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Abstract
This paper sketches a technique for 3D model retrieval built on size functions, a mathematical tool to compare
shapes. Size functions are introduced for the first time to discriminate among 3D objects, through the proposal of
an innovative method to construct size graphs independently of the underlying triangulation. We demonstrate the
potential of our approach in a series of comparative experiments with respect to existing techniques.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodoloy and Tech-
niques

1. Introduction

3D shape classification and retrieval is a very lively research
topic. In this paper, we propose a framework to extend to
the 3D domain the use of size functions, a shape descriptor
which has been extensively applied to content-based image
retrieval (see e.g. [VUFF93, CFG05]).

The theory of size functions has been developed since
the beginning of the 90’s in order to get a new geometric-
topological approach to shape discrimination [VUFF93].
The idea is to analyze the growth of a topological space S,
according to the increasing values of a real function ϕ de-
fined on it. In particular, size functions code the topologi-
cal evolution of S counting the number of connected compo-
nents which remain disconnected passing from a lower level
set of S to another. Since the growth of S is driven by the real
function ϕ, size functions encode geometrical properties in
the topological history. Hence they take into account both
local and global properties of a shape. A similar approach
has been introduced in [ELZ02].

The main contribution of this paper is to exploit and fruit-
fully enhance their potential for 3D shape comparison. The
result is the definition of a technique for 3D shape descrip-
tion and retrieval, which is able to interpret the knowledge
embedded in the shape, taking into account structure, topol-
ogy and geometry.

2. Related work

The majority of the methods proposed in the literature for
3D shape retrieval mainly focuses on the low-level geometry

of shapes, in the sense of considering its spatial distribution
or extent in the 3D space [BKS∗06, KFR03]. Nevertheless,
there is a growing consensus towards high-level descriptors
which merge a global topological analysis with local geo-
metric attributes [CZCG04]. For example, the method pre-
sented in [HSKK01] addresses 3D shape similarity by using
the Reeb graph in a multi-resolution fashion and performs
retrieval by means of graph-matching techniques. Similarly,
the importance of structural descriptions for shape matching
has been recently pointed out in [BMM∗03,ZS∗05]. Exhaus-
tive surveys on 3D shape searching techniques can be found
for example in [TV04, IJL∗05].

3. Approach

The aim of this paper is to provide a high-level technique
based on size functions to fully reveal the topological infor-
mation on the shape which is encoded in the representation
model. The attractive feature of size functions is that they
provide a high-level description which can be readily used
to establish a similarity measure between shapes, formaliz-
ing qualitative aspects of shapes in a quantitative way.

3.1. Size functions

Given a size pair (S,ϕ), where S is a topological space and
ϕ : S→ R is a continuous function called a measuring func-
tion, the size function `(S,ϕ) : {(x,y)∈R2 : x < y}→N is de-
fined by setting `(S,ϕ)(x,y) equal to the number of connected
components of the lower level set Sy = {P ∈ S : ϕ(P) ≤ y},
containing at least one point of Sx [dFL05].
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Figure 1: A size pair and the corresponding size function.

In the example in Figure 1 we consider the size pair (S,ϕ),
where S is the curve represented by a continuous line in Fig-
ure 1(left), and ϕ is the function “distance from the point
P”. The size function associated with (S,ϕ) is shown in Fig-
ure 1(right). The value displayed in each region is the value
taken by the size function in that region.

An important property of size functions is that they can
always be seen as linear combinations of characteristic func-
tions of triangles (possibly unbounded triangles with vertices
at infinity). Hence, by taking the formal series of vertices as-
sociated with their right angles (called cornerpoints for the
bounded triangles and cornerlines for the unbounded ones)
we get a simple and compact representation [FL01].

The discrete counterpart of a size pair is a size graph
(G,ϕ), where G = (V (G),E(G)) is a finite graph, with V (G)
and E(G) the set of vertices and edges respectively, and
ϕ : V (G) → R is a measuring function labelling the nodes
of the graph [d’A00].

3.2. Building size graphs for 3D shapes

Our idea is to associate with a 3D object a size graph (G f ,ϕ),
where G f is a centerline skeleton representing S, f is a real
continuous function driving the centerline extraction, and ϕ
is a measuring function labelling each node of the graph
with local geometrical properties of the original model. This
model signature, which combines the structural information
provided by the mapping function f with the different in-
formation provided by the measuring function ϕ, produces
informative size functions. Beside the obvious improvement
in computational efficiency, the skeletal structure reduces the
dimensionality of the problem, meanwhile storing sufficient
information about the original object. Further details about
our method can be found in [BGSF06].

The construction of the centerline skeleton G f relies
on the discretization of the Reeb graph theory defined in
[Bia04]. Given a shape represented by a regular triangle
mesh M, we subdivide the co-domain [ fmin, fmax] of f :
M → R considering nv regular values of f , fi ∈ [ fmin, fmax],
i = 1, . . . ,nv. The level sets of f that correspond to these val-
ues partition the mesh M into regions, see Figure 2(b). Hence
all points belonging to a region or a contour are identified
and represented as nodes and arcs of a traditional graph, see
Figure 2(c,d).

(a) (b) (c) (d)

Figure 2: (a) Evaluation of the distance from the barycenter
on the hand model in [aim]. Red and blue colors respectively
represent maximum and minimum values. (b) The mesh par-
tition. (c-d) The centerline skeleton.

Four different mapping functions f are considered in our
framework, namely the distance from the barycenter, the dis-
tance from the center of the bounding sphere, the integral
geodesic distance in [HSKK01] and the topological distance
from curvature extrema in [MP02].

Once the centerline G f has been extracted, the size graph
(G f ,ϕ) is obtained by defining the measuring function ϕ :
V (G f )→ R on the nodes of G f . For each node vR ∈V (G f )
corresponding to a region R, the value of ϕ(vR) is defined
as a property characterizing the region R or its boundary
BM(R). In particular, we are proposing to use:

• the area of the region R;
• the minimum, maximum and average distance of the

barycenter of R from the region vertices;
• the length of B+

M(R) (resp.B−M(R)), where B+
M(R) (resp.

B−M(R)) is the set of connected components of BM(R) such
that the outgoing directions for the mapping function f are
ascending (resp. descending);

• the sum of the pseudo-cone lateral areas computed for
each component of R in B+

M(R) (resp. B−M(R));
• a set of distance functions from selected points on the

minimal bounding box of the model.

3.3. 3D model comparison

Once that a size graph (G f ,ϕ) has been obtained, the defini-
tion of the size functions follows the classical one. Denoting
by G f

y the subgraph of G f obtained by erasing all vertices of
G f at which ϕ takes a value strictly greater than y, and all
edges that connect those vertices to other vertices, the size
function of (G f ,ϕ) is defined by setting `(G f ,ϕ)(x,y) equal

to the number of connected components of G f
y , containing

at least a vertex of G f
x .

In order to compute size functions, we have followed the
algorithm introduced in [d’A00]. To compare two models
we use the matching distance between their size functions,
whose suitability for shape comparison has been discussed
from the theoretical point of view in [dFL05].
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Figure 3: Our testing models.

4. Experimental results

We have constructed a database of regular triangle meshes
consisting of 5 classes of 20 elements, plus 20 unclassified
manufactured models, see Figure 3. The original models of
our database were collected from several web repositories
( [dre], [aim], [SMKF04], [cae], [mcg]). To validate our re-
sults, we have considered the spherical harmonic descrip-
tor [KFR03], the view-based approach in [COTS03] and the
Multiresolution Reeb graph described in [HSKK01].

As a first performance parameter, we have considered
the percentage recall. The recall histogram in Figure 4(a)
has been obtained computing, for the rank thresholds N =
10,20, . . . ,120, the percentage of models in the same class
of the query retrieved within the first N items. Results are
averaged over the whole database, and indicate that almost
80% of relevant items are retrieved within top 25% of the
database (i. e. within the first 30 models; remember that each
class contains 20 elements). Figure 4(b) compares the aver-
age rank for the whole database obtained using size func-
tions with the values obtained by the other techniques. The
value obtained with size functions is the lowest one; recall
that for this indicator lower values indicate better perfor-
mance. A further measure we are using to assess the retrieval
performance is the last place ranking defined in [EBG98],
whose values are reported in Figure 4(c). High values within
the interval [0,1] indicate good results.

One of the attractive features of our approach is its flex-
ibility. In fact, the core idea of our method is the analysis
of properties of real functions describing the shape under
study. The role of the real functions is to take into account
only the shape properties of the object which are relevant to
the problem at hand, as well as to impose the desired invari-
ance properties. When changing the functions, the resulting
configurations can give insights on the shape from different
perspectives, see Figure 5. These results suggest that our ap-
proach could also be used as a finer tool, after a rough filter
has been used, or as an instrument to refine queries. Using
our technique would allow the user to readily indicate the
shape idea he has in mind, through the selection of a set of a
features (i.e. mapping and measuring functions) which have
a clear and intuitive geometric (and perceptual) significance.

5. Concluding remarks

The proposed shape descriptor presents many desirable
properties. Indeed it is:

1. quick to compute: the computation of 120 size functions
for the 120 models in the database requires 1.53 second
on a 1.73GHz laptop PC-M; the off-line step of comput-
ing the size graphs requires 1 minute and 12 seconds;

2. concise to store: on average it requires less than 1K;
3. easy and quick to compare: evaluating 120×120 match-

ing distances requires 8.55 seconds;
4. invariant under similarity transformations: imposing the

desired invariance simply means requiring the invariance
for the mapping and measuring functions, without any
change in the mathematical model;

5. robust against noise and small extra features;
6. able to discriminate among shapes at many scales, con-

veying information about their global and local proper-
ties.

By summarizing, we have proposed an original frame-
work to extend the use of size functions in the 3D context.
We have derived a signature to be extracted from 3D mod-
els, which guarantees the topological coding and the geo-
metrical description, and is computationally efficient. Such
a representation has been used as a size graph for computing
discrete size functions. The experimental results have shown
that this approach is promising, and goes into the direction of
developing tools to automatically annotate the shape seman-
tic, and to encapsulate it in a digital shape representation.
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