Surface Reconstruction from Noisy Point Clouds

Boris Mederos, Nina Amenta, Luiz Velho and Luiz Henrique de Figueiredo

University of California at Davis
IMPA - Instituto Nacional de Matematica Pura e Aplicada

Abstract

We show that a simple modification of the power crust algorithm for surface reconstruction produces correct outputs in presence of noise. This is proved using a fairly realistic noise model. Our theoretical results are related to the problem of computing a stable subset of the medial axis. We demonstrate the effectiveness of our algorithm with a number of experimental results.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Surface Reconstruction, Medial Axis, Noisy samples

1. Introduction

Surface reconstruction is an important problem in geometric modeling. It has received a lot of attention in the computer graphics community in recent years because of the development of laser scanner technology and its wide applications in areas such as reverse engineering, product design, medical appliance design and archeology, among others.

Different approaches have been taken to the problem, including the work of Hoppe, DeRose et al which popularized laser range scanning as a graphics tool [HDD'92], the rolling ball technique of Bernardini et al [BMR'99], the volumetric approach of Curless et al [CL96] used in the Digital Michelangelo project [LPC'00], and the radial basis function method of Beason et al. [CBC'01].

The algorithms [ABK98, ACDL00, BC02, ACK01a] uses the Voronoi diagram of the input set of point samples to produce a polyhedral output surface. A fair amount of theory was developed along with these algorithms, which was used to provide guarantees on the quality of the output under the assumption that the input sampling is everywhere sufficiently dense. The theory relates surface reconstruction to the problem of medial axis estimation in interesting ways, and shows that the Voronoi diagram and Delaunay triangulation of a point set sampled from a two-dimensional surface have various special properties. Some strengths of the sampling model used are that the required sampling density can vary over the surface with the local level of detail, and that over-sampling, in arbitrary ways, is allowed. One drawback is that it assumes that the sample is free of noise.

When noise is considered as well, the quality of the output is related to both the density and to the noise level of the sample. A small number of recent results have begun to explore the space of what it is possible to prove under various noisy sampling assumptions. Dey and Goswami [DG04] proposed an algorithm for which they could provide many of the usual theoretical guarantees, using a model in which both the sampling density and the noise level can vary with the local level of detail, but which gives up the arbitrary over-sampling property. A real noisy input, however, might well have arbitrary over-sampling but the sampling density and noise level usually varies unpredictably, independent of the local level of detail.

In this paper, we show that similar results can be achieved given bounds on the minimum sampling density and maximum noise level, but allowing arbitrary over-sampling.

Related Work

Most of the algorithms using the Voronoi diagram and Delaunay triangulation of the samples, for which a variety of theoretical guarantees can be provided, require the input to be noise-free [AB99, ACDL00, ACK01b, BC02]. In practice some of these algorithms are more sensitive to noise than others. The recent algorithm of Dey and Goswami [DG04] extends much of the theory developed in the noise-free case.
dial axis estimation (in fact the power crust code is probably
sampling model was used by Chazal and Lieutier [CL05] in a
recents paper on medial axis estimation: their sampling re-
requirement is simply that the Hausdorff distance between the
point sample and the surface itself is bounded by some con-
stant r. Notice that this allows for arbitrary over-sampling,
but does not allow the sampling density to vary over the sur-
face according to the local level of detail. Chazal and Lieu-
tier proved, drawing on more general results, that a subset of
the Voronoi diagram of P approaches a subset of the medial
axis of S as r → 0, and that both converge to the entire me-
dial axis. It is tempting to apply Chazal and Lieutier’s result
directly to the surface reconstruction problem, by using the
power crust approach to produce a polyhedral surface from
their approximate medial axis. But this is not as straightforward
as it might seem: their medial axis estimation includes
Voronoi edges and two-faces as well as vertices, while the
analysis of the power crust relays on having an approxima-
tion of the medial axis by Voronoi vertices. Also, the subset
of the medial axis approximated by Chazal and Lieuter is not
guaranteed to be homotopy equivalent to the complete me-
dial axis, or to the object, since the sampling is not required
to be dense enough to capture the smallest topological fea-
ture.

Recently similar techniques have been used to analyze
a particular smooth surface determined by a noisy set of
samples [Kol05], a variant of the MLS surface definition
of Levin [Lev03]. In this case arbitrary over-sampling seems
to be ruled out, since the surface locally averages the input
samples and malicious over-sampling could influence the lo-
cal averages. There is also a recent algorithm for curve re-
construction from a noisy sample [CFG*03] with theoretical
guarantees, for which the sampling model has the interesting
property that the quality of the output improves with in-
creased sampling density, even when the noise level remains
constant. The sampling model used is not particularly realis-
tic, but the property seems quite relevant to practice.

2. Geometric Definitions and Sampling Assumptions

2.1. Definitions and Notation

We will use the following notation. For any set X ⊂ R^3, X,
X̅, and ∂X denote respectively the interior of X, the com-
plement of X and the boundary of X. Given a point x and a set
Y we denote by d(x, Y) = inf_{y ∈ Y} d(x, y). Given any two set
X and Y we denote by ˜d_H(X, Y) = sup_{x ∈ X} d(x, Y) the one-
sided Hausdorff distance from X to Y and by d_H(X, Y) =
max{ ˜d_H(X, Y), ˜d_H(Y, X)} the Hausdorff distance between X
and Y. We denote by B_c,p a ball with center c and radius p.

We will consider two-dimensional, compact, and C^2 man-
ifolds without boundary, and we will call such a manifold a
smooth surface. Let S be a smooth surface. We will assume
that S is contained in an open, bounded domain Ω (e.g., a big
open ball). The surface S divides Ω into two open solids, the
inside (inner region) and the outside (outer region) of S,
which are disconnected.

The medial axis M of a surface S is the closure of the set
of points in Ω that have at least two distinct nearest points

Figure 1: A two dimensional example of the power crust al-
gorithm. a) An object and its medial axis. b) The voronoi di-
agram and its poles, the blue points corresponding to poles
and the circles corresponding to polar balls. c) The set of
inner and outer polar balls. d) The power diagram of the set
of polar balls. The algorithms labels the cells of this power
diagram inner or outer. e) The set of faces in the power dia-
gram which separate inner from outer cells.
on \(S \). Note that the set \(M \) is divided into two parts, the inner and outer medial axis, belonging to the inner or outer region of the surface \(S \), respectively. The ball \(B_{m,p_o} \), centered at a medial axis point \(m \) with radius \(p_o = d(m,S) \) will be called a medial ball. It is easy to see that a medial ball is maximal in the sense that there is no ball \(B \) with \(B \cap S = \emptyset \) which contains \(B_{m,p_o} \).

The medial axis \(M \) is a bounded set, since in our definition it is contained in the bounded domain \(\Omega \). So there exists an upper bound \(\Delta_0 \) for the radius of the medial balls.

2.2. Sampling and Noise Models

There are at least two good approaches to defining sampling and noise models. First, we can begin with a model which we believe roughly describes the characteristics of reason-

Definition 1 Noisy \((k,r)\)-sample. A finite set of points \(P \) is a noisy \((k,r)\)-sample if the following conditions hold:

1. \(\hat{P} \) is a \(r \)-sample of \(S \).
2. For any \(p \in P \), \(d(p, \hat{p}) \leq c_1 r \text{lfs}(\hat{p}) \) for some constant \(c_1 \).
3. For any \(p \in P \), \(d(p,q) \geq c_2 r \text{lfs}(\hat{p}) \), where \(q \) is the \(k \)-th nearest sample to \(p \), for some constant \(c_2 \).

Here the first condition requires the sample to be dense enough, the second condition bounds the noise level, and the third condition requires that the sample is nowhere too dense (by requiring the \(k \)-th nearest sample to be far enough away). The third condition does not seem strictly necessary, and one of the contributions of this paper is to show that indeed it is not, at least for many of the geometric results used in the analysis. We will adopt a definition which we call a noisy \(r \)-sample, essentially only using conditions i) and ii):

Definition 2 Noisy \(r \)-sample. A finite set of points \(P \) is a noisy \(r \)-sample if the following two conditions hold:

1. \(\hat{P} \) is a \(r \)-sample of \(S \).
2. For any \(p \in P \), \(d(p, \hat{p}) \leq k_1 r \text{lfs}(\hat{p}) \), for some constant \(k_1 \).

We define \(\text{lfs}(S) = \min_{x \in S} \text{lfs}(x) \) for the surface as a whole. Assuming \(S \) is \(c^2 \) we have \(\text{lfs}(S) > 0 \) [APR02]. We also define the maximum local feature size \(\Delta_1 = \max_{x \in S} \text{lfs}(x) \) and we have \(\Delta_1 \leq \Delta_0 \) (recall that \(\Delta_0 \) is the radius of the largest medial ball).

3. Geometric constructions and the algorithm

To avoid to dealing with infinite Voronoi cells, we add to the sample set \(P \) a set \(Z \) of eight points, the vertices of a large box containing \(\Omega \).

The concept of poles was defined by Amenta and Bern [ACK01b] as follows:

Definition 3 The poles \(p_1, p_0 \) of a sample \(p \in P \), are the two vertices of its Voronoi cell farthest from \(p \), one on either side of the surface. The Voronoi balls \(B_{p_1,p_0} \), \(B_{p_0,p_1} \), are the polar balls with radii \(p_{p_1} = d(p_1,p) \) and \(p_{p_0} = d(p_0,p) \) respectively.

Notice that given a noisy sample set not all Voronoi cells are long and skinny, as they are in the noise-free case.

A polar ball \(B_{p,\hat{p}} \) is classified as an inner (outer) polar ball if its center is inside the inner (outer) region of \(\mathbb{R}^3 \) \(S \). We denote by \(\mathbb{P}_I \) and \(\mathbb{P}_O \) the set of all inner and outer polar balls, respectively.

Algorithm

Our algorithm consists of a very simple modification to the power crust algorithm: we discard any poles such that the radius of the associated polar ball is smaller than \(\frac{\text{lfs}(Z)}{c} \) where \(c > 1 \) is a constant.

This can be summarized as follows.

Algorithm 3.1 Power Crust

1. Compute the Delaunay Diagram of \(P \cup Z \).
2. Determine the set \(\mathbb{P} \) of polar balls.
3. Delete from \(\mathbb{P} \) any ball of radius \(< \frac{\text{lfs}(Z)}{c} \), producing \(\mathbb{P}' \).
4. Compute the power diagram of \(\mathbb{P}' \).
5. Label the balls in \(\mathbb{P}' \) as outer balls or inner balls, resulting in the sets \(\mathbb{B}_O \) and \(\mathbb{B}_I \).
6. Determine the faces in \(\text{Pow}(\mathbb{B}_O \cup \mathbb{B}_I) \) separating inner from outer cells.

We discuss the labeling in step five in the full version of the paper [MAVdF05]. It is done using exactly the same method as in the original power crust algorithms, but to show that it remains correct in the noisy case we need to prove a few more lemmas.

© The Eurographics Association 2005.
Analysis Overview

Most of our paper is concerned with the proof that this simple modification produces an output polyhedral surface which is correct, topologically and geometrically, given a noisy r-sample. Some of the lemmas are true for constant r independent of S. The lemmas 6-9 and Theorems 1 and 2 requires $r = O(1/\sqrt{T})$

We prove that a subset of the medial axis can be well approximated by the set of poles, this is stated in Lemma 6. As a consequence of this fact we prove in Lemma 8 that the boundary of the union of the set of big inner (outer) polar balls (see Equations 1 and 2) is close to the sampled surface, in the sense of Hausdorff distance. We use this fact in turn to show that the Hausdorff distance between the power crust and the sampled surface is $O(\sqrt{T})$ (Theorem 1) and that the power crust is homeomorphic to the original surface S (Theorem 2).

4. Union of polar balls

Given a constant $c > 1$ we define the following two polar ball subsets:

\[B_I = \{ B_{r, q} \in P_I : r_c \geq \frac{\text{ls}(S)}{c} \} \]

\[B_O = \{ B_{r, q} \in P_O : r_c \geq \frac{\text{ls}(S)}{c} \} \]

The sets B_I and B_O are the sets of balls retained in our modified power crust algorithm. Their respective boundary sets are: $S_I = \partial(\bigcup_{B \in B_I} B)$ and $S_O = \partial(\bigcup_{B \in B_O} B)$. Our goal will be to prove that the boundary sets S_I and S_O are close to the surface S. Moreover, we will prove that a subset of the two-dimensional faces of the power diagram of $B_I \cup B_O$ is homeomorphic to the surface S.

Our proofs will also use another pair of subsets of the polar balls. We denote by B'_I and B'_O the set of inner and outer polar balls where each ball contains a medial axis point. That is,

\[B'_I = \{ B_{r, q} \in P_I : B_{r, q} \cap M \neq \emptyset \} \]

\[B'_O = \{ B_{r, q} \in P_O : B_{r, q} \cap M \neq \emptyset \} \]

The following lemma proves that $B'_I \subset B_I$ and $B'_O \subset B_O$ respectively.

Lemma 1 $B'_I \subset B_I$ and $B'_O \subset B_O$, for $c > 2$ and $r < \frac{c-2}{3c}$.

Proof Take a ball $B_{r, q} \in B'_I$ ($B_{r, q} \in B'_O$). There exists a sample point p on $\partial B_{r, q}$ and there exists an inner (outer) medial axis point m inside $B_{r, q}$. Then we have that $d(\bar{m}, p) + 2 \rho \geq d(\bar{m}, p) + d(\rho, m) \geq \text{ls}(\bar{m})$, and consequently $\rho \geq \frac{\text{ls}(\bar{m}) - d(\rho, p)}{c}$. Taking $r \leq \frac{c-2}{3c}$ we get that $\rho \geq \frac{\text{ls}(\bar{m})}{c}$.

The next lemma is a consequence of the sampling requirements and will be used for later proofs.

Lemma 2 Given P a noisy r-sample of S, let D be a ball with $D \cap P = \emptyset$ and $D \cap S \neq \emptyset$, let x be a point in $D \cap S$. If $B(x, r_*) \subset D$ then $r_* \leq r(1 + 2k_1)\text{ls}(x)$.

Proof By sampling condition 1 of Definition 2, there exists a sample q such that $d(x, q) \leq r\text{ls}(x)$. Using the fact that ls is a one-Lipschitz function we have that $\text{ls}(q) \leq d(q, x) + \text{ls}(x) \leq r\text{ls}(x) + \text{ls}(x) = (1 + r)\text{ls}(x)$.

By the sampling condition 2 and the previous equation we get $d(x, q) \leq d(x, q) + d(q, x) \leq r\text{ls}(x) + k_1r\text{ls}(q) \leq (r + 2k_1r)\text{ls}(x)$. Since $D \cap P = \emptyset$ one deduces that $B(x, r_*) \cap P = \emptyset$, hence $r_* \leq d(x, q) \leq r(1 + 2k_1)\text{ls}(x)$.

Also we have the following lemma from Amenta and Bern [AB99] which estimates the angle between the normals to the surface at two close points.

Lemma 3 For any two points p and q on S with $d(p, q) \leq r \min\{\text{ls}(p), \text{ls}(q)\}$, for any $r \leq \frac{1}{17}$, the angle between the normals to S at p and q is at most $\frac{r}{2c}$.

A central idea in Voronoi-based surface reconstruction is that the Voronoi cells of a dense enough noise-free sample are long, skinny and perpendicular to the surface. This is not true for all Voronoi cells when there is noise, but the following lemma shows that it is true for large enough Voronoi cells. Specifically, given a sample point p and a point $x \in \text{Vor}(p)$ we bound the angle between the vector $\bar{x}p$ and the surface normal \hat{n}_p at the projection of the sample p onto S. The lemma states that when x is far away from p, then this angle has to be small. In the noise-free case, “small” meant $O(r)$; here we achieve a bound of only $O(\sqrt{T})$.

Lemma 4 Let $p \in P$ be a sample such that there exists a point x on the inner (outer) region of the Voronoi cell of p with distance r_* between x and p satisfying the inequality $r_* \geq \frac{\text{ls}(p)}{c}$ for some constant c_1. Then the angle between the vector $\bar{x}p$ and the oriented outward (inward) surface normal \hat{n}_p is $O(\sqrt{T})$.

Proof Denote by B_{m, r_0} the outer (inner) medial ball tangent to the surface S at \hat{n}_p. Let B_{r_0} be the ball centered at x with radius $r_* = d(x, p)$. Since x is in the Voronoi cell of p we have $B_{m, r_0} \cap P = \emptyset$.

The angle between the vectors $\bar{x}p$ and \hat{n}_p is the sum $\angle(t, x, p) + \angle(t, m, p)$, where the segment pr is perpendicular to xm, see figure 2. Our aim will be to find upper bounds for the angles $\angle(t, x, p)$ and $\angle(t, m, p)$, respectively. Since $d(x, t) < d(x, p) = r_*$, we have that $t \in B_{r_0}$, and the following two situations are possible: either $t \in B_{m, r_0} \cap B_{r_0}$, or $t \in B_{m, r_0} \cap B_{r_0}$. First case $t \in B_{m, r_0} \cap B_{r_0}$, see figure 2 left. Since $t \in B_{m, r_0}$ we have that t is on the outer (inner) region of $\Omega \cap S$.

(2) The Eurographics Association 2005.
segment \([x,t] \subset B_{x,\rho_x}\). Moreover, the ray \(l_s\) intersects \(\partial B_{x,\rho_x}\) at the point \(b_x\), see figure 2. Using that \(t_b \in B_{x,\rho_x}\) we have, for small enough \(r\), the following inequality that will be useful later:

\[
\text{lfs}(t_s) \leq d(t_s, \tilde{p}) + \text{lfs}(\tilde{p}) \leq \rho_x + d(x, p) + d(p, \tilde{p}) + \text{lfs}(\tilde{p}) \\
\leq 2\rho_x + (1 + r \cdot k_l)\text{lfs}(\tilde{p}) \leq (2 + 2c_1)\rho_x = k_c\rho_x
\]

Because the points \(t_0, t_b, b_x\) are inside the ball \(B_{x,\rho_x}\) we have that \(B_{x,d(t_b,b_x)} \subset B_{x,\rho_x}\). Since \(B_{x,\rho_x}\) is empty of samples (because \(\rho_x\) is the distance of \(x\) to its closest point in \(P\)), we have that \(B_{x,d(t_b,b_x)}\) is also empty of samples. Consequently, by Lemma 2, we obtain \(d(t_b, b_x) \leq O(\text{lfs}(t_s))\). From this last equation together with equation 5 and the fact that \(t \in [b_x, t_s]\) we obtain the following two inequalities:

\[
d(t, b_x) \leq d(t_s, b_x) \leq O(r)\text{lfs}(t_s) \leq O(r)\rho_x \quad (6)
\]

\[
d(t, t_s) \leq d(t_s, b_x) \leq O(r)\text{lfs}(t_s) \leq O(r)\rho_x \quad (7)
\]

Consequently, by 6 we have \(d(t, x) = \rho_x - d(t, b_x) \geq (1 - O(r))\rho_x\), hence

\[
d(p,t) = \sqrt{d(p,x)^2 - d(x,t)^2} = O(\sqrt{r})\rho_x
\]

so, the angle \(\angle(t, x, p)\) is bounded by

\[
\angle(t, x, p) = \arcsin\left(\frac{d(p,t)}{\rho_x}\right) = O(\sqrt{r}) \quad (9)
\]

On the other hand, since \(t \in B_{m,\rho_m}\), we have that \(\text{lfs}(t_s) < d(t_s, t) + d(t, m) \leq O(\text{lfs}(t_s)) \leq m\), thus obtaining \(\text{lfs}(t_s) < \frac{\rho_m}{1 - O(r)}\). Because the points \(m, t, t_s\) are collinear, \(t \in B_{m,\rho_m}\) and \(t_s \notin B_{m,\rho_m}\). So we obtain the following lower bound for the distance between \(t\) and \(m\):

\[
d(t, m) \geq \rho_m - d(t, t_s) \geq \rho_m - O(r)\text{lfs}(t_s) \geq (1 - O(r))\rho_m
\]

Since \(\text{lfs}(\tilde{p}) < \rho_m\), and using the sampling conditions, we get that \(d(p, m) < d(m, \tilde{p}) + d(\tilde{p}, p) \leq (1 + O(r))\rho_m\), consequently

\[
d(p,t) = \sqrt{d(p,m)^2 - d(t,m)^2} = O(\sqrt{r})\rho_m \quad (10)
\]

We have that \(\rho_m = d(m, \tilde{p}) \leq d(m, p) + d(p, \tilde{p})\), so using that \(\text{lfs}(\tilde{p}) \leq \rho_m\) we have \(d(m, p) \geq \rho_m - d(\tilde{p}, p) \geq (1 - O(r))\rho_m\). From this equation and Equation 10 we can bound the angle \(\angle(t, m, p)\) as follows:

\[
\angle(t, m, p) = \arcsin\left(\frac{d(p,t)}{d(m,p)}\right) = O(\sqrt{r}) \quad (11)
\]

Therefore, from 9 and 11 we have that our target angle \(\angle(t, x, p) + \angle(t, m, p) = O(\sqrt{r})\).

Second case: \(t \in B_{m,\rho_m} \cap B_{x,\rho_x}\). (Note that this case implies that \(B_{m,\rho_m} \cap B_{x,\rho_x} = \emptyset\). Since \(t \notin B_{m,\rho_m}\) and \(d(m, p) \geq d(t, m)\) we obtain that \(p \notin B_{m,\rho_m}\), consequently we have that \(d(t, \partial B_{m,\rho_m}) \leq d(p, \partial B_{m,\rho_m}) = d(p, \tilde{p}) \leq O(r)\text{lfs}(\tilde{p})\), see Figure 2 right. From this inequality and using the fact that \(t \in B_{x,\rho_x}\) we get

\[
d(t, x) \geq \rho_x - d(t, \partial B_{m,\rho_m}) \geq \rho_x - O(r)\text{lfs}(\tilde{p}) \quad (12)
\]

Since \(\text{lfs}(\tilde{p}) \leq d(\tilde{p}, p) + d(p, x) \leq O(r)\text{lfs}(\tilde{p}) + \rho_x\) we get \(\text{lfs}(\tilde{p}) \leq \frac{\rho_x}{1 - O(r)}\). Consequently Equation 12 can be rewritten in terms of \(\rho_x\), that is \(d(t, x) \geq \rho_x - O(r)\text{lfs}(\tilde{p}) \geq (1 -
Therefore, we have \(\angle(t,x,p) = \arcsin \left(\frac{d(p,t)}{d(t,x)} \right) \leq \arcsin \left(\frac{O(\sqrt{T})}{p_m} \right) = O(\sqrt{T}). \)

From now on assure that there exists an inner (outer) polar ball \(B \) surface point to \(\partial S \).

As a consequence of this lemma, we have that the inner and outer polar ball \(O(r) \)

\[\text{Lemma 5} \text{ Given an inner (outer) medial axis point } m, \text{ then there exists an inner (outer) polar ball } B \in \mathbb{B}_I (B \in \mathbb{B}_O) \text{ such that } m \in B. \]

\[\text{Proof} \text{ There exists a sample } p \text{ such that } m \text{ is inside its Voronoi cell. Denote by } q \text{ the inner (outer) pole of } p. \text{ Then by the definition of local feature size we have } d(m, p) \geq \text{Lfs}(p). \text{ By the triangle inequality we have } d(m, p) + d(p, q) \geq d(m, q), \text{ so we have } d(m, p) \geq d(m, q) - d(p, q) \geq \text{Lfs}(p) - r_k \text{Lfs}(p). \text{ Taking } r \leq \frac{1}{2} \text{ we get } d(m, p) \geq \frac{1}{2} \text{Lfs}(p). \]

This fact along with Lemma 4 implies that the angle \(\angle(m(p), \bar{m}(p)) = O(\sqrt{T}) \), using the same argument. Since \(d(q, p) \geq d(m, p) \) we obtain \(\angle(q(p), \bar{m}(p)) = O(\sqrt{T}) \). Hence we obtain \(\angle(q(p), \bar{m}(p)) = O(\sqrt{T}) \). Taking \(r \leq \frac{1}{2} \) we get \(d(m, p) \geq \frac{1}{2} \text{Lfs}(p) \). \]

We take \(r \) small enough such that \(\angle(q(p), \bar{m}(p)) \leq \frac{\pi}{4} \). If \(d(m, p) \leq d(q, p) \) we find that \(m \) is inside the interior (outer) polar ball \(B_{d,q}(p) \). Hence, we have that \(B_{d,q}(p) \in \mathbb{B}_I (B_{d,q}(p) \in \mathbb{B}_O) \). By Lemma 1, \(\mathbb{B}_I \subset \mathbb{B}_O \) (\(\mathbb{B}_O \subset \mathbb{B}_O \)), completing the proof. \]

From now on assure that \(r = O(\text{Lfs}(S)/\Delta_1) \). We will show that the medial axis points \(m \) with angle \(\angle q(m) \) sufficiently large are well approximated by poles. The point \(p(q) \) is the closest sample to \(m \) and \(x_1 \) is the closest sample to the closest surface point to \(m \).

\[\text{Lemma 6} \text{ Let } m \text{ be a inner (outer) medial axis point such that } m \in \text{Vor}(q) \text{ for some sample } q \text{ and let } p \text{ be the inner (outer) pole of } \text{Vor}(q). \text{ Let } x \in S \text{ be the closest point to } m \text{ on } S \text{ and } x_1 \text{ is the closest sample to } x. \text{ Then we have } d(m, x_1) - d(m, q) \leq O(r) \text{ and if the angle } \angle x_1mq \geq 2 \sqrt{T}, \text{ then } d(m, p) = O(\sqrt{T}) \text{ and } |d(m, x_1) - d(m, p)| \leq O(\sqrt{T}). \]

\[\text{Proof} \text{ See lemma 6 in the full version of the paper MAVD05.} \]

Using this fact, lemma 6, one can derive that the boundaries \(S_I \) and \(S_O \) of the union of balls \(\bigcup_{B \in \mathbb{B}_I B \text{ and } \bigcup_{B \in \mathbb{B}_O} B \text{ are close to the surface } S. \) This is stated in lemma 8, to prove this lemma a technical lemma 7 is first introduced.

\[\text{Lemma 7} \text{ Let } B_{c_1, p_1} \text{ and } B_{c_2, p_2} \text{ be two balls with } B_{c_1, p_1} \cap B_{c_2, p_2} \neq \emptyset \text{ and } B_{c_2, p_1} \neq B_{c_1, p_2}. \text{ Let } r \leq r_1, r_2 \leq 1, 2 \text{ be such that } d(c_1, c_2) \leq \epsilon \text{ and } |p_1 - p_2| \leq \epsilon \text{ and let } x_2 \text{ be a point on } \partial B_{c_2, p_2} \backslash \bigcup_{B \in \mathbb{B}_I B \text{ and } \bigcup_{B \in \mathbb{B}_O} B \text{ respectively, this is stated in the next lemma. So let us } x \in S \text{ be the closest point to } x \text{ on } S \text{ and let } m \text{ be the center of the inner medial axis ball } B_{m, p_1}, \text{ tangent to } S \text{ at } x. \text{ Then we have } m \text{ is inside the segment } [x, m_2] \text{ of course the ball } B_{d, d(x)}(x) \text{ with } \mathbb{B} \cap S = \emptyset \text{ contains } B_{m, p_1}, \text{ which is a contradiction due to the ball } B_{m, p_1} \text{ is maximal. Therefore the medial axis point } m_2 \text{ belongs to the Voronoi cell of some sample point } q, \text{ let } p \text{ and } B_{p, p_2} \text{ be the inner pole of } q \text{ and its polar ball respectively. Then the first part of lemma 6 states that the distances } d(m, x_1) \text{ and } d(m, q), \text{ where } x_1 \text{ is the closest sample to } x \text{ are very close, that is } |d(m, x_1) - d(m, q)| \leq O(r). \text{ Suppose that the angle } \angle qx_1 \geq \sqrt{T}, \text{ this implies that } d(x_1, q) \text{ is small. Since } d(m, q) \leq d(m, x_1), \text{ then there exists a point } q_1 \text{ in the segment } m_1x_1 \text{ such that } d(m, q_1) = d(m, q) \text{ and } d(x_1, q_1) = d(m, x_1) - d(m, q_1) \leq O(r). \text{ Therefore, using that } \angle qx_1 \leq 2 \sqrt{T} \text{ we have } d(q, q_1) - d(q, q_1) \leq 2 \sin(\angle x_1q_1/2)d(q, q) \text{ and } O(r) \leq O(\sqrt{T}) \text{ and consequently } \angle x_1q = \angle x_1q_1 + O(\sqrt{T}). \text{ On the other hand, the lemma 4 implies that } \angle q = O(\sqrt{T}), \text{ from this fact and using that } \text{Lfs}(S)/2 \leq \text{Lfs}(q)\leq \text{Lfs}(q) - d(q, q_1) \leq d(m, q) \leq d(q, q), \text{ we have for } r \text{ small enough that } m_2 \in B_{p, p_2}, \text{ and consequently } B_{p, p_2} \subset B_{p, p_2} \subset B_{p, p_2}. \text{ The point } x \notin B_{p, p_2}, \text{ because, otherwise } x \in B_{p, p_2}, \text{ which is a contradiction with } x \in S \text{. Therefore, there exists } x_2 = [x, x_1] \cap \bigcup_{B \in \mathbb{B}_I B \text{ and } \bigcup_{B \in \mathbb{B}_O} B \text{ we get that } d(x, x_2) \leq d(x, q_1) + O(\sqrt{T}) \text{ and we are done.} \]

Now we consider the case \(\angle qx_1 > \sqrt{T}. \)
implies $d(m, p) \leq O(\sqrt{7})$ and $|\hat{p}_1 - p| = O(\sqrt{7})$. Since $d(m, p) \leq O(\sqrt{7})$, then for r small enough m_1 belongs to B_{r,p_1} and consequently $B_{r,p_1} \subseteq \mathbb{R}^3$. Recall that $\hat{x} \in S$ and that $x \in [\tilde{x}, m_1]$. If \hat{x} is inside B_{r,p_1}, then $[\tilde{x}, m_1] \subseteq B_{r,p_1}$, so that $x \in B_{r,p_1}$. But this contradicts the fact that $x \in S$.

Hence it must be the case that \hat{x} is on $\partial B_{m_1,p_1} \setminus B_{r,p_1}$.

Let $x_0 = [m_1, \tilde{x}] \cap \partial B_{r,p_1}$ (this intersection point is unique). We have that $x_0 \in [\tilde{x}, x]$; otherwise, $x \in (m_1, x_0)$, the portion of the segment inside B_{r,p_1}, which again is a contradiction with the fact that $x \in S$ and $B_{r,p_1} \subseteq \mathbb{R}^3$. Now applying Lemma 7, we have that $d([\tilde{x}, x]) \leq 2O(\sqrt{7})$ and $d([\tilde{x}, x]) \leq d([\tilde{x}, x]) \leq O(\sqrt{7})$, so we have proved that $d_H([S, \tilde{x}]) \leq O(\sqrt{7})$.

Now we will prove that $d_H([S, \tilde{x}]) \leq O(\sqrt{7})$. Let x be an arbitrary point on S and let B_m and $B_{r'}$ be the inner and outer medial balls tangent to S at x respectively. The segment $[m_1, m_2]$ is orthogonal to S at x.

Now we will establish that there exists a point x_1 on $S \cap (m, m')$. Suppose not; then $S \cap (m, m') = \emptyset$, and there exists a ball $B_r \subseteq B_m$ such that $m_1 \not\in B_r$. Since c and m' are on opposite sides of S, then the segment $[c, m']$ intersects S at a point x, so we have that $m' \in B_{d(S, \tilde{c}, B_r)} \subseteq B_r$ with $B_{d(S, \tilde{c}, B_r)}$ empty of samples. From Lemma 2 we have $d(s, B_{r'c}) = d(r(ss(s)) < d(s, m')$, which implies that $m' \not\in B_{d(S, \tilde{c}, B_r)}$, obtaining a contradiction we the fact that the segment $[s, m']$ is contained in $B_{d(S, \tilde{c}, B_r)}$.

We can conclude there is a point x_1 on $S \cap (m, m')$. Since the closest point to x_1 on S is the point x (the segment $[x_1, x]$ is orthogonal to the surface at x), we have $d(x, x_1) = d(x_1, S) \leq d_H([S, \tilde{x}]) \leq O(\sqrt{7})$. Hence $d(x, S) \leq O(\sqrt{7})$ and consequently $d_H([S, \tilde{x}]) \leq O(\sqrt{7})$.

5. Power Crust

The power diagram of a set of balls \mathbb{B} is the weighted Voronoi diagram which assigns an associated point to the cell of the ball $B \in \mathbb{B}$ which minimizes the power distance $d_{pow}(x, B)$. The power distance between a point and a ball $d_{pow}(x, B_r) = d(x, c)^2 - r^2$. We denote it by $Pow(B_r \cup B_m)$. In the next two theorems we will prove that $P(B_r \cup B_m)$ is a polyhedral surface homeomorphic and close to the original surface S.

Taking $\varepsilon < \inf(S)$ we denote by $N_{\varepsilon} = \{x \in \mathbb{R}^3 : d(x, S) \leq \varepsilon\}$ a tubular neighborhood around S. The boundary of N_{ε} is $S_{\varepsilon} \cup S_{-\varepsilon}$ where $S_{\varepsilon} = \{x \in \mathbb{R}^3 : x = \tilde{c} + \varepsilon x_1\}$ are two offset surfaces. When $d_H([S, \tilde{x}]) < \varepsilon$ and $d_H([S, \tilde{x}]) < \varepsilon$ (Lemma 8), the boundary S_{ε} of the sets $U_{B_r \cup B_m}$ and $U_{B_r \cup B_m}$ is inside the set N_{ε} and consequently the sets S_{ε} and $S_{-\varepsilon}$ are inside the interior of the sets $U_{B_r \cup B_m}$ and $U_{B_r \cup B_m}$ respectively.

Theorem 1 If $d_H([S, \tilde{x}]) \leq \varepsilon$ and $d_H([S, \tilde{x}]) \leq \varepsilon$ then the Hausdorff distance between $P(B_r \cup B_m)$ and S is smaller than 2ε.

Proof Let $I(S_{\varepsilon})$ be the part of $\Omega \setminus S_{\varepsilon}$ inside the interior part of S and let $O(S_{\varepsilon})$ be the part of $\Omega \setminus S_{\varepsilon}$ inside the exterior of S. Hence, we have $\Omega \setminus S_{\varepsilon} = I(S_{\varepsilon}) \cup O(S_{\varepsilon})$ with $I(S_{\varepsilon}) \cap O(S_{\varepsilon}) = \emptyset$. From the conditions $d_H([S, \tilde{x}]) \leq \varepsilon$ and $d_H([S, \tilde{x}]) \leq \varepsilon$ we can deduce that $O(S_{\varepsilon}) \subseteq (U_{B_r \cup B_m})$ and $I(S_{\varepsilon}) \subseteq (U_{B_r \cup B_m})$. Also one has $(U_{B_r \cup B_m}) \cap (I(S_{\varepsilon})) = \emptyset$.

First we will prove that $d_H([P(B_r \cup B_m), S]) \leq 2\varepsilon$. This is equivalent to proving that $P(B_r \cup B_m) \subseteq N_{2\varepsilon}$. Let f be a face of $P(B_r \cup B_m)$ separating the cell of the ball $B_1 \in B_r$ from the cell of the ball $B_2 \in B_m$ and let x be a point on f. Because $d_{pow}(x, B_1) = d_{pow}(x, B_1)$ we know that $d_{pow}(x, B_1)$ and $d_{pow}(x, B_1)$ have the same sign, implying that when it is negative then $x \in B_1 \cap B_2$ and otherwise $x \notin U_{B_r \cup B_m}$. In the first case because x is simultaneously in $(U_{B_r \cup B_m})$ and $(U_{B_r \cup B_m})$ then from the previous observation at the beginning of the lemma one deduces that $x \in N_{2\varepsilon}$.

The second cases we have $x \notin U_{B_r \cup B_m} \cup B_m$, but due to $O(S_{\varepsilon}) \subseteq (U_{B_r \cup B_m})$ and $I(S_{\varepsilon}) \subseteq (U_{B_r \cup B_m})$ then we have that $x \in N_{2\varepsilon}$.

Now we will prove that $d_H([P(B_r \cup B_m), S]) \leq 2\varepsilon$. Given a point x in S the interval $[x + 2\varepsilon, x - 2\varepsilon]$ has boundary points $x + 2\varepsilon$ and $x - 2\varepsilon$ in the interior of the set $U_{B_r \cup B_m}$ and $U_{B_r \cup B_m}$ respectively, hence we have that $x + 2\varepsilon$ is in the power cell of some ball in B_r and $x - 2\varepsilon$ is in the power cell of some ball in B_m. Therefore moving a point along the interval $[x + 2\varepsilon, x - 2\varepsilon]$ it will meet at a face of the power crust at some point, otherwise it will stay forever in outer power cells which is a contradiction with the fact that $x - 2\varepsilon$ belongs to some inner power cell.

From the above theorem and the fact that $d_H([S, \tilde{x}]) = O(\sqrt{7})$ and $d_H([S, \tilde{x}]) = O(\sqrt{7})$ we can deduce that $d_H([P(B_r \cup B_m), S]) = O(\sqrt{7})$.

Now we extend the lemma [23] of Amenta, Choi and Kolluri [ACK01b] to a more general setting in which the point u does not need to be on the surface.

Lemma 9 Given a point u and a ball $B_r \subseteq B_m \subseteq \mathbb{R}^3$ such that $d(u, \partial B_r) \leq O(\varepsilon)$ and $u \in N_\varepsilon$, then the angle between the vector ∂u and the outward (inward) normal \hat{n} is $O(\varepsilon)$.

Proof See lemma 9 in the full version of the paper [MAVdF05].

Define by $f_1(x) = \min_{B_r \cup B_m} d_{pow}(x, B)$ and $f_2(x) = \min_{B_r \cup B_m} d_{pow}(x, B)$ the functions which return the minimum power distance from x to the sets B_r and B_m respectively. Based in this two function the following lemma 2 from Amenta, Choi and Kolluri [ACK01b] is also valid under our sampling assumption and for our particular polar ball sets B_r and B_m. We show functions f_1 and f_2 are strictly monotone and have a single intersection point along the segment $[x + 2\varepsilon, x - 2\varepsilon]$ since $f_1(x + 2\varepsilon)x f_2(x + 2\varepsilon) < 0$ and $f_1(x - 2\varepsilon)x f_2(x - 2\varepsilon) < 0$.

© The Eurographics Association 2005.
Figure 3: Bunny and hip-bone models. The vertices of the hip-bone model were randomly perturbed using Gaussian noise, while noisy points were added to the vertex set of the bunny model to increase the density. The bumpy but topologically correct outputs shown here were produced by applying our modified power crust algorithm to the noisy point clouds.

Figure 4: View from inside of the hip model. On the left, our proposed method. The feature inside the red circle is the inside view of the small hole in the middle of the hip which can be seen in Figure 3. On the right, the original power crust algorithm, which has some artifacts on the interior.

Theorem 2 The power crust of $B_I \cup B_O$ is a polyhedral surface homeomorphic to S.

Proof From the Lemma 8 we have that $d_H(S_I, S) = O(\sqrt{r})$ and $d_H(S_I, S) = O(\sqrt{r})$ and from theorem 1 we have $d_H(Pow(B_I \cup B_O), S) = O(\sqrt{r})$. We will take $\epsilon = 2d_H(Pow(B_I \cup B_O), S)$ which is smaller than $\text{Lfs}(S)$ for small r. Given a point $\tilde{x} \in S$ we have $[\tilde{x} - \text{en}_e, \tilde{x} + \text{en}_e] \subseteq N_e$.

Let $d : Pow(B_I \cup B_O) \rightarrow S$ the function that given a point $x \in Pow(B_I \cup B_O)$ assigns the closest point $d(x) \in S$. Due to the previous lemma we have $Pow(B_I \cup B_O) \subseteq N_e$ and since the set of points where the distance function is undefined is the medial axis then the distance function is well defined on the power crust.

We will prove it is a homeomorphism. Because the power crust is a compact set (it is a finite union of compact sets in this case faces) then we only need to prove that $d(\cdot)$ is a continuous, one-to-one and onto mapping. The continuity follows because the distance function to any set is an one-Lipschitz function. The onto condition follows from $d_H(Pow(B_I \cup B_O), S) \leq \epsilon$, that is for any point $\tilde{x} \in S$ there exists at least a power crust point in $[\tilde{x} - \text{en}_e, \tilde{x} + \text{en}_e]$ and given a point in $[\tilde{x} - \text{en}_e, \tilde{x} + \text{en}_e]$ with $\epsilon \leq \text{Lfs}(S)$ its closest point on S is \tilde{x}.

The one-to-one condition. Suppose that it is false, it implies that there are two points x_1 and x_2 on $Pow(B_I \cup B_O)$ such that $d(x_1) = d(x_2)$ or equivalent $\tilde{x}_1 = \tilde{x}_2$ where x_1
and x_2 belong to $[x_1 - \varepsilon_{n_1}, x_1 + \varepsilon_{n_1}]$. Given a point $x \in [x_1 - \varepsilon_{n_1}, x_1 + \varepsilon_{n_1}]$ let $B_{c,x} \subset \mathbb{R}^d$ be a ball which satisfies $d_{pow}(x, B_{c,x}, \rho_1) = f_1(x)$. Let $B_{n_1 - \varepsilon_{n_1}} \subset \mathbb{R}^d$ be a ball which contains the point $x_1 - \varepsilon_{n_1}$ then we have $d_{pow}(x, B_{c,x}, \rho_1) \leq d_{pow}(x, B_{n_1 - \varepsilon_{n_1}}) \leq (\rho + d(x, \partial B_{n_1 - \varepsilon_{n_1}}))^2 - \rho^2 = O(\varepsilon^2)$ where ρ is the radius of the ball $B_{n_1 - \varepsilon_{n_1}}$. From this fact $d_{pow}(x, B_{c,x}, \rho_1) < O(\varepsilon^2)$ we obtain that $d(x, \partial B_{c,x}, \rho_1) \leq O(\varepsilon)$, so applying the lemma 9 to the point x we obtain that the angle between the outward normal n_1 and the vector $c_{\xi}x$ is $O(\sqrt{\varepsilon})$ and consequently for small enough r we obtain that this angle is smaller than $\pi/2$. This means that when we move the point x from $x_1 - \varepsilon_{n_1}$ to $x_1 + \varepsilon_{n_1}$ along the segment $[x_1 - \varepsilon_{n_1}, x_1 + \varepsilon_{n_1}]$ we have that the function f_1 is strictly decreasing. The same argument shows that the function f_0 is strictly increasing.

A power crust points x is characterized by the following equality $f_0(x) = f_0(x_1)$ using that $f_0(\xi_1 + \varepsilon_{n_1}) - f_0(\xi_1 - \varepsilon_{n_1}) < 0$ and the functions f_1 and f_0 are strictly decreasing and increasing respectively along the interval $[x_1 - \varepsilon_{n_1}, x_1 + \varepsilon_{n_1}]$ then there exist an unique point x_2 on $[x_1 - \varepsilon_{n_1}, x_1 + \varepsilon_{n_1}]$ such that $f_0(x_2) = f_0(x_1)$. From this we conclude that $x_1 = x_2 = x_3$ and the function $d(\cdot)$ is one-to-one. \hfill \Box

6. Implementation and Experiments

Since we do not know $lfs(S)$ for a given input surface, we choose the size of the balls to eliminate by trial and error in each case.

Our experiments were done using an in-house implementation of the power crust algorithm, due to Ravi Kolluri. This code uses Jonathan Shewchuk’s currently unreleased pyramid code for Delaunay triangulation. Filtering the polar balls required adding exactly eleven lines of code to the power crust implementation.

We tested the algorithm with several data sets, produced by taking polyhedral models and adding noise. The results are shown in Figures 3, 4 and 5. The bunny and the dragon were taken from the Stanford 3D scanning repository, and the hip-bone is from the Cyberware Web site. For the Stanford bunny we added four new samples per vertex respectively, each perturbed with Gaussian noise. For the hip-bone and the dragon models, which are already fairly large, we just perturbed the input samples. The bunny point set consisted of 179,736 points and the reconstruction was computed in less than a minute. The hip-bone set contained 397,625 points and the reconstruction required about 3 minutes, while the dragon point set contained 875,290 and required about 10 minutes. Experiments were done on a Pentium 4, 2.4GHz, with 1Gb of memory.

In each reconstruction we chose the constant δ used to filter the polar balls based on the noise level, with δ being four times the variance of the Gaussian. The noise level in turn was chosen to be less than the smallest feature of the input model, for instance to avoid filling in the hole in the hip-bone or connecting the neck of the dragon to its back.

References

(© The Eurographics Association 2005.)