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Abstract

Establishing a correspondence between two surfaces is a basic ingredient in many geometry processing applications. Existing
approaches, which attempt to match two meshes directly in 3D, can be cumbersome to implement and it is often hard to produce
accurate results in a reasonable amount of time. In this paper, we present a new variational method for matching surfaces
that addresses these issues. Instead of matching two surfaces directly in 3D, we apply well-established matching methods from
image processingin the parameter domains of the surfaces. A matching energy is introduced that can depend on curvature,
feature demarcations or surface textures, and a regularization energy controls length and area changes in the induced non-rigid
deformation between the two surfaces. The metric on both surfaces is properly incorporated into the formulation of the energy.
This approach reduces all computations to the 2D setting while accounting for the original geometries. Consequently a fast
multiresolution numerical algorithm for regular image grids can be used to solve the global optimization problem. The final
algorithm is robust, generically much simpler than direct matching methods, and very fast for highly resolved triangle meshes.

Categories and Subject Descriptors (according to ACM CCS): G.1.8 [Numerical Analysis]: Elliptic equations; Finite element
methods. I.3.5 [Computer Graphics]: Curve, surface, solid and object representations; Geometric algorithms, languages, and
systems; Physically based modeling.

Keywords: Surface matching, deformation energy, non-linear elasticity, digital geometry processing.

1. Introduction

A correspondence between two surfaces is a function that maps one
surface onto the other. The need for a correspondence can be found
in numerous geometry processing applications, for example:

� Data fitting: Fitting a canonical surface model to triangle mesh
data from a 3D scanning system (possibly with dropouts);

� Statistical analysis: Bringing a corpus of geometric models
into an appropriate common parameterization to apply statisti-
cal tools such as principal component analysis;

� Comparison and quality assurance:Comparing a scan of a
physical object with a CAD description;

� Attribute transfer: Mapping displacements or textures (among
many other possible examples) between surfaces.

Existing methods to establish such correspondences can be very
expensive computationally or lack the high accuracy needed when
very detailed matches are desired. Because of the many local min-
ima in the energy landscape which expresses the relationship be-
tween the surfaces, extensive guidance from a user is often needed to
produce reasonable results. In this paper, we propose a new method
for establishing a correspondence between two surfaces which ad-
dresses these limitations. Our approach draws upon the extensive
and mature body of work in globalimagematching (see the brief
review below). To do so we map appropriate geometric attributes
(metric, mean curvature, textures,etc.) into the parameter plane, in-
duced by some smooth parameterization of the surfaces (cf. Fig-

ure 1). The standard image matching energies are then appropri-
ately modified to correctly account for the geometry of the original
surfaces. What remains is an energy minimization problem in 2D
which can then be solved effectively even for highly detailed meshes
through well established multiscale methods. Detailed control over
the match can be achieved through additional feature energies as
desired.

1.1. Previous Work

The body of relevant literature is quite broad and we will not at-
tempt to give a complete account of it here. Most relevant for our
setting is the work in image matching, in particular the non-linear
approaches which deal directly with the large deformation setting.
Relevant work from the graphics literature covers approaches which
pursue direct mappings between surfaces inR3.

Image Matching In image processing, registration is often ap-
proached as a variational problem. One asks for a deformationφ
which maps structures in the reference imageA onto corresponding
structures in the template imageB on some image domainω. In the
case of unimodal images with a direct correspondence of the im-
age intensitiesIA andIB , the energy

∫
ω (IB(ξ)− IA(φ(ξ)))2 dξ

measures the least-squares error of the match. We extend this idea
to surface matching through a bending energy which measures the
matching defect with respect to curvatures. It is well established that
the associated minimization problem is ill-posed if one considers
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Figure 1: A brief overview of our surface matching process: The
two surfaces to be matched are parameterized (top); we generate
imagesof mean curvature, the metric and user-defined feature sets
on a 256×256 grid (middle); an optimal matching deformation is
then found through a global energy relaxation in theparameter do-
mainusing fast multiscale algorithms. The match is properly defined
in 3D by incorporating the metric in the matching energy. A finely
detailed texture is transferred to the first surface, and a 50% morph
is created (bottom). The match took under 3 minutes.

the infinite dimensional space of deformations [Bro92, vdEPV93].
This is generally addressed by choosing a suitable regularization.
Motivated by models from continuum mechanics, one may ask for
a deformation that is additionally controlled byelastic stresseson
images regarded as elastic sheets. For example see the early work
of Bajcsy and Broit [BB82] and more recent, significant extensions
by Grenander and Miller [GM98]. In our surface matching prob-
lem, we consider surfaces as thin shells. Besides the bending which
we mentioned, surface deformations also lead to tangential stretch-
ing and shearing, which gives a real physical interpretation to the
elastic stresses that are treated as a regularization in the resulting
model. In particular, if large displacements are necessary to ensure
a proper match, a regularization based on non-linear elasticity with
its built-in control of length, area and volume changes is indispensi-
ble. Cohen [Coh93] considered polyconvex elastic functionals and
Droske and Rumpf [DR04] used this type of regularization to guar-
antee global injectivity and well-posedness. We incorporate these
ideas to avoid folding in our surface matches.

In essence, non-rigid image matching is a well developed and
powerful tool which we will exploit for surface matching.

3D Registration and CorrespondenceMotivated by the ability
to scan geometry with high fidelity, a number of approaches have
been developed in the graphics literature to bring such scans into
correspondence. Early work used parameterizations of the meshes
over a common parameter domain to establish a direct correspon-
dence between them [LDSS99]. Typically these methods are driven
by user-supplied feature correspondences which are then used to
drive a mutual parameterization. The main difficulty is the proper
alignment of selected features during the parameterization pro-
cess [KS04, PSS01, SAPH04] and the algorithmic issues associated
with the management of irregular meshes and their effective overlay.

Special methods have been developed for situations in which a
large number of scans of similar objects, albeit with great geomet-
ric variety, are to be brought into correspondence, for example for
purposes of statistical analysis. These are typically geared towards
establishing a correspondence against a template model. Blanz and
Vetter [BV99] used cylindrical scans resulting in height “images”
which were matched through a modified optical flow. Allenet
al. [ACP03] fit a high resolution template mesh to scans of the hu-
man body. They computed non-rigid deformations for the template
by minimizing an error functional which performs well in the pres-
ence of holes and poorly sampled data, provided that the two sur-
faces are in similar poses. Such template-based approaches can also
be very helpful during the acquisition itself. Zhanget al. [ZSCS04]
present a method for meshing dynamic range data using a surface
fitting approach. In their method, a template mesh is fitted to a reg-
istered stereo pair of depth maps and the fitting is achieved by min-
imizing a depth matching energy and a regularization energy. Re-
cently, Gu and Vemuri [GV04] considered matches of topological
spheres through conformal maps with applications to brain match-
ing. Their energy measures the defect of the conformal factor and —
similar to our approach — the defect of the mean curvature. How-
ever they do not measure the correspondence of feature sets or tan-
gential distortion, and thus do not involve a regularization energy for
the ill-posed energy minimization. Furthermore, they seek a one-to-
one correspondence, whereas we must address the difficult problem
of partial correspondences between surfaces with boundaries.

1.2. Contributions
In this paper, we present a new method for matching surfaces with
the following characteristics:

� We develop a variational approach based on minimizing bending
and stretching in the matching deformation (cf. Figure 13).

� We provide user control over the match through feature lines
which are mapped as sets onto corresponding feature lines rather
than through point-wise constraints (cf. Figure5).

� Our method decouples the discretization of the surfaces from the
discretization of the matching deformation.

� We allow for a partial correspondence of the surfaces,i.e., re-
gions of the surfaces — in particular boundary regions — are
not required to be in correspondence with regions on the other
surface (cf. Figure10).

� Existence and global injectivity of the matching deformations is
established, such that the resulting deformations are smooth and
bijective.

The reliability and robustness of our method is ensured by a mul-
tiresolution strategy. The algorithm proceeds from a coarse scale
matching of the overall shapes to a fine scale identification of all
surface details. Consequently most iterations of the algorithm are
spent on very coarse matches which are solved efficiently.
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Currently, a limitation of the method is that the surfaces to be
matched must be homeomorphic to a disc such that we can build a
single parameterization in the plane. Also, our energy formulation
is not symmetric: matching surfaceMA to surfaceMB might give
a different correspondence than matchingMB toMA. Possible
ways to overcome these limitations are discussed in Section4.

Organization The paper is organized as follows. In the next sec-
tion we introduce a variational formulation of the surface matching
problem. We derive the basic components of the energy and detail
how the geometry of the original meshes enters into the formulation
in the image domain. Section3 describes the matching algorithm
in detail with the choice of the initial parameterizations, the user-
guided selection of feature sets, the treatment of triangle meshes
and the multiscale finite element method. Section4demonstrates the
performance of our method with a variety of examples where high
quality matches are critical. The paper concludes with a comparison
to previous approaches and a discussion of possible improvements
of the method.

2. Surface Matching

Our goal is to correlate two surface patches,MA andMB , through
a non-rigid spatial deformation

φM :MA → R3

such that corresponding regions ofMA are mapped onto regions
ofMB . In doing so, we want to avoid the general difficulty of for-
mulating these maps directly inR3 and the particularly tedious al-
gorithmic issues in the application, where the two surface patches
are given as distinct, arbitrary triangulations. Instead, we match pa-
rameter domains covered with geometric and user-defined feature
characteristics. The main benefit of this approach is that it simpli-
fies the problem of finding correspondences for surfaces embedded
in R3 to a matching problem for images in two dimensions. Our
motivation comes from a variational approach for matching images
through an energy relaxation over a set of non-rigid deformations
in the plane [GM98, DR04], where the optimal match is achieved
by the mapping that minimizes a suitable energy. To ensure that the
actual geometry of the surface patches is treated properly here, the
energy on the deformations from one parameter space to the other
will measure:

� (regularization energy)smoothness of the deformation in terms
of tangential distortion,

� (bending energy)bending of normals through the proper corre-
spondence of curvature, and

� (feature energy)the proper correspondence of important surface
and texture features.

Furthermore, it will consistently take into account the proper met-
rics on the parameter domains, which ensures that we are actually
treating a deformation from one surface onto the other even though
all computations are performed in 2D.

A Physical Interpretation of the Surface Deformation Consider
the first surface to be a thin shell which we press into a mould of the
second surface (cf. Figure2). One can distinguish between stresses
induced by stretching and compression, and stressed induced by
bending that occurs in the surface as it is being pressed. ThusφM
can be regarded as the deformation of such a thin shell. We assume
this deformation to be elastic. The regularization energy in Eq. (1)
will measure the induced in-plane stresses, and the concrete energy

density in Eq. (2) allows control over length and area-distortion
in this surface-to-surface deformation. Since we are aiming for a
proper correspondence of shape, we will incorporate the bending of
normals in our energy with Eq. (3). Finally, the matching of feature
sets in Eq. (4) will provide user-specified landmarks to guide the sur-
face deformation. In what follows, we will develop the variational
approach step-by-step.

�

�

�

�

�

MA

MB

Figure 2: A physical interpretation ofφM as pressing a thin shell
MA into a mould of the surfaceMB being matched. The bending
(1) and stretching (2) of the thin shell is measured in our matching
energy, and minimized by the optimal matchφM.

2.1. Measuring Distortion via a Parameterization
To begin with, let us set up proper parameterizations. A parame-
terization is a mapping from the plane onto a given surface, or in
the case of its inverse, from the surface onto the plane. Consider a
smooth surfaceM ⊂ R3, and supposex : ω → M is a param-
eterization ofM on a parameter domainω. For a parameterization
to be properly defined, its inversex−1 cannot allow the surface to
fold onto itself in the plane. In this casex is a bijection and a metric
g is properly defined onω,

g = DxT Dx

whereDx ∈ R3,2 is the Jacobian of the parameterizationx. The
metric g acts on tangent vectorsv, w on the parameter domainω
with (g v) · w = Dx v · Dx w, which is simply the inner product
of tangent vectorsDx v, Dx w on the surface. Thus it follows that
the metric describes how length, area and angles are distorted under
the parameterization function.

Let us now focus on the distortion from the surfaceM onto the
parameter domainω under the inverse parameterizationx−1. This
distortion is measured by the inverse metricg−1 ∈ R2,2. Just as√

tr(AT A) measures the averagechange of lengthunder a linear
mappingA,

√
tr g−1 measures the average change of length of tan-

gent vectors under the mapping from the surface onto the parameter
plane. Additionally,

√
det g−1 measures the correspondingchange

of area. We will use these quantities in the following sections to
account for the distortion of length and area on the surface as we
formulate our matching energy in the parameter domain.

2.2. Measuring Distortion via a Deformation
The above discussion now applies to the parameter mapsxA andxB

of the surfacesMA andMB . We suppose that these parameteriza-
tions are defined in an initial step and we assume thatxA andxB as
well as the corresponding parameter domainsωA andωB are fixed
from now on. Their metrics are denoted bygA andgB , respectively.
We will now study the distortion which arises from a deformation of
the first parameter domain onto the second parameter domain. First,
let us consider deformationsφ : ωA → ωB which are one-to-one.
This deformation between parameter domains induces a deforma-
tion between the surface patchesφM :MA →MB defined by

φM := xB ◦ φ ◦ x−1
A .

c© The Eurographics Association 2005.
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Figure 3: The matching functionφM := xB◦φ◦x−1
A is a mapping

between the corresponding shaded regions of the two surfaces. The
partial correspondence is defined onωA[φ] := ωA ∩ φ−1(ωB).

Let us emphasize that we do not actually expect a one-to-one corre-
spondence between surface patches. Later we will relax this assump-
tion and in particular allow for deformationsφ with φ(ωA) 6⊂ ωB .
The complete mapping is illustrated in Figure3.

Now let us focus on the distortion from the surfaceMA onto
the surfaceMB . In elasticity, the distortion under an elastic defor-
mationφ is measured by the Cauchy-Green strain tensorDφT Dφ.
We wish to adapt this definition to measure distortion between tan-
gent vectors on the two surfaces, as we did with the metricg in the
previous section. Therefore, we properly incorporate the metricsgA

and gB at the deformed position and obtain the distortion tensor
G[φ] ∈ R2,2 given by

G[φ] = g−1
A DφT (gB ◦ φ) Dφ ,

which acts on tangent vectors on the parameter domainωA, where
where products are given in matrix notation. Mathematically, this
tensor is defined implicitly via the identity(gA G[φ] v) ·w = (gB ◦
φ) Dφ v · Dφ w for tangent vectorsv, w on the surfaceMA and
their images as tangent vectorsDφ v, Dφ w onMB , where here
we have identified tangent vectors on the surfaces with vectors in
the parameter domains.

As in the parameterization case, one observes that
√

trG[φ]

measures the averagechange of lengthof tangent vectors fromMA

when being mapped to tangent vectors onMB and
√

detG[φ]

measures thechange of areaunder the deformationφM. Thus
trG[φ] anddetG[φ] are natural variables for an energy density in a
variational approach measuring theregularityof a surface deforma-
tion,

Ereg [φ] =

∫
ωA

W (trG[φ], detG[φ])
√

det gA dξ . (1)

This simple class of energy functionals was rigorously derived
in [CLR04] from a set of natural axioms for measuring the distor-
tion of a single parameterization. In particular, the following energy
density

W (a, d) = αla + αa
(
d + (1 + αl

αa
) d−1

)
(2)

accounts for length distortion witha = a(A) = trG[φ], area ex-
pansion withd = d(A) = detG[φ] and area compression with
d−1. The weightsαl, αa > 0 are typically chosen by the user ac-
cording to the relative importance of length and area distortion.

2.3. Measuring Bending in a Deformation
When we press a given surfaceMA into the thin mould of the sur-
faceMB , a major source of stress results from the bending of nor-
mals. We assume these stresses to be elastic as well and to depend
on changes in normal variations under the deformation. Variations
of normals are represented in the metric by the shape operator. We
defer the derivation of the shape operatorsSA andSB of the sur-
face patchesMA andMB to [DLOR05], where we end up with
tr(SB ◦ φ) − tr(SA) as ameasure for the bending of normals.
Since the trace of the shape operator is the mean curvature, we can
instead aim to compare the mean curvaturehB = tr(SB) of the
surfaceMB at the deformed positionφM(x) and the mean cur-
vaturehA = tr(SA) of the surfaceMA. A similar observation
was used by [GHDS03] to define a bending energy for discrete thin
shells. This proposed simplification neglects any rotation of direc-
tions due to the deformation,e.g., if the deformation aligns a curve
with positive curvature on the first surface to a curve with negative
curvature on the second surface and vice versa, an energy depending
solely onhB ◦ φ − hA does not recognize this mismatch. Never-
theless, in practice the bending energy

Ebend[φ] =

∫
ωA

(hB ◦ φ− hA)2
√

det gA dξ (3)

turns out to be effective and sufficient. By minimizing this energy,
we ensure that the deformation properly matches mean curvature on
the surfaces.

2.4. Matching Features
Frequently, surfaces are characterized by similar geometric or tex-
ture features, which should be matched properly as well. Therefore
we will incorporate a correspondence between one-dimensional fea-
ture sets in our variational approach to match characteristic lines
drawn on the surface. In particular, we prefer feature lines to points
for the flexibility afforded to the user, as well as to avoid the the-
oretical problems introduced by point constraints [Cia88]. We will
denote the feature sets byFMA

⊂ MA andFMB
⊂ MB on

the respective surfaces. Furthermore, letFA ⊂ ωA andFB ⊂ ωB

be the corresponding sets on the parameter domains. We are aiming
for a proper match of these sets via the deformation,i.e.,

φM(FMA
) = FMB

or in terms of differences,FMA
\ φ−1

M (FMB
) = ∅ andFMB

\
φM(FMA

) = ∅. A rigorous way to reflect this in our variational
approach is with a third energy contribution,

EF [φ] = H1(FMA
\ φ−1

M (FMB
)) +

H1(FMB
\ φM(FMA

)) (4)

whereH1(A) is the one-dimensional Hausdorff measure of a setA
on the corresponding surface. Roughly speaking, this gives a sym-
metric measurement of the size of the mismatch of the features. This
type of energy does not lend itself to a robust numerical minimiza-
tion. Therefore, we will instead consider a suitable approximation
of Eq. (4) that involves thedistance on the surface to the feature
sets, and define

Ẽε
F [φ] =

∫
ωA

(
ηε ◦ dA(ξ)

)(
θε ◦ dB(φ(ξ))

)√
det gA dξ +∫

ωB

(
ηε ◦ dB(ξ)

)(
θε ◦ dA(φ−1(ξ))

)√
det gB dξ (5)

wheredA(·) = distA(·,A) anddB(·) = distB(·,A) are distance
functions on the parameter domainsωA and ωB with respect to
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some setA on the corresponding surface. Note that we measure
distance either in the metricgA on ωA or in the metricgB on ωB .
Additionally, we define the localization functions

ηε(s) = 1
ε

max
(
1− s

ε
, 0

)
, θε(s) = min

(
s2

ε
, 1

)
which act as cut-off functions. For Lipschitz continuous feature
sets and bi-Lipschitz continuous deformations, we observe that
Ẽε
F [φ]→ EF [φ] asε→ 0, which motivates our approximation. In

view of the later discretization, we can reformulate the second term
in Eq. (5) as∫

ωA

(
ηε ◦ dB(φ(ξ))

)(
θε ◦ dA(ξ)

)√
det gB(φ(ξ)) det Dφ dξ .

2.5. Partial Correspondence
Usually, we cannot expect thatφM(MA) = MB , particularly
near the boundary where certain subregions ofMA will have no
corresponding counterpart onMB and vice versa. Therefore, we
must allow for points onMB with no pre-image inMA under a
matching deformationφM, and points onMA which are not corre-
lated to points onMB via φM (cf. Figure3). Thus we must adapt
the variational formulation accordingly. Ifφ(ωA) 6= ωB , thenφM
is now defined onxA(ωA[φ]) only, where

ωA[φ] := φ−1 (φ(ωA) ∩ ωB)

is the corresponding subset of the parameter domainωA. Further-
more, we define new energies (with modifications marked in red):

Ebend[φ] =

∫
ωA[φ]

(hB ◦ φ− hA)2
√

det gA dξ , (6)

EF [φ] = H1(ωA[φ] ∩ FMA
\ φ−1

M (FMB
)) +

H1(FMB
\ φM(ωA[φ] ∩ FMA

)) (7)

For an energy that controls tangential distortion, it is still helpful to
control the regularity of the deformation outside the actual matching
domainωA[φ], where we would like to allow significantly larger de-
formations by using a “softer” elastic material. Hence we will sup-
pose thatgB , which is initially only defined onωB , is extended to
R2 and takes on values that are relatively small to allow for greater
stretching.

In the minimization algorithm, we need descent directions which
will involve derivatives of these energies with respect to the defor-
mation φ. In taking these derivatives, integrals over the variable
boundary∂ωA[φ] will appear. Since these are tedious to treat nu-
merically, we will rely on another approximation for the sake of
simplicity. Our strategy here is to change the domain of integration
ωA[φ] to a supersetω which extends beyond the boundary∂ωA[φ].
Doing so means that special treatment of boundary integrals is no
longer necessary, although we are now required to evaluate the in-
tegrands of the energies outside ofωA, and similarly for deformed
positions outside ofωB . To achieve this, we will extend our surface
quantities ontoω \ωA andω \ωB , respectively, by applying a har-
monic extension with natural boundary conditions on∂ω to gA, gB

andhA, hB (e.g., we definehA as the solution of Laplace’s equa-
tion onω \ ωA with vanishing flux on∂ω). Additionally, we intro-
duce a regularized characteristic function

χε
A(ξ) = max(1− ε−1dist(ξ,A), 0) (8)

to cause the energy contributions to be ignored at some distance
ε away fromωA[φ]. Thus, instead of dealing with a deformation
dependent-domainω[φ] in the definition of our different energy con-
tributions, we always integrate over thewholeimage domainω and

insert the product of the two regularized characteristic functions

χε(ξ) = χε
ωA

(ξ) χε
ωB

(φ(ξ))

as an additional factor in the energy integrand. We apply this modi-
fication to the energyEbend (3) and the already regularized energy
Ẽε
F (5) and denote the resulting energies byEε

bend andEε
F , re-

spectively.

2.6. Definition of the Matching Energy
We are now ready to collect the different cost functionals and define
the global matching energy. Depending on the user’s preference, we
introduce weightsβbend, βreg , βF for the energiesEε

bend, Ereg

andEε
F , respectively, and define the global energy

Eε[φ] = βbend Eε
bend[φ] + βreg Ereg [φ] + βF Eε

F [φ] (9)

which measures the quality of a matching deformationφ on the do-
mainω. Finally, in the limitε→ 0 we obtain a weighted sum of (1),
(6) and (7):

E[φ] = βbend Ebend[φ] + βreg Ereg [φ] + βF EF [φ] (10)

A matching deformationφ that minimizes Eq. (10) for a given set of
parametersβ = (βbend, βreg , βF ) is calledβ-optimal (or simply
described as “optimal” in what follows). In [DLOR05], we provide
a proof of existence, global injectivity, and regularity ofβ-optimal
matching deformations. Because of this proof, we can expect to ob-
tain smooth deformations that are free of folds and singularities. The
next section describes our surface matching procedure for finding
optimal matches between triangulated surface patches.

3. The Matching Algorithm
So far we have developed a variational framework for matching
surface patches without regard to a particular discretization. Now
we will describe our method for constructing a match based on a
straightforward discretization using finite elements. We assume that
the surface patchesMA andMB are given as triangle meshes.
In the initial step, we generate parameterizations which define tri-
angulated parameter domainsωA andωB (cf. Figure4). Because
of the difficult algorithmic details, we do not wish to deal with ef-
fectively overlaying two triangulations during the numerical solver
stage. Consequently we discretize the domain onto a regular grid
(“image”) and evaluate the associated surface quantities needed in
the energies at each pixel (in effect we may think of this as a geom-
etry image [GGH02]).

This setup has two principal advantages: (1) the resolution of the
original meshes is decoupled from the resolution used in the im-
age domain and (2) multiscale algorithms are far simpler to imple-
ment in the regularly sampled image grid than over arbitrary triangle
meshes (even if flat). In particular, we can use higher sampling rates
in the image domain to alleviate aliasing problems. Additionally, the
image pyramids used by a hierarchical solver have far more efficient
memory access patterns on modern processors than one achieves
with arbitrary meshes. We now turn to the basic components of the
implementation:

1. Construct parameterizations for the surface patches.
2. (optional) Select matching features on the surfaces with

separate texture maps.
3. Evaluate the metric and mean curvature by scan converting

the surface triangulation in the parameter domain.
4. Apply a finite element discretization and optimize the

matching deformation using a multiscale approach to min-
imize the energyEε[·] defined in Eq. (9).
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3.1. Surface Patch Parameterization

We are interested in low distortion parameterizations to ensure ade-
quate sampling and to keep the energy landscape as nice as possible.
Recall that the metric of the parameterization enters into our en-
ergy formulation. Therefore, parameterizations with unnecessarily
large gradients only serve to make the energy minimization problem
harder. These considerations favor parameterization methods which
support natural boundary conditions (see [FH05] for a comprehen-
sive survey). We use the method of Clarenzet al. [CLR04] since it
simultaneously optimizes the parameterization for low angle, area
and length distortion (cf. Figure4).

Once both surfaces have been parameterized, we perform a rough
alignment by applying a normalizing transformation such that the
parameter domains are subsets of the domainω := [0, 1]2. Due
to the feature energy contribution from Eq. (5) and the hierarchical
nature of the minimization algorithm this rough alignment is entirely
sufficient.

Figure 4: A surface triangulationM and its parameter domainω.
Distortion in the metricg is depicted by a density plot on the right,
measured by Eq. (2) with a=tr(g−1), d=det(g−1), αl

αa
=100.

3.2. Feature Set Construction

The user can control the match by identifying sets of similar fea-
tures on the surface patches. The cost functionalEε

F [·] from Eq. (5)
helps to guide the energy minimization to match the corresponding
features. Marking the desired feature setFA is most easily accom-
plished in the image domains. Figure5 gives examples of these,
showing the texture images mapped onto the surfaces. The actual
feature sets are the boundaries of the (pixel) regions drawn by the
user on the texture image. Note that when we match features, we do
not constrain points since this would break the regularity of the de-
formation. Instead, we matchfeature curveswhich permits sliding
of the deformation along the curve.

There are many ways in which features can be used to control a
match:

� Coarse control of the match is achieved by roughly selecting
corresponding geometric features and gradually decreasingβF
to zero as the multiscale method goes to finer resolutions (Fig-
ure5a).

� Precise control over matching texture features (e.g., on the face,
etc.) is achieved by selecting the corresponding pixels in the fea-
ture set image (Figure5b).

� Lines of symmetry drawn as features allow deformations tan-
gential to the feature boundary, but prevent deformations that are
transverse to it (Figure5c).

In general, features tend to localize the matching deformation,i.e.,
the feature boundaries partition the domain into deformable regions
and minimize the deformation between these regions. This is useful
when the surface is composed of regions with different elastic prop-
erties and prevents excessive “sliding” of the surface (e.g., the highly

a a

c

c cc

c c

b

d

d d d

e
b b

e
b

A A

AB

B

B

Figure 5: Examples of user-defined feature sets: (a) coarse regis-
tration of geometric features; (b) aligning texture features; (c) lines
of symmetry; (d) preventing smooth, rigid regions from sliding; and
(e) increasing the elasticity of highly deformable regions.

deformable face versus the forehead, Figure5d). Sometimes it is
necessary to relax the regularization energy to allow very large de-
formations in a certain region (e.g., opening the mouth, Figure5e).
We achieve this by decreasingβreg in the selected region.

The distance maps used in the definition of the feature energy
are discretized by an upwind scheme for the corresponding Eikonal
equations [OS88] (cf. Figure6c). We used the particular upwind fi-
nite element algorithm of Bornemann [BR05] since it fits well with
our overall finite element framework. Multiple sets of overlapping
features are accounted for by taking the distance to the nearest fea-
ture to create a single distance map.

3.3. Evaluation of Surface Properties

The matching energy needs to evaluate surface quantities such as
the mean curvatureshA, hB , metric tensorsgA, gB , distance to the
feature setsFA,FB , and signed distance to the domain boundaries
∂ωA, ∂ωB in the case of Eq. (8). Since all of these are constants
in the energy they only need to be discretized into appropriate tex-
tures once in the beginning. We achieve this through rendering the
flattened triangulations with appropriate values at the vertices inter-
polated across triangles (cf. Figure6).

For hA we use the magnitude of the mean curvature nor-
mal [DMSB99, MDSB02]. The sign is chosen according to the sur-
face normal, which we take to be a weighted sum of triangle nor-
mals around a vertex. Other measurements for the mean curvature
would work equally well (see [MDSB02] for a survey). SincegA

is symmetric and constant over each triangle element, we can eval-
uate its three unique components as a function of the triangle ver-
tices. The calculation of the Jacobian of the parameterization over a
triangle is well documented in the parameterization literature (e.g.,
see [SSGH01]). The distance map forFA is described above and
illustrated in Figure6c. To compute the distance map for the charac-
teristic function, we rasterize the domain ofMA and then generate
its signed distance field in a similar manner toFA (cf. Figure6d).

3.4. Multiscale Finite Element Formulation

The total energyE[·] is highly non-linear. In particular the bend-
ing energy causes many local minima in the energy landscape over
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a b c d

Figure 6: Surface properties are evaluated once and rasterized into
images for (a) mean curvaturehA; (b) the metric tensorgA, with
components shown as rgb values; (c) the distance map for the fea-
ture setFA, shown in red; (d) the distance map for the characteris-
tic functionχε

A of the domain, with the boundary∂ωA in blue.

the space of deformations. We take a multiscale approach, solving
a sequence of matching problems from coarse to fine scales. This
type of method is frequently applied and well understood in image
processing [AWS99], allowing for a robust and efficient global min-
imization on complicated energy landscapes (Figure7).

// Build the image pyramid
for k = m downto0 do

filter images at levelk usingσk

// Optimizeφk from coarse to fine scales
φ0 ← 0
for k = 0 to m do

minimize Eσk starting withφk

if k < m thenprolongateφk to φk+1

Figure 7: Pseudo-code for the multiscale algorithm.

To begin, let us define a sequence of energies(Eσk )k=0,··· ,m
corresponding to scale parametersσ0 > σ1 > · · · > σm = 0,
which act as filter parameters and range from coarse to fine scale. In
essence the energy landscape is smoothed, enabling “basin catch-
ing” at coarse levels to provide good starting guesses for subse-
quently finer levels. Note that it is not necessary to compute the ex-
act minimizer on every coarse scale. Instead we apply a non-linear
conjugate gradient method with respect to the standardL2 metric
on the space of deformations, and use the Armijo condition for step
size control [NW99] (Figure7, minimize). We stop iterating as soon
as the update is sufficiently small in theL2 norm. In practice this
proves to be a good heuristic to ensure that at the time we stop on
level k with a deformationφk, this deformation is already in the
contraction region of the global minimum on the next finer scale
k +1. The prolongation ofφk to φk+1 is performed using bi-linear
interpolation (Figure7, prolongate).

It remains for us to define the scale of energies. First, we replace
the functions on the surfaces as they appear in the different energy
functionals by pre-filtered, smoothed representations (Figure7, fil-
ter). A Gaussian filterwith respect to the surface metricof width σk

is used to define the smoothing on the surfacesMA andMB . This
is in fact an approximation for the mean curvature flow on the sur-
face [DMSB99]. Exploiting the connection between Gaussian filter-
ing and the fundamental solution of the heat equation, we replace the
mean curvatureshA andhB (appearing in the bending energy) by
pre-filtered mean curvature functionsh

σk
A andh

σk
B . This amounts

to applying the appropriate space-varying filter kernels to the corre-
spondinghA andhB images. Figure8 shows images representing
a scale of filtered mean curvature functionsh

σk
A on the parameter

domain of a surfaceMA. Similarly, we filter the metric tensorsgA

andgB component-wise.

Figure 8: The mean curvature functionhA is extended to the full
image domainω and successively restricted to coarser grids from
the multigrid pyramid.

The regularization parameterε in the definition of the energies
also depends on the sequence of scale parameters and is set to
ε(σk) = 2σk. For the matching problems considered in this paper,
we start withσ0 = 1, and defineσk = 1

2
σk−1 for k = 1, · · · m.

For the parameter domains discretized with a 256×256 grid in our
examples, we have a maximal number ofm = 8 scales. Figure9
shows a representative energy decay during the global minimization
algorithm, which exhibits a characteristic staircase-like behavior at
the change in levels.

0.0305

0.031

0.0315

0.032

0.0325

0 10 20 30 40 50 60 70

Energy vs. iterations

Figure 9: Plot of the energy decay for the sequence of deforma-
tions computed in the minimization algorithm on multiple scales.
The staircase-like behavior results from the jumps onto the next finer
scale (marked “×”), which may increase the energy temporarily.

Finally all these discretized quantities are used in the computa-
tion of the appropriate integrals in the finite element method. A dis-
crete deformationφk : ω → R2 on levelk is a vector-valued func-
tion, whose components are piecewise affine, continuous functions.
We representφk with an array of vectors inR2 at the nodes of the
image grid, and use bi-linear interpolation to evaluateφk at arbitrary
pointsξ ∈ ω. For these deformations we have to evaluate the en-
ergy functionalEε[·]. The integrals are evaluated over each pixel of
the image grid using the filtered images at that level. Any pixel-wise
integral

∫
C f dξ is evaluated using a nodal quadrature rule. Local

folds are detected whendet(φk) ≤ 0 in the energy computation,
and these inadmissible deformations are explicitly disallowed in the
minimization algorithm. Besides evaluating the discrete energy for
a given deformationφk, we have to compute the gradient of this en-
ergy in the conjugate gradient method, which requires the differenti-
ation of the discrete energy with respect to the discrete deformation.
All the necessary expressions are provided in the Appendix.

Once we have computed the discrete deformationφ, the discrete
surface matching deformation is given by

φM(x) := (xB ◦ φ ◦ x−1
A )(x) ,

which is defined onxA(ωA[φ]). We can now applyφM directly
to the triangulated surfaceMA through its texture coordinates. For
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example, to morph between the two surfaces, we need to assign a 3D
displacement vector to each vertex inMA (cf. Figure 13). Given
the texture coordinates of a vertex inMA, we evaluateφ (using
bi-linear interpolation) inωA[φ] to get a 2D displacement vector
which gives us a texture coordinate with respect toωB . This is then
used to determine the corresponding point onMB . If we wish to
transfer a texture fromMB toMA (cf. Figure1), we pass over all
the pixels inωA[φ] and evaluateφ to find the corresponding pixel
color in ωB . The result is the appropriately deformed texture from
MB onMA.

A B←A B

Figure 10: For surfaces with boundaries, a partial correspondence
is often desired. The correspondence is defined where their param-
eter domains intersect under the matching deformation (bottom). In
this domain, quantities such as texture maps can be mapped between
the surfaces (center). The unmatched regions are in black.

4. Results and Conclusions

Figures1, 10, 12 and 13 show examples of surface matching. Since
matching lies at the heart of many applications, the aim here is to
demonstrate the quality and robustness of our results rather than fo-
cus on a particular set of applications. The accompanying anima-
tions put these matches in motion by morphing between the pairs of
surfaces. Certain features cannot have exact correspondences,e.g.,
a mole on one face in Figure1, and the crack in the model in Fig-
ure 10. However, our results produce faithful correspondences be-
tween the geometric and texture features which the models have in
common.

Figure 1 shows a match between two similar surfaces that ex-
hibit a two-fold symmetry and possess texture features that should
be matched exactly (i.e., the eyes and mouth). The accuracy of the
matchφM, especially around these features, is shown by transfer-
ring the texture of the second surface onto the first withφ−1

M and
blending the surfaces withx ← 1

2
x + 1

2
φM(x), x ∈ MA, re-

spectively.

Our algorithm is also good at matching surfaces with gross differ-
ences and mismatched features, as in Figures10 and 13. This often
requires very large deformations and typically only partial matches
are possible. We find that using coarse features as hints and relying
on the bending energy for accuracy at higher resolutions is a good
strategy in this case.

Figure12shows an example of facial animation. Here the goal is

MA MB VA VB Iter. Time

lily lilygrin 12614 13512 44 0m59s
lilygrin lilysmile 13512 14032 59 2m31s

lily weiwei 12614 14265 65 2m57s
igea maxplanck 14611 17755 101 5m45s

armadillo gargoyle 84935 75914 55 0m17s

Table 1: Performance figures for the matching examples (VA, VB

denote # vertices for the triangle meshesMA,MB respectively).

to produce a continuous animation sequence by realistically blend-
ing between three keyframe poses of the same subject. This is par-
ticularly challenging, due to the presence of features that are either
rigid or highly deformable (i.e. the eyes and mouth, respectively).
We mask out these “holes” with features in order to match their
boundaries precisely. The animation has two segments, one which
morphs betweenMA,MB and the other betweenMB ,MC . We
begin by matching the surfaces pairwise to getφAB andφBC . Then
we useφAB to morph betweenMA andMB in the first segment,
and in the second segment we apply the compositionφBC ◦ φAB

to blendφAB(MA) withMC , thus guaranteeing a seamless tran-
sition.

Table1 shows the matching pairs, the sizes of the triangle meshes
and the image grid, and the computation times for the energy min-
imization. Performance figures were measured on a 3.6 GHz Intel
Pentium IV Xeon processor. The time to generate the geometry
morphs and texture transfers in the examples is negligible. We find
that the majority of time is spent in the alignment of surface cur-
vatures at finer scales. In an extreme case shown in Figure 13, the
large dissimilarities between the surfaces actually contributes very
little at finer scales, and thus the optimization is quite fast. For all
our examples, the parametersβbend = 1, βreg = 0.01, βF = 5
gave the most aesthetically pleasing results.

4.1. Summary
We have presented an approach to surface matching that addresses
the problems with robustness and computational efficiency seen in
previous methods. One class of algorithms described in Section1.1
is based on partitioning the surfaces into a common network of para-
metric domains. This either requires a great deal of user interaction
to do the partitioning by hand [LDSS99, PSS01] or involves a dif-
ficult algorithm to get a good partitioning [KS04, SAPH04]. The
combinatoric complexity of the meshes determines the performance
of these methods, which can be quite costly (on the order of hours).
The final matching can only be controlled by changing the para-
metric domain layout, and these methods cannot easily consider the
alignment of surface curvatures and other attributes, for example
from texture maps. Our approach neither experiences these perfor-
mance drawbacks nor is the user responsible for manually partition-
ing the surfaces.

Another class of methods matches a template surface to range
scan data directly in 3D [ACP03, ZSCS04]. These methods are par-
ticularly well suited to matching surfaces when a parameteriza-
tion cannot easily be computed, such as in the presence of holes.
However these algorithms require a manual 3D alignment and the
surfaces must be in similar poses to get good results from their
matching of normals. In contrast, we can handle large deformations
(cf. Figure 13) and different poses (cf. Figure12), and only require
a coarse alignment of the parameter domains to get a good match.
Unlike previous methods, the smoothness, bijectivity and existence
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of our solutions is guaranteed. In practice, our matching algorithm
robustly computes an optimal deformation that is smooth and free
of folds (Figure11). It is well known in image matching [GM98]
that uniqueness of solutions cannot be guaranteed, nor is this a nor-
mal practical requirement: typically an application does not seek a
unique match, but instead desires a smooth correspondence function
with a good correlation between salient features. We provide this
through theanalytic guaranteesof our approach and theflexibility
afforded to the user to construct good matches.

A B (A+B) / 2

Figure 11: Our method guarantees that the resulting match is well-
behaved, even in the presence of gross misalignments such as the
180◦ rotation of the left image shown here. The 50% morph on the
right is smooth and regular (features in the domain are marked with
arrows on the surface).

4.2. Future Work
One of our goals in future research is to extend this method to
matching surfaces of arbitrary (but identical) topological type. Gen-
erally speaking, this can be done without much difficulty whenever
a common parameter domain can be found for both surfaces. Our
matching energies remain unchanged, except that the metrics are
now taken with respect to the new parameter domain. For example,
we can take this approach to treat closed surfaces such as spheres,
for which parameterization algorithms exist [GGS03, PH03]. For ar-
bitrary genus shapes, it would be possible to apply our method to an
automatically generated atlas by adding inter-chart continuity con-
ditions to the matching energy, similar to [KLS03], or through a
global conformal parameterization of the surface [GY02, KSS05].
Furthermore, the lack of symmetry in our variational formulation
can be overcome by simultaneously dealing with both deformations
— fromMA toMB and its inverse fromMB toMA — with a
constraint on these two independent transformations.

Currently surface morphing is implemented based on a linear
blend between the identity and the actual matching deformation
φM. With a proper metric on the space of deformations at hand,
there may be more natural geodesic paths along which to per-
form the actual morphing (cf. the corresponding work in imag-
ing [CRM96, CHHY00]).

Finally, the application of image processing methodology is not
limited to surface matching problems. Other variational problems
in modeling and manipulating geometry might benefit from this ap-
proach as well. Our method provides a template for a general em-
bedding of such problems in the variational framework of image
processing.
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N. Litke, M. Droske, M. Rumpf, P. Schröder / An Image Processing Approach to Surface Matching

[GHDS03] GRINSPUN E., HIRANI A. N., DESBRUN M.,
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Appendix: Variations of the Matching Energy
An implementation of the formulas presented here is available from the authors upon re-
quest. Let us collect the different contributions of the matching energy in Eq. (9) and com-
pute variations in directionsϑ. We deal with an energy

E[φ] =

∫
ω

χ
ε

I + Ireg dξ

whereχε = χε
ωA

χε
ωB

(φ) is the regularized characteristic function. The energy in-
tegrandI splits into different contributionsIbend + IF resulting from the energies
Eε

bend (3) andẼε
F (5) andIreg corresponds to the energyEreg (1):

Ibend := (hB(φ)− hA)
2√

det gA

Ireg := W (trG[φ], detG[φ])
√

det gA

IF := η
ε
(dA)θ

ε
(dB(φ))

√
det gA +

η
ε
(dB(φ))θ

ε
(dA)

√
det gB(φ) det Dφ .

The variation of the energy in a directionϑ is given by

E
′
[φ](ϑ) :=

d

dε
E[φ + εϑ]

∣∣∣∣
ε=0

=

∫
ω

(∂φχ
ε · ϑ) I + χ

ε (
∂DφI : Dϑ + ∂φI · ϑ

)
+∂DφIreg : Dϑ dξ ,

where “·” indicates the Euclidean scalar product and “:” is a scalar product on matrices
with A : B = tr(AT B). Hence, the discreteL2 energy gradient is the vector of these
integrals over directional derivatives of the different integrands in directions of the finite
element basis on the space of deformations.

The computation of these derivatives with respect to the argumentsφ andDφ is a
straightforward, albeit involved, application of the chain rule. In particular, we obtain for
the variation of the regularized characteristic function

∂φχ
ε · ϑ = χ

ε
ωA

∇χ
ε
ωB

(φ) · ϑ ,

for the integrand of the bending energy (which does not depend onDφ)

∂φIbend · ϑ = 2(∇hB(φ) · ϑ) (hB(φ)− hA)
√

det gA,

and for the integrand of the regularization energy

∂φIreg · ϑ=
(

αl∂φa · ϑ + αa
(
1−

αa − αl

αa d2

)
∂φd · ϑ

)√
det gA ,

∂DφIreg : Dϑ=
(

αl∂Dφa : Dϑ +

αa
(
1−

αa − αl

αa d2

)
∂Dφd : Dϑ

)√
det gA ,

with

∂Dφa : Dϑ = 2tr(g
−1
A Dφ

T
gB(φ) Dϑ) ,

∂φa · ϑ = tr(g
−1
A Dφ

T
(∇gB(φ) · ϑ) Dφ) ,

∂Dφd : Dϑ = 2(det gA)
−1

det gB(φ) (det Dφ)
2
tr(Dφ

−1
Dϑ) ,

∂φd · ϑ = (det gA)
−1

det gB(φ) (det Dφ)
2 ·

tr
(
g
−1
B (φ)(∇gB(φ) · ϑ)

)
.

Here we define∇gB(φ) · w ∈ R2,2 by

(∇gB(φ) · w)ij =
∑
k

∂k(gB)ij(φ)wk .

Finally, we obtain for the integrand of the feature energy

∂φIF · ϑ = η
ε
(dA) (θ

ε
)
′
(dB(φ))(∇dB(φ) · ϑ)

√
det gA

+(η
ε
)
′
(dB(φ))(∇dB(φ) · ϑ) θ

ε
(dA)

√
det gB(φ) det Dφ

+ η
ε
(dB(φ)) θ

ε
(dA)

tr(g−1
B

(φ)(∇gB(φ) · w))

2
√

det gB(φ)
det Dφ ,

∂DφIF : Dϑ = η
ε
(dB(φ)) θ

ε
(dA)

√
det gB(φ) det Dφtr(Dφ

−1
Dϑ) .
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A B C A′ B′ C′

Figure 12: Morphing through keyframe posesA, B, C is accomplished through pair-wise matchesA→ B and B → C. Starting withA
we blend its shape intoB usingA→ B, and then morph toC by applyingA→ B followed byB → C. The skin texture fromA is used
throughout. Because of the close similarity in the poses, one can expect the intermediate blendsA′, B′, C′ to correspond very well with the
original keyframesA, B, C, respectively.

A (A+B) / 2 B

Figure 13: Large deformations are often needed to match surfaces that have very different shapes. A
checkerboard is texture mapped onto the first surface as it morphs to the second surface (top). The
matching deformation shown in the parameter domain (bottom) is smooth and regular, even where the
distortion is high (e.g., around the outlines of the mouth and eyes).
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