of sur-
face reconstruction. Redundancy, noise, and undersampling
issues will be addressed in future work. A current limitation
of the streaming version is that undersampled or unsampled
areas may yield incoherent facet orientations.

2. Geometric convection
In this section, we briefly review the geometric convection
algorithm as described by Chaine in [Cha03]. This algorithm
serves as the basis for our streaming surface reconstruction
algorithm.

The geometric convection algorithm is a surface recon-
struction algorithm that proceeds by filtering the Delaunay
triangulation of an input point set sampled from a closed
smooth surface [CG06]. This method has some similarities
with the Wrap [Ede02] and Flow Complex [GJ03] tech-
niques. The filtration is guided by a convection scheme re-
lated to level set methods [ZOF01] that consists in shrink-
ing an enclosing surface under the influence of the gradient
field of the distance function to the closest sample point. This
process results in a closed, oriented triangulated surface em-
bedded in the Delaunay triangulation of the point set, and
characterized by an oriented Gabriel property [Cha03]. This
means that for every facet, the diametral half-sphere oriented
inside the surface, or Gabriel half-sphere, contains no sam-
ple point. The result has always manifold topology, but it is
not necessarily manifold from a geometric point of view if
the input point set is sampled from a surface with boundary
or exhibits undersampling. Some parts can share common
geometry, while remaining topologically independent.

Let P ⊂ R3 denote the input point set and Σ̂ the surface
in convection. The convection scheme can be completely
achieved in the Delaunay triangulation of P by removing the
facets that do not meet the oriented Gabriel property through
an iterative sculpting process that starts from the convex
hull. The shrinking surface Σ̂ is a closed triangulated sur-
face that is maintained at every step, all the facets oriented
inward. Two facets with opposite orientations can meet –
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Figure 2: Geometric convection towards a 2D point set. In (a), an enclosing curve is initialized to the convex hull of the point
set. The current edge, enclosed by a non-empty Gabriel half-sphere, forms a Delaunay triangle (dark grey) with the square
point. This triangle becomes external, the curve is updated (b), and it continues to shrink. In (c), an edge is found to block a
pocket; it will be forced. The final result is shown in (d) with some empty Gabriel half-spheres.

they are said to be coupled. Coupled facets can collapse lo-
cally, which may change the topology of Σ̂. A local study (or
a more global solution) is required to dig into pockets that
may locally block the convection scheme, e.g. based on lo-
cal granularity. The algorithm is illustrated on a 2D point set
in Figure 2. The order in which the facets of the evolving
surface are processed does not influence the result. This is
a reason why this algorithm is a good candidate to be trans-
lated into a streaming version.

3. Streaming surface reconstruction
The input to our algorithm is a 3D point stream P sampled
from a smooth closed surface Σ. We suppose that P is suf-
ficiently dense in the sense it forms an ε-sample of Σ for
some sufficiently small constant ε [Ame99]. Our streaming
surface reconstruction algorithm proceeds like shrink wrap-
ping P using a single global surface subject to a convection
process. Our goal is to make the reconstruction to evolve
through one data slice at a time, to certify all surface final
facets in that slice, to write them on disk, and then to delete
the traversed part of the triangulation before proceeding with
the next slice.

Point stream P is required to be organized into a stack of
slices S0, S1, . . . , Sn sorted along one coordinate axis (usu-
ally the direction of the greatest dimension). Each slice may
contain an arbitrary number of points, that do not need to be
ordered. It is also not required to know the number of slices
in advance. If P does not fit this organization, but has suffi-
cient spatial coherence along one coordinate axis, one way
to obtain it at low cost is to perform some kind of on-the-
fly low precision sorting in the spirit of the work by Isen-
burg et al. [ILSS06]. Without loss of generality, slice order-
ing will be assumed along the z axis throughout the paper,
called the sweep direction. Any slice Si is enclosed in a rect-
angular box with extents along the x and y directions fixed to
maximum values common to all slices. These extents have
to be larger than those of the smallest slice so that the boxes
do not interact with the data. For instance, the maximum ex-
tents can be related to the size of the volume in which the
data have been sampled, or they can be related to the preci-
sion of the arithmetic used to represent the point coordinates.
In the following, Si will indifferently refer to a slice and its

enclosing box. The bounding box of the slice set will be de-
noted as B.

During the streaming reconstruction process, the Delau-
nay triangulation of the sample points is built incrementally,
starting from the lower corners of S0. Each slice Si is read
in turn to be reconstructed, with i increasing. Together with
Si, slices Si+1, Si+2 and Si+3 are also loaded, the reason for
this will be explained later. Starting from the reconstruction
result on slice Si−1 for i > 0, the goal is to extend the re-
construction of the surface coherently through Si. A prelim-
inary triangulation refinement step is carried out to ensure
that this reconstructed part of the surface will be preserved
when loading subsequent slices and updating the triangula-
tion. At the end of the refinement process, the reconstruction
can be safely pursued on Si, and the result is piped to the
output mesh file. The explored tetrahedra, except those sup-
porting the interface to the non-visited tetrahedra, are then
deleted from the triangulation before the process is iterated
on the next slice.

In the following paragraphs, we describe the streaming
Delaunay triangulation data-structure and the reconstruction
algorithm in detail. Since the proposed algorithm is also
valid in two dimensions, a supporting illustration for a sam-
pled planar curve is provided in Fig. 8.

3.1. Streaming Delaunay triangulation
A tetrahedron is said to be in conflict with a point p if p is
contained in its circumsphere. At a given time, a tetrahedon
is said to be final if it cannot be in conflict with any further
inserted point. A subset of tetrahedra of the triangulation is
said to be finalized if all are final. Suppose that we have suc-
cessively loaded and triangulated slices S0, S1, . . . , Sk, with
k < n. Reconstructing a coherent surface using geometric
convection requires that every tetrahedron to be traversed by
the shrinking surface is certified as final. Let t denote a tetra-
hedron with a vertex p in ∪k

i=0Si. If the circumsphere of t
does not overlap Sk+1, then t is final. Otherwise, there is no
known upper bound on the number of slices that still have
to be loaded before t is certified. To make the reconstruc-
tion process possible while controlling the number of loaded
slices, our strategy consists in computing and inserting ex-
tra points in the triangulation through a Delaunay refinement
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process, so that the set of tetrahedra intersecting a target slice
can be finalized, and the extra points are far from the sam-
pled surface in this slice. Before loading a new slice, extra
points falling above the loaded slices are removed to prevent
them from interfering with the reconstruction result. Final-
ized tetrahedra are preserved under these extra point removal
steps.

After a detailed description of the Delaunay refinement
process, we will demonstrate that the point insertion and re-
moval mechanism permits to finalize the set of tetrahedra at
a target slice, and therefore that it is possible to perform the
surface reconstruction process in a streaming fashion using
this data-structure. The conditions under which an approxi-
mation of the sampled surface remains available as a subset
of the streaming triangulation are discussed in an appendix.

Delaunay refinement process
The iterative slice loading and Delaunay refinement process
aims at maintaining a Delaunay triangulation such that at the
beginning of step i ≥ 0, all tetrahedra having one vertex in
∪i−1

k=0Sk are certified as final. Such a triangulation is said to
be finalized below Si.

At the beginning (Step 0), the data in slices S0, S1 and S2
are loaded in memory, and triangulated. The reason why we
need to have three slices loaded at a time will become clear
in this section. Slice S3 is also loaded to reduce the number
of extra points required, since some points in S3 will natu-
rally act as extra points. The resulting triangulation is ob-
viously finalized below S0, since ∪i−1

k=0Sk is empty. Now at
Step i, assume that slices S0, . . . , Si+3 have been loaded and
inserted in the current triangulation, that is supposed to be
finalized below Si. We explain how the refinement process is
locally performed in order to certify every tetrahedron hav-
ing its lowest vertex in Si as final. Such a tetrahedron is said
to belong to slice Si. The process iteratively inserts tetrahe-
dra circumcenters in order to discard the tetrahedra that do
not fulfill the following circumsphere-slice overlapping con-
dition at both slices Si and Si+1.

Definition A tetrahedron t is said to be encroached by a
slice Sk if the circumsphere of t overlaps Sk.

Condition (Circumsphere-slice overlapping at Sk) Let t
denote a tetrahedron such that Sk is the lowest slice that en-
croaches t. Then t meets the circumsphere-slice overlapping
condition at Sk if t is not encroached by Sk+2.

The refinement process restricted to slices Si and Si+1 thus
guarantees that every tetrahedron circumsphere that overlaps
Si or Si+1 is not astride more than two slices. This condition
is required to certify Si tetrahedra as final. Indeed, some cir-
cumcenters of Si+1 tetrahedra to be refined can conflict with
Si tetrahedra that satisfy the circumsphere-slice overlapping
condition at Si, see Fig. 3(a) for an illustration. The refine-
ment on Si necessitates loading Si and Si+1, and the refine-
ment on Si+1 also needs Si+2, hence the necessity to load
at least three slices at a time. Fig. 3(b) shows the different

Si

Si+1

Si+2

(a) (b)

Si

Si+1

Si+2

Si+3

Figure 3: Configuration illustrating the necessity to load
at least three slices at a time (a), and the different types
of authorized tetrahedra circumspheres (b) when processing
slices Si and Si+1 for finalization of Si tetrahedra.

kinds of authorized circumspheres that may result from the
refinement process.

The algorithm refines the tetrahedra that do not satisfy the
circumsphere-slice overlapping condition, called bad tetra-
hedra, by adding their circumcenters as vertices. Further-
more, the algorithm guarantees that no extra point is inserted
outside the bounding box B. The detailed refinement rule can
be stated as follows.

Rule If there is a bad tetrahedron t:
compute the circumcenter ct of t;
if ct is outside B then

let f denote a facet of t visible by ct ;
compute the circumcenter c f of f ;
if c f is outside B then

let e denote the edge of f visible by c f ;
compute the midpoint ce of e;
insert ce;

else
insert c f ;

end if
else

insert ct ;
end if

This algorithm is derived from the classic Delaunay refine-
ment algorithm proposed by Shewchuk [She97]. The ele-
ments of the bounding box (vertices, segments, and faces)
act as input constraints together with the sample points. We
have simplified it to match our specific target conditions and
take the particular geometric nature of our constraints into
account. In practice, all tetrahedra in Si and Si+1 are pushed
into a priority queue. The tetrahedron with the biggest cir-
cumsphere is first processed. This optimizes their spatial dis-
tribution and contributes to less extra point insertions.

Extra points are constrained to stay on, or inside the
bounding box, to ensure that the convex hull of the points is
never altered, which is required by the surface reconstruction
algorithm. This aspect will be highlighted in the next section.
The presented refinement algorithm also ensures that every
extra point is inserted as far as possible from the loaded data
points. Some extra points may however fall in the vicinity
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of data points to be loaded later on. This is the reason why
before loading Si+4, all extra points outside ∪i+3

k=0Sk are re-
moved from the triangulation in a dynamic fashion [DT03].
The removed vertices are necessarily incident to non-final
tetrahedra. This vertex removal step is therefore guaranteed
not to interfere with the finalized part of the triangulation
at Si. New tetrahedra with too large circumspheres are dis-
carded at the time of the next refinement process.

Finalization guarantee and recurrence
Below we demonstrate that the triangulation resulting from
the Delaunay refinement step restricted to Si and Si+1
matches the finalization requirements for Si tetrahedra, and
extends to the next slices.

Lemma After the refinement step restricted to Si and Si+1,
every tetrahedron that belongs to Si is certified as final. This
implies that after having loaded Si+4 at Step i + 1, the trian-
gulation is finalized below Si+1.

Proof Before Si+4 is loaded, extra points located above Si+3
are removed from the triangulation. The previous refinement
steps ensure that the removed points cannot be vertices of Si
nor Si+1 tetrahedra. The latter are therefore preserved under
this extra point removal step. Similarly, Si and Si+1 tetrahe-
dra are preserved when the data points in Si+4 are loaded,
this is guaranteed by the fact that they are not encroached by
Si+4. Problems could arise from the refinement step follow-
ing the loading of Si+4. However, the lowest slice that en-
croaches tetrahedra to be refined is Si+2, which means that
the lowest slice for extra point insertions is Si+2. These inser-
tions can break some Si+1 tetrahedra encroached by Si+2, but
new Si+1 tetrahedra resulting from these insertions meet the
circumsphere-slice overlapping condition so that their cir-
cumcenter will not be inserted in turn. As a consequence,
Si tetrahedra are preserved by the refinement step that fol-
lows the loading of Si+4. The same argument runs after the
loading of Si+k, k ≥ 4, at Step i+ k−3. �

This result ensures that it will be possible to run the sur-
face reconstruction process throughout the successive slices
whose tetrahedra have been certified as final. Furthermore,
the geometric elements of these tetrahedra can be entirely re-
moved from memory afterwards with the certainty that they
will not be accessed later on.

3.2. Reconstruction step
Now that we have an appropriate streaming Delaunay data-
structure, we take a look into the surface reconstruction pro-
cess. In a stream processing context, the basic geometric
convection algorithm is not directly practicable. Folds in the
sampled surface astride several slices indeed deserve spe-
cial care (Fig. 4). If the standard convection process was
run on such a data set, then it could be required to load the
same slice several times. The sliding window consisting of
the slices in memory could translate both forward and back-
ward to follow the shrinking surface throughout the cavities

of the sampled surface, which is inappropriate in a stream-
ing framework. When reconstructing the surface in a par-
ticular slice, we address this issue by locally running the
convection process on the successive encountered parts of
the surface like an onion peeling process through a succes-
sion of convection levels (Fig. 5). Each convection level is
associated with an index to remember the rank at which it
has been run. The first external level convection is indexed 0
and the convection of level k + 1 begins where the convec-
tion of level k has stabilized. Depending on a surface layer is
reached from the outside or from the inside by the shrinking
surface, the convection process is labelled either external,
with an even level index, or internal, with an odd level in-
dex. The reconstruction process therefore alternates external
and internal convections until an empty result is obtained.
This also makes it possible to discover voids, which can be
useful e.g. with tomography data.

In the following paragraphs, we explain how the surface is
first initialized and how its evolution is controlled through-
out a slice.

Surface initialization Once all S0 tetrahedra are certified
as final, an external shrinking surface Σ̂ is initialized on the

v∞ Result edge
Interface edge

Figure 4: The standard convection process applied to a 2D
point set sampled from a closed curve folded astride sev-
eral slices. Some parts of the curve can only be discovered if
some slices are visited twice.

v∞ Result edge

External interface edge
Internal interface edge

Figure 5: The multilayer convection process applied to the
same 2D point set as previously. Every part of the curve can
now be discovered with only one pass on the slice stack.
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lower convex hull of the points located in S0 (no matter if
they are input data points or extra points). Σ̂ is artificially
closed by also including some infinite facets at the interface
between S0 and S1 tetrahedra. Infinite facets are facets of the
Delaunay triangulation connecting every edge of the convex
hull to an infinite vertex denoted as v∞ that has no geometry
associated with it.

Infinite facets are elements of infinite tetrahedra that con-
nect every facet of the convex hull to v∞. Σ̂ traverses fi-
nite as well as infinite tetrahedra during the surface evolution
process. In order to extend the reconstruction in a coherent
fashion from one slice to the other, the visited set of infinite
tetrahedra also has to be finalized. To be final, an infinite
tetrahedron connected to a convex hull facet f has to be such
that any further inserted point is invisible from f . This ex-
plains the interest of bounding the region of space in which
all points are inserted using a convex volume. Preserving the
convex hull all along the streaming reconstruction process is
a vital precaution for the success of the method.

Surface evolution (at level k) We describe the evolution of
Σ̂ at convection level k throughout a slice Si, assuming that
layers S0, . . . , Si have been previously loaded and triangu-
lated, and that the triangulation is finalized below Si+1. A
facet f ∈ Σ̂ is open if one of these conditions is satisfied:
• f Gabriel half-sphere contains an input data point or f

hides a pocket.
• one vertex of f is an extra point or v∞.
• f is a facet certified to be in Σ̂ at the end of the convection

of level k−1 for k > 0.
The process locally stops when a facet of Σ̂ is at the inter-

face between a tetrahedron of Si and a tetrahedron of Si+1.
The reconstruction result includes result-certified facets

and waiting facets. Result-certified facets are those that are
guaranteed to appear in the reconstruction result. They in-
clude the facets whose full Gabriel sphere contains no sam-
ple points, and whose coupled facet does not hide any
pocket. These facets cannot collapse. Conversely, waiting
facets are such that their associated Gabriel half-sphere is
empty, but not their full Gabriel sphere, or their coupled facet
hides a pocket. These facets are not yet guaranteed to be part
of the final result: they may be reached from behind by a sub-
sequent convection process at a level of the the same parity
and collapse.

When the convection process stops at a given level, the
evolving surface may still enclose some tetrahedra of the
current slice Si. At the next level, the convection process is
relaunched upward from the facets that have just been result-
certified. If a waiting facet is reached from behind by a sub-
sequent convection process at a level of opposite parity, then
it is result-certified.

After all the convection levels have been achieved on Si,
the tetrahedra that have been traversed can be deleted. Only
those supporting the surface are kept, until the next slice has
been processed. The refinement step is run on the triangula-
tion in order to finalize the tetrahedra in Si+1, all the convec-

tion levels are performed, one after the other, starting from
where they were previously stuck.

4. Implementation details
We have implemented our algorithm using the Computa-
tional Geometry Algorithms Library, CGAL [CGA]. We use
CGAL’s Delaunay triangulation data-structure with filtered
arithmetic for robust conflict tests. We focus below on the
implementation of point insertion in the triangulation, and
on the ordering of the output facets to match a streamable
layout.

Point insertions For each point to insert, the enclosing
tetrahedron is first located. These locations have to be con-
strained in order to avoid traversing the deleted parts of the
triangulation. This is achieved with a visibility walk that fa-
vors visible facets oriented upward according to the sweep
direction. The starting point of that walk is the newest cre-
ated tetrahedron. Then the triangulation is updated locally
using the standard CGAL procedure that consists in remov-
ing the tetrahedra that are no longer Delaunay, and then star-
ring the cavity.

Output facets ordering The facets of the final result are
put into a priority queue so that when they are written to
disk, they are sorted along the z axis. The output mesh may
be easily described in a streamable layout. According to the
terminology of Isenburg and Lindstrom [IL05], we choose
post-order formatting, which is the most direct way to gen-
erate a streamable mesh in this context. A vertex appears just
after the appearance of its last incident facets. This layout is
easily obtained by maintaining an incident facets counter for
every vertex decremented each time a facet is written to disk.

5. Results and discussion
We have tested our algorithm on several non-uniform point
set models obtained from laser-range scanning. The data sets
include raw scanner data (Fig. 6) as well as preprocessed
data (Fig. 1). Prior to the streaming reconstruction process,
all input point streams were organized into stack of slices
sorted along the coordinate axis of maximum dimension, and
each slice contains a fixed number of points (maybe except
the last one that may contain points in excess). Timings and
memory use are reported in Table 1. All the results presented
here were obtained on a Pentium IV 3.0 GHz, 2 GB RAM
workstation.

Performance and scalability Fig. 7 details the perfor-
mance of our algorithm for the IGEA model with varying
slice sizes. On this model, every every slice has approxi-
mately the same height, which reflects the average case. The
diagram shows that the memory consumption decreases lin-
early with the number of points per slice, although the num-
ber of extra points grows cubically as the height of the slices
decreases. The streaming reconstruction time increases lin-
early with the number of slices. Some variations can be how-
ever expected when the slices heights are not constant, as
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Model Streaming surface reconstruction Rec. with [Cha03]
name #points #points/slice #slices #extra points #facets time mem. use time mem. use
RAM 622,716 50,000 12 2,264 1,233,254 9:53 171 MB 15:32 281 MB

100,000 6 241 1,233,254 6:34 312 MB
ASIAN DRAGON 3,609,600 50,000 72 538,176 7,216,158 262:16 203 MB 38:23 1,510 MB

100,000 36 75,214 7,216,158 100:36 350 MB
THAI STATUE 5,001,964 100,000 50 98,795 10,002,341 142:47 365 MB – > 2,000 MB

Table 1: Performance of our streaming reconstruction framework for various input point sets. Computational timings are given
in minutes:second for both initial reconstruction and correction steps. Memory use corresponds to the maximum amount of
memory used, in megabytes. All tests were performed on a Pentium IV 3.0 GHz, 2 GB RAM workstation.

Figure 6: Streaming reconstruction of the RAM model
(622,716 points) from a raw data set with noise and under-
sampling. The close up view shows triangles on the bound-
ary of an unsampled region.

with the RAM model (Fig. 6). The maximum memory use
will always depend on the smallest height of a slice. Com-
pared to the performance of the original in-core geometric
convection algorithm [Cha03], memory use diminishes dras-
tically as the ratio point set size/slice size increases (Table 1).

We currently have no bound on the maximum number of
extra points required for a model. This depends on the shape
of the surface to be reconstructed, on the sampling density,
and on the height of the slices. A theoretical condition inter-
relating these three aspects would be the key for proving the
scalability of the method.

Results quality Provided no extra point is inserted too close
to the data, our streaming surface reconstruction algorithm
produces results that are identical to the results of the origi-
nal geometric convection algorithm in a global Delaunay tri-
angulation of the data [Cha03], maybe except at some sliver
tetrahedra (see appendix discussion). Our method naturally
inherits the robustness properties of the original algorithm
with noisy data (Fig. 6). However, we have supposed that
the result of the streaming surface reconstruction algorithm
is a volume. If the interior and exterior parts of the surface
at each slice are not distinguishable, then the facets of the
result may not be all consistently oriented.

Comparison with other work To our knowledge, no ex-
isting surface reconstruction algorithm has been specif-
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Figure 7: Performance of our method on the IGEA model
(134,345 points) with different slice size. For each model, the
number of slice is provided (left) together with the number
of extra points required (right).

ically designed to process streams of points. Nonethe-
less, many state-of-the-art two-dimensional triangulation
methods could be adapted without much effort [BMR∗99,
OBS05, SFS05]. Some other streaming-capable surface re-
construction algorithms are based on range scans merg-
ing [CL96, RCG∗04]. Our method is different in the sense
it is designed for streaming surface reconstruction, and can
process more general data than previous streaming-capable
methods thanks to a Delaunay triangulation data-structure.
No normal vectors, nor constraint on sampling uniformity
are required.

Another advantage of our algorithm over some existing
surface reconstruction methods is that not all data need to
be known in advance. Algorithms relying on hierarchical
data-structures, including the extremely efficient methods by
Kazhdan et al. [KBH] and Boubekeur et al. [BHGS06], can-
not easily accomodate progressive data availability.

Currently, the output of our algorithm is a triangle mesh
interpolating the input data points. Our method is therefore
not competitive with recent surface reconstruction meth-
ods that consider simplifying the input point set [ACA06],
or resampling it using local surface approximation tech-
niques [OBS05, SFS05]. It would be worth extending our
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algorithm in this way to accelerate the reconstruction pro-
cess and adapt the sampling density to the local geometry.

6. Conclusion and future work
In this paper, we have presented a simple, scalable streaming
approach to the problem of surface reconstruction from point
sets sampled from a closed surface. We have designed a
streaming Delaunay triangulation data-structure that fits the
purpose of reconstructing surfaces from a stream of points
without the need to compute the triangulation of the whole
data set and to maintain it in memory. The only require-
ment is that the sample points are organized into a stack
of slices ordered along one coordinate axis. Based on this
data-structure, we have developed a streaming extension of
the geometric convection algorithm that can directly recon-
struct streamable mesh surfaces. The results are similar to
the results of the original geometric convection algorithm
in a global Delaunay triangulation of the data, provided the
slices are large with respect to the sampling density. Our
framework may also offer interesting perspectives for other
Delaunay-based surface reconstruction algorithms.

Our algorithm is a first step towards a more elaborated
streaming surface reconstruction framework. Several aspects
deserve further investigations in order to offer guarantees on
the results as well as on its scalability. In the future, we also
plan to develop several extensions. We first would like to
improve the performance of point insertions in the triangula-
tion, e.g. using localized Delaunay hierarchies [Dev02]. Our
current method interpolates the input points, which can be
an advantage for some applications. But performance could
be significantly improved in case the data need simplifica-
tion. In the same way as the geometric convection algorithm
was extended to a selective version [ACA06, ACA07], our
streaming algorithm could be extended in order to simplify
the input data on-the-fly while reconstructing, without in-
serting every data point into the triangulation, and also offer
update abilities. In the presence of noise or incomplete data,
it could be also an advantage to mix our method with some
local surface approximation technique [SFS05, OBS05].
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points built. In (b), the triangulation is refined and the bounding curve is initialized. The result of the first reconstruction step
on S0 is shown in (c). Figures (d)–(f) show the loading and triangulation of S4, the consecutive refinement step, and the result of
the reconstruction through S1. Figures (g)–(i) illustrate the remainder of the process on S2–S5. The final reconstruction result
is shown in (l) together with the required set of extra points.
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Appendix: Considerations on the slices heights
The slice height is a property of the input data slices, that
all incorporate a fixed maximum number of points. Slices

that are too narrow with regard to the sampling density can
influence the reconstruction result.

Our goal is to reconstruct an approximation of the sam-
pled surface Σ that is close to the result of the original ge-
ometric convection process from P. Let E denote the set of
extra points inserted in the Delaunay triangulation, removed
extra points excluded. The central concern is to ensure that
an approximation of Σ is available as a subset of the De-
launay triangulation of P∪E, which requires that the extra
points lie sufficiently far from the points in P. For this pur-
pose, the slices heights have to be large enough with respect
to the resolution of the input point set (Fig. 9).

The insertion of an extra point aims at breaking a large
tetrahedron circumsphere astride three slices. If the input
data set is sufficiently dense, such a large sphere is approx-
imately centered on the medial axis of the volume bounded
by Σ, or it may coincide with the circumcenter of a sliver
tetrahedron, i.e. a tetrahedron whose four vertices lie close
to a plane [Ame99]. If the circumcenter of such a sliver lies
near Σ, it can be stated that its circumsphere cannot be large,
and thus that it does not require to be split. Each time that a
new extra point is inserted, the medial axis considered is the
medial axis of the volume minus the previously inserted ex-
tra point. Granted that the refinement algorithm converges in
a finite number of steps, the extra points are then all inserted
as far as possible from Σ.

Provided the height of every slice is large enough regard-
ing the maximum local granularity, the centers of the largest
remaining tetrahedra circumspheres remain faraway from Σ.
Otherwise, some extra points can be inserted near Σ so that
an approximation can become unavailable in the Delaunay
triangulation. In the example in Fig. 9(c), the height of one
slice is almost too small. In order to derive a conservative
bound from the sampling granularity, further considerations
on the Delaunay refinement process would be required.

Figure 9: Refinement results for a given slice with decreas-
ing height from (a) to (c). The circumspheres of the tetrahe-
dra to be refined are shown in green.
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