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Abstract
Recent work have shown that moving least squares (MLS) surfaces can be used effectively to reconstruct surfaces
from possibly noisy point cloud data. Several variants of MLS surfaces have been suggested, some of which have
been analyzed theoretically for guarantees. These analyses, so far, have assumed uniform sampling density. We
propose a new variant of the MLS surface that, for the first time, incorporates local feature sizes in its formulation,
and we analyze it for reconstruction guarantees using a non-uniform sampling density. The proposed variant of
the MLS surface has several computational advantages over existing MLS methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion

1. Introduction

In surface reconstruction, if the input point cloud is noisy,
a surface fitting through the points can be too bumpy for
practical use. A remedy to this problem is to define a tar-
get smooth surface and project or generate points on this
smooth surface for reconstruction. Of course, the main prob-
lem is to choose a suitable smooth surface that resembles
the original surface which the input point cloud presumably
sampled. Several such target surfaces have been proposed re-
cently with different algorithms for their computations. The
radial basis function of Carr et al. [JCCCM∗01], the multi-
level partition of unity of Ohtake et al. [OBA∗03], the natural
neighbor surface of Boissonnat and Cazasls [BC00] and the
moving least squares of Alexa et al. [ABCO∗01] are exam-
ples of such surfaces, to name a few.

The moving least squares surfaces (MLS), originally pro-
posed by Levin [Lev98] and later adopted by Alexa et
al. [ABCO∗01] for reconstruction have been widely used for
modeling and rendering [AA03, MVdF03, PKKG03]. The
popular open source software PointShop 3D [ZPKG02] im-
plements the MLS surfaces and shows the effectiveness of
the MLS surfaces on real world scanned data. Recently, the
work of Amenta and Kil [AK04] and Kolluri [Kol05] have
broaden the understanding of the MLS surfaces. Kolluri con-
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sidered an implicit version of the MLS surfaces and proved,
for the first time, theoretical guarantees about them. Sub-
sequently, Dey, Goswami and Sun [DGS05] proved simi-
lar guarantees for the variant of MLS proposed by Amenta
and Kil. These theoretical results assume a globally uni-
form sampling density which is quite restrictive. For exam-
ple, in Figure 1, the globally uniform sampling condition
needs more than 104 points to sample the arc ab because
of a small feature somewhere else. Our aim is to prove guar-
antees about MLS surfaces under an adaptive sampling con-
dition similar to the one used by Amenta and Bern [AB99] in
the context of noise-free reconstruction. Under such adaptive
sampling, one needs only 6 points to sample the arc in Fig-
ure 1. To accommodate an adaptive sampling, we come up
with a new variant of the MLS surfaces, which incorporates
the local feature sizes of the sampled surface in its formula-
tion. Our results show that this new MLS surface has several
advantages over other existing MLS methods.
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Figure 1: The dash-dot lines represent the medial axis.
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1.1. MLS surfaces

Moving least squares is an extension of the well known least
squares technique to fit a surface to a given set of data points.
The term ‘moving’ refers to the various weighting of the
points in calculating their contributions to the solution at
different locations. This unified view of the moving least
squares is nicely explained by Shen et al. [SOS04]. There
are mainly two types of MLS surfaces considered in the lit-
erature in the context of surface reconstructions.

1.1.1. Implicit MLS

Shen et al.[SOS04] defined a MLS surface implicitly by a
function which they called IMLS surface. This surface is
specified by the moving least-squares solution to a set of
constraints that force the function to assume given values at
the samples and also force its upward gradient to match the
assigned normals at the samples. Each constraint is associ-
ated with a weight function. In the simplest case, the implicit
function can be taken as

I(x) =
∑p∈P[(x− p)T vp]θp(x)

∑p∈P θp(x)
(1.1)

where θp is a weighting function and vp is the normal as-
signed to a sample p. Kolluri [Kol05] considered this sur-
face and showed that the IMLS surface is indeed isotopic
(stronger than homeomorphic) to the sampled surface if the
input sample is sufficiently dense.

1.1.2. Projection MLS

Levin [Lev98] pioneered a MLS surface that is defined as a
set of stationary points of a projection operator. We call this
projection based MLS surfaces as PMLS surfaces. Amenta
and Kil [AK04] gave a more explicit definition for PMLS
surfaces as the local minima of an energy function along
the directions given by a vector field. Based on this explicit
definition, they gave an implicit form for PMLS surfaces.
Specifically, they showed that the PMLS surface defined by
Levin [Lev98] is actually the implicit surface given by the
zero-level set of the implicit function

J (x) = n(x)T (
∂E(y,n(x))

∂y
|x)

where n : R
3 → R

3 is a given vector field, E : R
3 ×R

3 →
R is an energy function given by E(y,n(x)) = 1

2 ∑p∈P[(y−
p)T n(x)]2θp(y) with θp as a weighting function. If θp is a
Gaussian with width h then

J (x) = ∑
p∈P

(x− p)T n(x)[1−(
(x− p)T n(x)

h
)2]θp(x). (1.2)

The PMLS surface definition inherently leads to a projection
method by which points can be projected onto the surface.
Dey, Goswami and Sun [DGS05] prove theoretical guaran-
tees for PMLS surfaces.

1.1.3. Variation of PMLS (VMLS)

If we define the energy function as E(y,n(x)) = 1
2 ∑p∈P[(y−

p)T n(x)]2θp(x) where the weighting function θp varies with
x instead of y, we obtain a variant definition of PMLS sur-
faces, which we call VMLS in short. Indeed, this is the MLS
surface actually implemented in PointShop 3D by Zwicker
et al. [ZPKG02]. It has a very simple implicit form

G(x) = ∑
p∈P

[(x− p)T n(x)]θp(x). (1.3)

An advantage of this definition is that, unlike the standard
PMLS surfaces, its inherent projection procedure does not
require any non-linear optimization, which makes the algo-
rithm fast, stable and easy to implement.

1.1.4. Results

We adopt the IMLS form in equation 1.1 and modify it to
be adaptive to the feature sizes of the sampled surface. This
enables us to prove guarantees under an adaptive sampling
condition as opposed to the uniform one of Kolluri [Kol05]
and Dey et al. [DGS05]. The modification is in the choice of
the weighting function for defining the implicit function I.

The weighting function θp for defining I is chosen to be a
Gaussian whose width depends on the local feature sizes as
defined by Amenta and Bern [AB99]. The particular choice
of this feature dependence is new and reasoned in section
3.1. We call the MLS surface given by I with these feature
dependencies the adaptive MLS surface or AMLS surface
in short. As an implicit surface, one can project a point onto
AMLS surfaces by the Newton iteration method which strik-
ingly outperforms the well known projection procedure for
PMLS or VMLS surfaces.

We prove guarantees for AMLS surfaces under an adap-
tive sampling condition and note its advantages over other
MLS surfaces. Specifically our results can be summarized
as follows.

(i) The subset W of I−1(0) onto which points are projected
is indeed isotopic to the sampled surface, i.e., one can be
continuously deformed to the other always maintaining a
homeomorphism between them.

(ii) The above guarantee requires that the assigned vectors to
the samples closely approximate the normals of the sam-
pled surface. We present a provable algorithm to estimate
the normals at the samples even when they are noisy.

(iii) We present an implementation to approximate the AMLS
surface which establishes its effectiveness and discuss
several of its advantages over other MLS surfaces.
Specifically, our results show that the standard Newton
iteration used for projection on AMLS surfaces is faster
than the projections used for PMLS surfaces.

The proofs of some of our results cannot be included in
the ten-page limit of the paper. An extended version of this
paper including all the missing proofs is available from the
authors’ web pages [DS05].
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2. Preliminaries

2.1. Surface and thickening

Let Σ ⊂ R
3 be a compact C2 smooth surface without bound-

ary. For simplicity assume that Σ has a single connected
component. Let ΩI and ΩO denote the bounded and un-
bounded components of R

3 \ Σ respectively. For a point
z ∈ Σ, let ñz denote the oriented normal of Σ at z where ñz
points locally toward the unbounded component ΩO. Let a
line through a point z ∈ Σ along the normal ñz be denoted
`z,ñ(z).

For a point x ∈ R
3 and a set X ⊂ R

3, let d(x,X) denote
the distance of x to X , i.e., d(x,X) = infy∈X ‖x − y‖. The
medial axis M of Σ is the closure of the set Y ⊂ R

3 where
for each y ∈Y the distance d(y,Σ) is realized by two or more
points. In other words, M is the locus of the centers of the
maximal balls whose interiors are empty of any point from
Σ. The local feature size at a point z ∈ Σ, lfs(z), is defined as
the distance d(z,M) of z to the medial axis M. The function
lfs() is 1-Lipschitz.

Let ν : R
3 → Σ map a point x ∈ R

3 to its closest point in
Σ. It is known that ν is well defined if its domain avoids M
which will be the case for our use of ν. Denote x̃ = ν(x).
Let φ(x) denote the signed distance of a point x to Σ, i.e.,
φ(x) = (x− x̃)T ñx̃. For a real δ ≥ 0, define offset surfaces
Σ+δ and Σ−δ where

Σ+δ = {x ∈ R
3 |φ(x) = +δlfs(x̃)}

Σ−δ = {x ∈ R
3 |φ(x) = −δlfs(x̃)}.

Let δΣ be the region between Σ−δ and Σ+δ, i.e.,

δΣ = {x ∈ R
3 | −δlfs(x̃) ≤ φ(x) ≤ δlfs(x̃)},

Figure 2 illustrates the above concepts.

lfs z( )

n~z

x~n~

x~
M

M

x
−−δΣ

z

Figure 2: The set δΣ, medial axis, normals and lfs().

2.2. Sampling

An adaptive sampling density based on the local fea-
ture size called ε-sampling has been used for proving
the correctness of several surface reconstruction algo-
rithms [AB99, ACDL02, BC00]. For this work we assume

a similar sampling condition but modify it for possible noisy
input. Apart from condition (iii) justification of all other con-
ditions can be found in [DG04]. We say P ⊂ R

3 is an (ε,α)-
sample of the surface Σ if the following sampling conditions
hold.

(i) The distance from each point z ∈ Σ to its closest sample
is less than εlfs(z).

(ii) The distance from each sample p ∈ P to its closest point
p̃ on Σ is less than ε2lfs( p̃).

(iii) Each sample p is equipped with a normal vp where the
angle between vp and the normal ñ p̃ at its closest point p̃
on Σ is less than ε.

(iv) The number of the samples inside B(x,εlfs(x̃)) is less
than a small number α, for any x ∈ R

3. In this paper α
is set to be 5.

Obviously the less the ε is, the better Σ is sampled by P.
Usually P is considered to be a good sample of the surface if
ε ≤ 0.1.

For our proofs we need a result that all samples near
a point z on Σ lie within a small slab centering z. Kol-
luri [Kol05] made a similar observation assuming uniform
sampling density. Here we extend it for adaptive sampling.
A ball with the center x and radius r is denoted as B(x,r).
Denote S(x,r) to be the boundary of B(x,r). Consider any
point z on Σ and a ball B(z,ρlfs(z)) with a small radius, i.e.,
ρ > 0 is small. Let PL+ and PL− be two planes perpendicu-
lar to ñz and at a small distance ωlfs(z) from z. We show that
if ω is of the order of ε2 + ρ2, all points of P within the ball
B(z,ρlfs(z)) lie within the slab made by PL+ and PL−.

Lemma 1 For ρ ≤ 1 and ε ≤ 0.1, any sample inside
B(z,ρlfs(z)) lies inside the slab bounded by the planes PL+

and PL− where

ω =
(ε2 +ρ)2

2(1− ε2)2 +
(1+ρ)

1− ε2 ε2.

In addition we show that a small ball B(x, ρ
2 lfs(x̃)) centering

any point x in R
3 contains a small number of points from P.

Lemma 2 For ρ ≤ 0.4 and ε ≤ 0.1, the number of samples
inside B(x, ρ

2 lfs(x̃)) is less than λ where

λ = α if ρ ≤ 2ε

=
75ρ3α

ε3 otherwise.

3. Definition of AMLS

3.1. Weighting functions

The implicit function value I(x) at a point x should be pri-
marily decided by the nearby samples. That is exactly the
reason why different implicit MLS functions proposed so
far weigh the samples differently in a sum instead of giv-
ing them equal weights. We have already seen that the sam-
ples within a sufficiently small neighborhood are predictably
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distributed within a small slab (Lemma 1). However the sur-
face outside the neighborhood could vary arbitrarily with-
out changing its part inside. As a result, the samples outside
the neighborhood could be arbitrarily distributed. Hence we
should design a weighting function such that the samples
outside the neighborhood have much less effect on the im-
plicit function than those inside.

x~~x

p~
p~=p

xβ

x
(  )~lfs x

(  )~lfs p

Figure 3: The solid curves and the dash-dot lines represent
part of the surface and its medial axis respectively.

Gaussian functions are a good choice to meet the above
requirements since their widths can control the influence of
the samples. To make the implicit surface sensitive to fea-
tures of the original sampled surface, we take the width of
the Gaussian function to be a fraction of the local feature
size. However, one needs to be more careful. If we simply

take a fraction of lfs(x̃) as the width, i.e., take e
− ‖x−p‖2

[ρlfs(x̃)]2 as
the weighting function where ρ < 1, we cannot bound the
effect of the far away samples. Consider the left picture in
Figure 3. The local feature size at the point p̃ can be arbitrar-
ily small and hence the number of samples around p̃ needs
to be arbitrarily large to meet the sampling conditions. Con-
sequently, the summation of the weights over those samples
which are outside B(x, lfs(x̃)) becomes too large to be dom-
inated by the contributions of the samples in the neighbor-
hood of x.

An alternative option is to take a fraction of lfs( p̃) as the

width, i.e., take e
− ‖x−p‖2

[ρlfs( p̃)]2 as the weighting function. How-
ever it also fails as illustrated in the right picture in Figure 3.

The samples such as p has a constant weight e
− 1

[ρcosβ]2 . As
the summation extends outside the neighborhood of x, the
contribution of the samples remains constant instead of de-
creasing. As a result, one cannot hope to bound the outside
contribution.

We overcome the difficulty by a novel combination of the
above two options, i.e, by taking a fraction of

√

lfs(x̃)lfs( p̃)
as the width of the Gaussion weighting functions. This takes
into account the effects from both members, the contribution

sender p and the contribution receiver x. Unlike e
− ‖x−p‖2

[ρl f s( p̃)]2 ,
such form of weighting function decreases as p goes far
away from x no matter how the surface looks like. In addi-
tion, such form of weighting function assigns a small value
to the points that sample small features, which in turn can-
cels out the effect that small features require more samples.

There is still one more difficulty. The function lfs(),

though continuous, is not smooth everywhere on Σ. The non-
smoothness appears where Σ intersects the medial axis of its
own medial axis M. To make the implicit function smooth,
we use a smooth function f () arbitrarily close to lfs() where

| f (x)− lfs(x)| ≤ βlfs(x) (3.4)

for arbitrarily small β > 0, say 10−100. This is doable since
the family of real valued smooth functions over smooth man-
ifolds is dense in the family of continuous functions [Hir88]
and the minimal feature size is strictly positive for any C2

manifold [Wol92]. Finally we choose a fraction (given by
ρe) of

√

f (x̃)) f ( p̃) as the width of the Gaussion weighting
functions. Specifically we take

lnθp(x) = −
√

2‖x− p‖2

ρ2
e f ( p̃) f (x̃)

. (3.5)

The factor
√

2 in the exponent is for the convenience in
proofs as we will see later. In general, it is known that larger
values of ρe make the MLS surface smoother. To have a
sense of appropriate values of ρe, consider the case where
x is on the surface Σ. The samples such as p in Figure 4
across the medial axis to point x should have little effect
on the implicit function value at x. Taking ρe ≤ 0.4 makes
the weight of p at x less than e−25

√
2 ≈ 5 × 10−16 since

‖x− p‖ ≥ 2max{lfs(x̃), lfs( p̃)}.

x~=x
p~=p

Figure 4: The solid and the dash-dot lines represent part of
the surface and its medial axis respectively.

3.2. AMLS function

Define

N (x) = ∑
p∈P

[(x− p)T vp]θp(x) (3.6)

and

I(x) =
N (x)
W(x)

(3.7)

where W(x) = ∑p∈P θp(x). Obviously the implicit functions
N and I have exactly the same 0-level set, i.e., I−1(0) =
N−1(0). Therefore, we could have taken N instead of I
for AMLS, but we show in section 8 that I has a significant
computational advantage since Newton iteration for I has a
much larger convergent domain than the one for N . How-
ever, the function N has a simpler form to analyze. Hence,
we analyze the 0-level set of I via the function N .

c© The Eurographics Association 2005.
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4. Contributions of distant samples

Theorem 1 is one of our main contributions in this paper,
which says that the effect of distant samples on a point can
be bounded. Once we prove this, the overall technique of
Kolluri [Kol05] for IMLS surfaces with uniform sampling
or of Dey et al. [DGS05] for PMLS surfaces with uniform
sampling can be applied. However, the details need careful
work.

In various claims, the contribution of a sample p to the
implicit function or its derivative at point x will be bounded
from above by an expression that involves the term

Ip(x) = e
−

√
2‖x−p‖2

ρ2 f ( p̃) f (x̃) · ‖x− p‖s

[ ρ2
√

2
f ( p̃) f (x̃)]t

.

The values of s and t will vary between 0 to 2 and from 0
to 1 respectively in various equations where Ip is used. For
instance, the contribution of a sample p to function N at x
can be bounded by Ip(x) with s = 1 and t = 0.

Following Kolluri [Kol05] our strategy for bounding Ip(x)
will be to decompose the space into spherical shells center-
ing x. Theorem 1 shows that the total contribution from all
the samples in the shells decreases as their distances from x
increase. Let Sx(w,ρ) be the shell region between the spheres
S(x,wlfs(x̃)) and S(x,(w+ρ)lfs(x̃)). For i = 0,1, ... consider
the nested shells given by Sx(wi,ρ) where wi = r + iρ (Fig-
ure 5). To prove Theorem 1 we need a result that bounds
the total contribution of the samples lying within the in-
tersection of a small ball of radius ρ

2 lfs(x̃) and the shell
Sx(wi,ρ). Let B ρ

2
be any such ball. We would like to bound

the sum ∑p∈B ρ
2
∩Sx(wi,ρ) Ip(x). The ball B ρ

2
has a radius

ρ
2 lfs(x̃) though its center is not necessarily x. Therefore, one
cannot use Lemma 2 to bound the number of samples in-
side B ρ

2
. We overcome this difficulty by using a hierarchi-

cal subdivision of the bounding box NC1 of B ρ
2
. The subdi-

vision divides a cube unless it can be covered with a ball
B(c,r) where r is a fraction of lfs(c̃). Then, one can call
upon Lemma 2 to bound the number of samples in B(c,r)
and hence in the cubes of the subdivision. Therefore, we can
bound the number of samples in B ρ

2
using the number of the

leaf nodes in its corresponding subdivision tree. Notice that
we do not have an explicit bound for the number of samples
in any B ρ

2
since at different positions B ρ

2
may have different

subdivision trees adapting to the local geometry of the sur-
face. However, we do have an explicit upper bound for the
total weights from the samples inside any B ρ

2
as proved in

Lemma 3.

Assume a hierarchical subdivision tree HST of NC1 as fol-
lows. Let c1 be the center of the bounding cube NC1. Subdi-
vide NC1 into 27 subcubes of size ρ

3 lfs(x̃) if lfs(c̃1) < lfs(x̃).
Let NC2 be any such subcube. It can be covered by a ball
B ρ

22
= B(c2,

ρ
22 lfs(x̃)) where c2 is the center of NC2. Sub-

divide NC2 in the same way if lfs(c̃2) < 1
2 lfs(x̃). In gen-

eral, keep subdividing a subcube NCk at the kth level if
lfs(c̃k) < 1

2k−1 lfs(x̃) where ck is the center of NCk. Observe
that NCk is covered by B ρ

2k
= B(ck,

ρ
2k lfs(x̃)). Figure 5 shows

a HST in 2D case. We use NCk also to denote its intersection
with B ρ

2k
.

1c

3c
2cρ

2
B_

ρ
2

B_

B_ρ
22

iw ~(  )f x

i
~(  )w+ρ f x(        )

B_ρ
23

w,i ρ(        )xS

�������
�������
�������
�������

�������
�������
�������
�������

x

Figure 5: The nested shells and the hierarchical subdivision
tree

Lemma 3 If ρ ≤ 0.4, ε ≤ 0.1 and r ≥ 5ρ,

∑
p∈B ρ

2
∩Sx(wi,ρ)

Ip(x) ≤ λe
− rwi

(1+2r)ρ2 · ws
i

ρ2t f (x̃)s−2t

where 0 ≤ s ≤ 2, 0 ≤ t ≤ 1 and λ is defined in Lemma 2.

Proof Case 1: lfs(c̃1) ≥ lfs(x̃): HST has only one node
NC1. Let p be any sample in B ρ

2
. Observe that ‖ p̃− c̃1‖ ≤

2‖ p̃− c1‖ ≤ 2(‖ p̃− p‖+‖p− c1‖) ≤ 2ε2lfs( p̃)+ρlfs(c̃1).
By Lipschitz property of lfs(),

lfs( p̃) ≥ 1−ρ
1+2ε2 lfs(x̃).

From inequality 3.4 we have

f ( p̃) ≥ 1−ρ
β′(1+2ε2)

f (x̃)

where β′ = 1+β
1−β . Similarly from condition ‖x− p‖ ≥ rlfs(x̃)

(p lies in Sx(wi,ρ)) and the fact ‖x̃− p̃‖ ≤ 2(‖x− p‖+‖p−
p̃‖) we obtain

f ( p̃) ≤ (1+β)
1+2r

r(1−2ε2)
‖x− p‖.

Hence

Ip(x) ≤ e
−

√
2(1−2ε2)

(1+β)(1+2r)
r‖x−p‖

ρ2 f (x̃) · [
√

2β′(1+2ε2)

1−ρ
]t · ‖x− p‖s

[ρ f (x̃)]2t

which is a decreasing function of ‖x− p‖ when ‖x− p‖ ≥
4ρlfs(x̃). Since ‖x− p‖ ≥ wi f (x̃)

1+β , we have

Ip(x) ≤ e
−

√
2(1−2ε2)

(1+β)2(1+2r)
rwi
ρ2 · [

√
2β′(1+2ε2)]t

(1−ρ)t(1+β)s · ws
i

ρ2t f (x̃)s−2t

≤ e
− rwi

(1+2r)ρ2 · ws
i

ρ2t f (x̃)s−2t .

It is not hard to verify the second inequality under the
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given conditions. The lemma follows from the fact that
B(c1,

ρ
2 f (c̃1)) covers B ρ

2
and hence the number of samples

inside B ρ
2

is less than λ from Lemma 2.
Case 2: lfs(c̃1) < lfs(x̃): Consider a leaf node NCk at the kth
level which is covered by B ρ

2k
in HST. We have lfs(c̃k) ≥

1
2k−1 lfs(x̃). Let p be any sample inside the node. Since ‖ p̃−
c̃k‖ ≤ 2‖ p̃− ck‖, we obtain

f ( p̃) ≥ 1−ρ
β′(1+2ε2)

· 1
2k−1 f (x̃).

On the other hand, p is also inside the parent node NCk−1
covered by B ρ

2k−1
in HST. Since ‖ p̃− c̃k−1‖ ≤ 2‖ p̃− ck−1‖

and lfs(c̃k−1) < 1
2k−2 lfs(x̃), we obtain

f ( p̃) ≤ β′(1+ρ)

1−2ε2 · 1
2k−2 f (x̃).

Hence for the given value of ρ and ε, we have

Ip(x)

≤ e
−2k−2

√
2(1−2ε2)

β′(1+ρ)

‖x−p‖2

[ρ f (x̃)]2 ·2t(k−2)[
2
√

2β′(1+2ε2)

1−ρ
]t · ‖x− p‖s

[ρ f (x̃)]2t

≤ 1
27

e
−2k−2 rwi

(1+2r)ρ2 ·2t(k−2) · ws
i

ρ2t f (x̃)s−2t

Since B(ck,
ρ
2 f (c̃k)) covers B ρ

2k
and hence the number of

samples inside the leaf node NCk is less than λ from Lemma
2, we have

∑
p∈NCk

Ip(x) ≤ 1
27

·λe
−2k−2 rwi

(1+2r)ρ2 ·2t(k−2) · ws
i

ρ2t f (x̃)s−2t

(4.8)
The above equation gives the bound for contributions of
samples inside a single leaf node NCk at any level k ≥ 2.
We use induction to establish that the bound also holds for
any internal node. Let NCk be an internal node. Then, by in-
duction we can assume that each of the 27 children of NCk
satisfy equation 4.8 with k = k + 1. Summing over this 27
children and replacing k with k +1 in equation 4.8, we get

∑
p∈NCk

Ip(x) ≤ λe
−2k−1 rwi

(1+2r)ρ2 ·2t(k−1) · ws
i

ρ2t f (x̃)s−2t

≤ 1
27

·λe
−2k−2 rwi

(1+2r)ρ2 ·2t(k−2) · ws
i

ρ2t f (x̃)s−2t .

The lemma follows from the fact that 27 NC2s partition B ρ
2
.

Theorem 1 If ρ ≤ 0.4, ε ≤ 0.1 and r ≥ 5ρ, then for any
x ∈ R

3

∑
p /∈B(x,r f (x̃))

Ip(x)≤C1λ· r2 + rρ+ρ2

ρ2 e
− r2

(1+2r)ρ2 · rs

ρ2t f (x̃)s−2t

where 0 ≤ s ≤ 2, 0 ≤ t ≤ 1 and C1 = 180
√

3π.

Proof The space outside B(x,rlfs(x̃)) can be decomposed by

(Sx(wi,ρ))∞i=0 where wi = r+ iρ. Each Sx(wi,ρ) can be cov-

ered by less than 36
√

3π(w2
i +wiρ+ρ2)
ρ2 balls of radius ρ

2 lfs(x̃) as
in [Kol05]. From Lemma 3 the contribution from the sam-
ples inside each of these balls are bounded. Hence

∑
p /∈B(x,r f (x̃))

Ip(x) =
∞
∑
i=0

∑
p∈Sx(wi,ρ)

Ip(x)

≤ C1λ
5

∞
∑
i=0

w2
i +wiρ+ρ2

ρ2 e
− rwi

(1+2r)ρ2 · ws
i

ρ2t f (x̃)s−2t

≤C1λ · r2 + rρ+ρ2

ρ2 e
− r2

(1+2r)ρ2 · rs

ρ2t f (x̃)s−2t .

The last inequality holds because the series is bounded from
above by a geometric series with common ratio less than 0.8.

5. Isotopy

Although we prove Theroem 1 with hypothesis ρ ≤ 0.4 and
ε ≤ 0.1 which is plausible in practice, our proof for isotopy
uses the setting ε ≤ 4× 10−3 and ρe = ε. The requirement
for such small ε is probably an artifact of our proof tech-
nique. There are rooms to improve these constants though
the proofs become more complicated (see the discussion in
the extended version [DS05]). We focused more on demon-
strating the ideas behind the proofs rather than tightening the
constants. In our experiments, the AMLS surfaces work well
on sparse data sets as we show in section 7.

Let W = N−1(0)
⋂

0.1Σ, the subset of N−1(0) inside
0.1Σ. Lemma 4 shows that W is indeed within 0.3εΣ. In addi-
tion, Lemma 6 implies that 5N cannot vanish in 0.3εΣ and
hence 0 is a regular value. So, by implicit function theorem
W is a compact, smooth surface. Recall that ν : R

3 → Σ takes
a point to its closest point on Σ. Let ν|W be the restriction of
ν to W . We prove that ν|W is a homeomorphism. Since W is
included in a topological thickening 0.3εΣ of Σ and W sep-
arates the sides of 0.3εΣ, we also have W and Σ isotopic in
R

3 due to a result of Chazal and Cohen-Steiner [CCS04].
So, to prove isotopy we only need to prove that W and Σ are
homeomorphic.

Theorem 2 ν|W is a homeomorphism.

Proof The function ν|W is continuous since ν is. Since W
is compact, it is sufficient to show that ν|W is surjective and
injective which are the statements of Lemma 5 and Lemma 7
respectively.

To prove that ν|W is surjective we use the following
lemma which says that N crosses zero within 0.3εΣ, i.e.
W ∈ 0.3εΣ.

Lemma 4

N (x) > 0 if x ∈ (0.1Σ\0.3εΣ)∩ΩO

< 0 if x ∈ (0.1Σ\0.3εΣ)∩ΩI

c© The Eurographics Association 2005.
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Lemma 5 ν|W is surjective.

Proof Let z be any point in Σ. The normal line `z,ñ(z), through
z along the normal ñz, intersects N−1(0) within 0.3εΣ,
thanks to Lemma 4. By definition of W , it intersects W at
point x such that ‖x− z‖ ≤ 0.3εlfs(z). This means ν|W maps
a point of W to z or another point y on Σ. We argue that y 6= z
does not exist. For if it does, the distance ‖y− x‖ has to be
less than 0.3εlfs(z). Hence we have ‖z−y‖ ≤ 0.6εlfs(z). On
the other hand, ‖y− z‖ has to be more than the distance of
z to the medial axis, which is at least lfs(z). Therefore, for
each point z ∈ Σ, there is a point in W which is mapped by
ν|W to z.

In the following lemma we prove that the directional
derivative of N along ñx̃ is always positive. This, in turn,
helps us to prove that ν|W is injective. We introduce a handy
notation. Let ux[N ] be the directional derivative of N at a
point x along the unit vector u.

Lemma 6 Let z be any point on Σ, then for any x ∈ `z,ñz ∩
0.3εΣ

(ñz)x[N ] > 0

Lemma 7 ν|W is injective.

Proof To prove the injectivity of ν|W , assume for contra-
diction that there are two points w and w′ in W so that
ν|W (w) = ν|W (w′) = z. This means `z,ñz intersects W at w
and w′ within 0.3εΣ (Lemma 4). Without loss of generality
assume that w and w′ are two such consecutive intersection
points. Then, `z,ñz makes at least π

2 angle with one of the nor-
mals to W at w and w′. But, that is impossible since Lemma 6
implies that

∠ñz,5N (x) <
π
2

for any point x ∈ `z,ñz ∩0.3εΣ.

6. Normal estimation

The computation of the normal vector field n requires as-
signed normals at the points of P. These assigned normals
should approximate the normals at the closest points of Σ.
Recently Dey et al. [DGS05] proposed a Delaunay based al-
gorithm for estimating normals. The proofs for this estima-
tion works with uniform sampling condition. We can extend
the proofs to the adaptive sampling condition [DS05].

A Delaunay ball is a circumscribing ball of a tetrahedron
in the Delaunay triangulation of the input point set P. It is de-
noted B(c,r) if its center is c and radius is r. We call B(c,r)
big if r is more than certain times the average nearest neigh-
bor distances of the samples incident on B(c,r). The vec-
tors from the samples incident to such big Delaunay balls
towards their centers indeed approximate the normals of Σ.
Figure 6 shows an implementation of this concept.

The following lemma is the basis of our normal estima-
tion.

c
p

pv

Figure 6: Outward normals are estimated from big Delau-
nay balls at a subset of samples (middle); points after pro-
jection with these normals (right).

Lemma 8 Let p ∈ P be incident to a Delaunay ball B(c,r)
where r > 1

5 lfs( p̃) and c ∈ ΩO. Then, ∠~pc, ñ p̃ = O(ε) for a
sufficiently small ε > 0.

Lemma 8 tells us that normals can be estimated from large
Delaunay balls. The next lemma is a direct consequence of
Lemma 5 in [DG04] which says that there are many big De-
launay balls.

Lemma 9 For each point x ∈ Σ, there is a Delaunay ball
containing a medial axis point inside and a sample on the
boundary within O(ε) distance from x.

Lemma 8 and Lemma 9 together suggest an algorithm for
estimating the normals of Σ from P. We compute the big De-
launay balls by comparing their radii with the nearest neigh-
bor distances of the incident samples. For a point p ∈ P, let
λp denote the average nearest distances to the five nearest
neighbors of p in P. We determine all Delaunay balls in-
cident to p whose radii are larger than cλp where c is an
user defined parameter. We take c = 2.5 in our experiments.
Notice that some points in P may not satisfy this condition
which means they do not contribute any big Delaunay balls.
After obtaining the normals, we orient them using a con-
sistent walk on inner and outer Delaunay balls as described
in [DG04].

7. Algorithm and Implementation

In this section we summarize different steps of the algorithm
for reconstruction and their implementations. In absence of
Σ one cannot compute lfs(x̃) and hence f (x̃) for a point x ex-
actly. Due to this difficulty, our implementation as described
below can only approximate the AMLS surface. However,
the results of our implementation show that this approxima-
tion is effective in practice.

We have already discussed the normal estimation step.
For feature estimation, we use the approximation of the me-
dial axis with Voronoi diagrams. In noiseless case, Amenta,
Choi and Kolluri [ACK01] showed that, for a dense sam-
ple, the Voronoi vertices furthest from their generating sites
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AMLS(P)
NORMAL ESTIMATION:

Compute Del(P)
for each point p with big Delaunay ball

compute the normal np
FEATURE ESTIMATION:

for each p ∈ P estimate f ( p̃)
PROJECTION:

for each p ∈ P
1 project p to p′ by Newton iteration;

if ‖p− p′‖ > τ go to 1 with p := p′

endfor
RECONSTRUCTION:

Let P′ be the projected point set;
reconstruct with P′.

also called poles approximate the medial axis. Then, by mea-
suring the shortest distance of a sample p to the poles one
can approximate lfs(p). In case of noise, this does not work
as poles do not necessarily approximate the medial axis.
As a remedy we fall back on an observation of Dey and
Goswami [DG04] which says that each medial axis point is
covered with a big Delaunay ball. So, we consider each point
p ∈ P that has a big Delaunay ball incident to it. We take the
center of the biggest Delaunay ball incident to p and also the
center of the biggest Delaunay ball incident to p in the oppo-
site direction. These centers act as poles in the noisy sample.
Let L denote these set of poles. We approximate f (x̃) at any
point x as d(p,L) where p is the closest point to x in P. Actu-
ally, p approximates x̃ and d(p,L) approximates the distance
of x̃ to the medial axis.

In projection we move p to a new point p′ by Newton
iteration which can be described as follows. Project p along
5I(p) to a new position

p′ = p− I(p)

‖5I(p)‖2 5I(p) (7.9)

and iterate until the distance between p and p′ becomes
smaller than a given threshold. To compute I and 5I, we
only take the samples inside the ball with radius 5 times the
width of the Gaussian weighting function since the samples
outside this ball have litte effect on the function. The con-
vergence of the Newton iteration can be proved using stan-
dard numerical techniques. Due to the space limit, we skip a
formal proof here. However, we show by examples that the
Newton iteration for AMLS surface converges quickly and
has a big convergent domain in section 8.

Finally, the projected set of points are fed to a recon-
struction algorithm to produce the output. We used the CO-
CONE software [COC] to reconstruct from the projected set
of points. Figure 7 shows the results of our algorithm applied
on MAX-PLANCK and BIGHAND point clouds.

Figure 7: Reconstruction results before (left) and after
(right) smoothing with AMLS. ρe = 0.75 for both models.
The reason we choose a bigger value for ρe than the one
(0.4) we suggest in section 3.1 is that our feature estimation
method tends to give a feature size slightly smaller than the
exact one.

8. Computational aspects of AMLS

In this section we discuss several properties of AMLS some
of which provide it an edge over the others.

8.1. Normalizing weights

The difference between the functions N (x) and I(x) is that
the weights in I(x) is normalized. Although normalizing
weights does not change the implicit surface as we discussed
in section 5, it does change the behavior of the Newton pro-
jection (NP). Specifically it increases the domain of conver-
gence significantly. One can see from equation 7.9 that NP
moves x along the direction 5I(x) when I(x) < 0 and along
the opposite direction when I(x) > 0. Newton projection for
the funtion N has a similar behavior. Figure 8 shows the gra-
dient field and the results of NP for I and N applied on a
noisy data.

8.2. AMLS vs. VMLS

VMLS surfaces as discussed in section 1.1.3 have an inher-
ent projection procedure (PP) by which the points are pro-
jected onto the surfaces. PP can be described as follows.
Project x along n(x) to a new position

x′ = x− G(x)
∑p∈P θp(x)

n(x) (8.10)
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Figure 8: The left and right columns show the result of NP
on I and N respectively. The top row shows the function
values and the gradient field. The values are negative at cold
color and positive at warm color. In the bottom, the lines
connect input gray points to their corresponding stationary
green points of NP.

Model |P| Method #nb #iter Time

Max- 49137 NP 1000 3.1 94
planck PP 1108 7.2 310

bighand 38214 NP 1392 3.2 109
PP 1527 8.6 400

Table 1: |P| is the number of points in the point cloud. We
compute #iter in the average sense, i.e., we add up the num-
ber of iterations used to project all the input points and di-
vide it by |P| to get #iter. Similarly #nb is the average number
of points considered as neighbors. We choose the threshold
τ = 10−25. Times (second) are for projecting all the input
points (PC with a 2.8GHz P4 CPU and 1GB RAM).

and iterate until a stationary point is reached. We argue that
NP used for AMLS surface is better than the PP in two re-
spects: convergence rate and timing. As Table 8.2 shows, NP,
in general, uses less iterations to project a point onto the im-
plicit surface. This is not surprising as 5I(x) with x close to
the implicit surface can estimate the normal more accurately
at its closest point on the implicit surface. In addition, one
has to compute n(x) before evaluating G(x) . Hence to com-
pute the new position using PP, one has to iterate twice over
its neighboring points which makes PP slower than NP even
in each iteration.

8.3. AMLS vs. PMLS

In the definition of standard PMLS, the actual PMLS sur-
face is only a subset of the zero level set J−1(0) where the

energy function E reaches a minimum along the normal di-
rection. As one can deduce from equation 1.2, there are two
other layers of zero-level sets of the implicit function J on
both sides of the PMLS surface, where the energy function
E reaches the local maximum; see the left most picture in
Figure 9. We refer to these two layers as maxima layers. The
distance between these layers could be extremely small at
places where either the local feature size is small or the noise
level is high or both. In that case, computations on the PMLS
surface become difficult.

First of all, many existing implicit surface techniques such
as raytracing and polygonizing become hard to apply on the
standard PMLS surface since one needs to distinguish differ-
ent zero-level sets. When the maxima layers come close to
the true PMLS surface, the marching step in a raytracer and
the size of the cubes in a polygonizer may become imprac-
tically small. Actually, in the leftmost picture of Figure 9,
although one edge of the red cube only intersects the curve
(bold green line) once, a polygonizing algorithm [Blo94]
misjudged the edge not intersecting the surface.

Second, the inherent projection procedure for the stan-
dard PMLS surface requires a non-linear optimization,
specifically an one-dimensional minimization. The one-
dimensional minimization algorithms usually begin with an
interval known to contain a minimum guess m such that the
function value at m must be less than the function values at
the ends of the interval. Finding such a minimum guess m
could be hard if the two maxima layers come close.

Third, the standard PMLS surface is more sensitive to the
noise. When the noise level for position or normal or both in-
creases, the three layers of the zero-level sets (one for min-
ima and two for maxima) could easily interfere with each
other. In the middle picture of Figure 9, the zero-level set for
minima gets merged with those for maxima. As a result, the
standard PMLS could give an implicit surface with holes or
disconnectness. However under the same level of noise, the
AMLS still gives the proper implicit surface, see the right-
most picture in Figure 9.
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