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Abstract 
Meshes generated by range scanners and other acquisition tools are often incomplete and typically contain multiple con-
nected components with irregular boundaries and complex holes. This paper introduces a robust algorithm for completion 
of such meshes using a mapping between the incomplete mesh and a template model. The mapping is computed using a 
novel framework for bijective parameterization of meshes with gaps and holes. We employ this mapping to correctly glue 
together the components of the input mesh and to close the holes. The template is used to fill in the topological and geo-
metric information missing in the input. The completed models are guaranteed to have the same topology as the template. 
Furthermore, if no appropriate template exists or if only topologically correct completion is required a standard canoni-
cal shape can be used as a template. 
As part of our completion method we propose a boundary-mapping technique useful for mesh editing operations such as 
merging, blending, and detail transfer. We demonstrate that by using this technique we can automatically perform com-
plex editing operations that previously required a large amount of user interaction.  

 

1. Introduction 

With the improvement in and the declining costs of scan-
ning technology, modern computer graphics increasingly 
uses scanned data as a major source for modeling real life 
objects. Readily available commercial software is used to 
merge multiple scans. Unfortunately, the resulting merged 
scans remain incomplete because of occlusions and grazing 
angle views. The occluded regions can be quite large, for 
instance, in Figure 1 the scanner failed to capture the inte-
rior facing sides of arms and legs. Often, scanners also fail 
to capture complex model features such as toes or ears 
(Figure 1). When performing scan completion, the difficulty 
is to correctly reconstruct the connectivity and the topology 
as well as to complete the missing geometric details. Even 
the connectivity reconstruction by itself can be quite chal-
lenging. In Figure 1, for instance, each leg should be con-
sidered individually, and their respective fronts and backs 
connected to produce a model with two legs, despite the 
fact that geometric proximity suggests connecting front to 
front (and back to back). To correctly repair such models 
global shape information, such as the one provided by a 
template, is necessary. Regrettably even when a template is 
provided, existing completion methods, e.g. [ACP03], lack 
robustness and are likely to fail on complex models such as 
this one.  

The challenge of mesh completion is not unique to range 
scanners. Meshes acquired by volumetric techniques (CT, 
MRI) are by definition closed. However, the acquisition 
process often generates errors in regions with complex to-
pology. After removing the erroneous surface parts, the 
meshes need to be completed, raising the same issues. A 
similar problem also arises in archeological applications, in 
which models need to be reconstructed from fragments.  

Template-based mesh completion can be seen as a special 
case of the mesh-merging operation, in which the incom-
plete meshes are merged with completing parts from the 

template. One of the main difficulties in template-based 
completion is to map the boundaries of the gaps and holes 
onto the template in order to correctly define the completing 
region. This problem also arises when meshes are merged 
or blended by editing applications. Existing automatic 
boundary mapping techniques rely on planar parameteriza-
tion and are thus limited in terms of surface topology and 
the complexity of the boundaries they can handle. There-
fore, users must often manually specify the appropriate 
boundaries on all the inputs — a tedious and error-prone 
task when the boundary has a complex shape or multiple 
loops.  

 

 
Figure 1: Template-based mesh completion: (top) incomplete 
scan input – the semi-transparent grey image shows the multi-
ple complex holes in the input; (bottom) reconstructed model. 

http://www.eg.org
http://diglib.eg.org
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Model completion is not the end-stage of the process, as 
reconstructed models typically require further processing to 
meet the requirements of different applications. This proc-
essing often includes such tasks as remeshing, texturing, 
assignment of material properties, and animation. Many of 
these tasks become simpler if the model is parameterized 
over a canonical domain. It is particularly useful to param-
eterize models that belong to the same family of shapes on a 
common base domain, as this provides a single parameter-
ized space for the entire family of shapes.  

Our algorithm facilitates both completion and editing of 
mesh models by using parameterization tools. It helps the 
reconstruction of models from incomplete meshes. It also 
provides tools for mapping boundaries for mesh merging 
and other mesh-editing operations. As part of the algorithm 
we compute a low-distortion, bijective parameterization 
between the completed models and a canonical base domain 
that may be used during further model processing. 

1.1 Previous work 

Modern commercial scanners, such as Cyberware [Cyb], 
are becoming more robust and are capable of merging mul-
tiple scans using registration information. However, due to 
occlusions, the output meshes remain incomplete, contain-
ing numerous holes and multiple components. Several 
methods for closing holes were proposed recently 
[DMGL02; Lie03; Lev03]. Davis et al. [DMGL02] success-
fully close holes in large meshes using volumetric tech-
niques, but do not always preserve the topology of the 
mesh, generating spurious handles. Liepa [Lie03] triangu-
lates the holes using a method with O(n3) complexity, 
which can become unpractical for large meshes. Levy 
[Lev03] uses 2D parameterization to efficiently close holes 
of any size. The technique requires manual alignment of the 
components in 2D to close gaps. Since the completion is 
performed in the plane, the method cannot generate closed 
models. All three methods close the holes as smoothly as 
possible, without attempting to reconstruct the missing 
geometry. Sharf et al. [SACO04], reproduce missing ge-
ometry by copying patches from other regions of the same 
model. However, they cannot generate missing features out 
of nowhere. Hence their method is inadequate in the com-
mon case of scanned meshes missing complex features. 
None of the above methods uses global shape information. 
Therefore, they are unlikely to reconstruct correctly the 
connectivity for complex holes such as the interior side of 
the legs in Figure 1.  

Template-based completion techniques, such as [KHYS02; 
ACP02; HSC02; ACP03; ASK*05], fill-in the missing in-
formation using template geometry. These methods com-
pute a mapping between the incomplete input mesh and the 
template to correctly close the gaps and holes. These tech-
niques were tailored for reconstructing particular families of 
models. Most methods assume that the templates are geo-
metrically very similar to the input meshes, in terms of 
shape [KHYS02; ACP02] or pose [HSC02; ACP03] and the 
gaps and holes in the data are relatively small. 

The method of Allen et al. [ACP03] is one of the most ro-
bust. It uses user-specified correspondence between a small 

set of feature vertices, or markers, on the input and template 
meshes to align them with one another. On our request the 
authors of [ACP03] used their method to map the input 
mesh in Figure 1 to the corresponding template, given the 
set of markers we used for completion. The method failed 
to initialize given this input. The new method of Anguelov 
et al. [ASK*05] relies on the existence of an underlying 
skeleton to reconstruct models with major pose variations. 
As such the method is limited to human or animal models. 

Existing parameterization methods focus on two main prob-
lems: the planar parameterization of disk-like meshes and 
the parameterization of closed meshes on canonical base 
domains (see [FH04] for a review). The standard approach 
for parameterizing surfaces with holes is to map them to a 
planar domain. This approach causes significant distortion 
when the models are far from developable and cannot be 
used for meshes with genus greater than zero. Schreiner et 
al. [SPPH04] compute mappings between models of any 
genus with the same number of simple holes. Their method 
is not applicable for template-based completion, since our 
input meshes typically contain many more holes than the 
templates. None of the methods, reviewed by Floater and 
Hormann [FH04], addresses parameterization of meshes 
with multiple components. The challenge in parameterizing 
such meshes is to maintain the alignment of the components 
with respect to one another during the parameterization. 
Sumner and Popovic [SP04] used a variation of the method 
in [ACP03] to compute mappings between models with 
significant shape variation. As they noted, this often re-
quired specifying a very large number of marker correspon-
dences. 

When merging parts of models, most methods require the 
user to specify the exact boundaries of all the merged re-
gions (e.g., [SCOL*04]). Bierman et al. [BMBZ02] use 
planar parameterization to automate the mapping of the 
boundaries from one model to another. This method cannot 
handle patches with non-disk topology (genus greater than 
zero or multiple boundary loops). Yu et al. [YZX*04] pro-
pose several interactive tools for mapping the boundaries. 
By using a directional projection tool, they can map 
boundaries between meshes with different topology. The 
method fails when the projected boundary self-intersects.  

1.2 Overview and contribution  

We present an efficient and robust algorithm for template-
based mesh completion. The method computes a mapping 
between the input and template meshes and uses it to facili-
tate the completion. Like previous template-based tech-
niques, we use a small set of markers to provide a coarse 
alignment between features on the input and template 
meshes.  

Our method supports both global and local completion. 
Global completion, used in most of the examples in this 
paper, maps the entire input mesh onto the template closing 
all the gaps and holes at once. As such, it takes maximal 
advantage of the global shape information provided by the 
template. Alternatively, when the input meshes are very 
large compared to the size of the holes and gaps, local com-
pletion can be used (see Figures 13 and 14). In this case the 
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mapping is restricted to parts of the input and template 
meshes. Using local completion speeds up the processing 
and allows mapping between input and template meshes 
with different genus.   

Our method can handle meshes with any number of con-
nected components and boundary loops and any size of 
gaps and holes. When performing global completion, the 
reconstructed models are guaranteed to have the same to-
pology as the template. The use of template information 
provides the global context necessary for establishing cor-
rect connectivity for non-planar holes such as the interior 
sides of the legs and arms (Figure 1) and enables realistic 
completion of missing geometric data. 

Since scanned input meshes often contain a large number of 
small components, placing a marker on each one would be 
very tedious. We introduce a mechanism for automatic 
completion of gaps around marker-less components based 
purely on geometric adjacency information (Section 5.1, see 
for example Figure 11).  

Templates with a shape similar to the input meshes are not 
always easily available. We provide two approaches to 
overcome this difficulty: for many incomplete meshes our 
method can robustly complete the topology and connec-
tivity using a canonical template and automatically gener-
ated markers (Figure 11); alternatively, we can also perform 
mutual completion from incomplete meshes of similar ob-
jects using complimentary information to establish correct 
cross-hole and cross-gap connectivity and to facilitate ge-
ometry completion. In Figure 12 we use the second ap-
proach to mutually complete two human scans in different 
poses. 

Our global mapping provides a low-distortion bijective 
parameterization between the template and the recon-
structed model that can be used by subsequent mesh-
processing applications. Joining the tasks of mesh comple-
tion and parameterization increases the ability to automate 
the acquisition and processing of large families of models.  

The presented algorithm can also be used for mesh-editing 
applications. Given one mesh with specified boundaries, it 
is capable of automatically mapping the boundaries onto a 
second mesh for operations such as merging or blending. It 
is the first boundary mapping method that can handle both 
complex boundaries and non-disk topologies. In contrast to 
previous techniques, it requires no user interaction beyond 
the specification of marker vertex correspondences.  

As part of our algorithm we introduce the first base-mesh 
parameterization technique that can process surfaces with 
multiple components and complex holes. It supports posi-
tional constraints and can be used to minimize different 
distortion functions. The resulting parameterizations are 
globally continuous and bijective for any given input. 

The next section provides an overview of our method. 

 
Figure 2: Template and markers used to complete the female 
model in Figure 1. 

2. Algorithm  

Our algorithm operates on two meshes: input and template. 
We note that for processing purposes we do not really dis-
tinguish between the two. So for instance we can mutually 
complete two different incomplete meshes, by treating one 
as an input and the other as a template in turn. For mesh 
editing we treat the mesh on which the user specified the 
blending/merging boundary as the input and the second 
mesh as the template (Color Plates Figure 3). In both cases 
a set of specified marker vertex correspondences between 
the input and template meshes is also included (Figure 2). 
The markers are specified either manually or provided as 
part of the data [ACP03]. Since  a template can be used   for  

                

(a) (b) (c) (d) (e) 

    
(f) (g) (h) (i) (j) 

Figure 3: Algorithm stages. (a,b) Input and template meshes with markers (2 hanging markers on the input mesh are added as de-
scribed in Section 4.2). (c-e) Segmentation: (c) template, (d) base mesh, (e) input segmentation and virtual triangulation (virtual 
triangles shown in lighter color). (f-i) Parameterization: (f) template; (g) input mapped to base; (h) closed input mesh; (i) input mesh 
mapped to template; (j) completed model (using input connectivity and removing Steiner vertices). Note that the shape of the sides 
and the bottom comes from the mug and hence differs from that of the traditional teapot.  
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completing more than one input, it may contain more mark-
ers than an individual input (e.g. Figure 3). We found that 
using those markers (Section 4.2) speeds up, and sometimes 
improves, the completion. To simplify the subsequent proc-
essing, we do not allow vertices on mesh boundaries to be 
specified as markers.  

Our algorithm has four main stages, visualized in Figure 3 
on an artificial example: 

1. Pre-processing: The two meshes are prepared for 
segmentation and mapping (Section 3). 

2. Segmentation and base-mesh construction: A base-
mesh is constructed and the input and template meshes 
are consistently segmented into patches using the 
markers as patch corners. (Section 4, Figure 3 (c,d)).  

3. Base-mesh parameterization: Both meshes are pa-
rameterized on the base (Section 5). At this stage the 
gaps and holes in each mesh are closed using virtual 
triangles, resulting in a closed mesh with the same to-
pology as the base (Figure 3 (e)). At the end of this 
stage we have a parameterization between the meshes 
(Figure 3 (f-i)). This parameterization defines the 
boundary mapping for mesh-editing operations.  

4. Blending: For template-based completion, the com-
plete model is constructed (Figure 3 (j)) by blending 
the template and the input meshes (Section 6). 

The stages of the algorithm are described below in detail. 

3. Pre-processing 

In this stage the algorithm prepares the meshes for map-
ping by editing mesh components with multiple boundary 
loops. First, it closes small holes (where the size is based 
on a user-defined parameter), computing an initial virtual 
triangulation using simple corner cutting. The quality of 
the initial triangulation is not important as it will be im-
proved by the mapping stage (Section 5.2). Next, the algo-
rithm unites the remaining boundary loops into one. Using 
the face graph of the mesh, it first computes a shortest-
path (Steiner) tree connecting the loops. Then it merges 
the loops by removing the faces in the Steiner tree from 
the mesh (Figure 4). The purpose of pre-processing is to 
avoid ambiguities in gap closure, as it is often difficult to 
classify which boundary loop on one mesh component 
corresponds to a boundary loop on another. Generating a 
single boundary for each component eliminates this ambi-
guity. The virtual triangulation procedure applied later-on 
(Section 5) typically reconnects the unstitched triangle 
paths.  

  
Figure 4: Results of pre-processing: the small holes are 
closed and the two large boundary loops on the top-front 
component are connected into one loop. 

Next, the algorithm segments the pre-processed meshes 
into patches. 

4. Segmentation 

A consistent mesh segmentation for closed meshes is typi-
cally constructed by incrementally introducing paths be-
tween marker vertices [PSS01; SPPH04; KS04]. The main 
challenge in adapting this approach to our needs is to ac-
count for gaps and holes in the input meshes. In particular, 
since markers may be located on different components, the 
algorithm must handle paths across gaps. To support paths 
across gaps or holes, we define three types of legal paths 
on meshes:  
• Cross-gap paths connect markers on different mesh 

components. They are formed by pairs of edge paths, 
each from the marker to the boundary of its respective 
component. The two boundary vertices are connected 
by a virtual edge. Similar to regular edges, the length 
of a virtual edge is the Euclidean distance between its 
end-vertices. Cross-gap paths contain exactly two 
boundary vertices and are not allowed to contain any 
boundary edges. 

• Interior paths are paths between markers within one 
component that contain only interior edges and verti-
ces.  

• Cross-hole paths also connect markers within one 
component but go across boundaries. They are formed 
by pairs of edge paths, each from a marker to the 
boundary of the component. The two boundary verti-
ces are connected by a virtual edge. Similar to cross-
gap paths, they contain exactly two boundary vertices 
and are not allowed to contain any boundary edges.  

We disallow paths that go along boundaries or cross holes 
and gaps multiple times, since they can pose difficulties 
either when segmenting the meshes or later when mapping 
the patches onto the base mesh. 

Our segmentation method first segments the template 
mesh and derives the base mesh from this segmentation. It 
then enforces the same segmentation on the input mesh. 
When performing template-based completion with the 
same template for reconstructing different input models, 
the template segmentation and the base mesh can be re-
used. 

4.1 Base mesh construction 

The template mesh is segmented by introducing legal edge 
paths between marker vertices, one-by-one. At each point, 
the algorithm selects the shortest path between markers 
that does not intersect existing paths (Figure 3 (c)). At 
first, only interior paths are allowed. Once the markers in-
side each component are triangulated, we allow cross-gap 
paths to be added. For a template with no gaps this proce-
dure is guaranteed to generate a manifold and orientable 
segmentation. In all our experiments the method generated 
valid segmentations for models with multiple components 
as well, even though in theory it has no orientability guar-
antees. For models with genus greater than zero, the 
method may require the user to specify additional markers, 
if the resulting patches contain handles. Given the segmen-
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tation, the algorithm constructs the corresponding base 
mesh by generating straight edges between the corner ver-
tices of the patches (Figure 3 (d)). 

Next, we segment the input mesh enforcing the base mesh 
connectivity.  

4.2 Input mesh segmentation  

The input mesh might contain only a subset of the mark-
ers, corresponding to base-mesh vertices (Section 2). 
Therefore, the first stage of the segmentation algorithm 
introduces the missing markers into the mesh as hanging 
vertices. Each such vertex defines a separate connected 
component. To position each hanging vertex in 3D, the 
method measures the distances between the corresponding 
base-mesh vertex and its neighbors in the base mesh. It 
positions the hanging marker in 3D at the same distance 
from the neighboring markers using LLE [RS00] (see 
Figure 3 (a)). In practice, the exact position has little influ-
ence on the result, as it is ignored in the blending stage 
(Section 6).  

To generate the segmentation, the algorithm introduces 
paths between marker vertices one-by-one, based on the 
base-mesh connectivity. When introducing each path we 
must make sure that it does not block future paths 
[PSS01]. Regrettably, in a multi-component setting path 
blocking cannot be tested as described in [KS04; 
SPPH04]. Therefore we specify a particular order of add-
ing paths in which blocking cannot occur, extending the 
Steiner tree approach for closed meshes [PSS01] to 
meshes with multiple components and holes. Our method 
introduces legal paths that correspond to base mesh edges 
in a specified order. 
First, for each connected component, the method con-
structs a Steiner tree of the markers in this component us-
ing only interior paths. Next, it proceeds to generate a 
Steiner tree of the connected components, by adding cross-
gap paths between markers in different components. At the 
end of this stage, all the markers are connected into a sin-
gle tree, while the paths constructed so far do not block 
any future paths between markers inside any component or 
between markers in different components. At the same 
time, from now on, new paths will not cause blocking, as 
all the markers are connected. Finally, the algorithm com-
pletes the segmentation by adding paths of all the three 
legal types (cross-gap, interior, and cross-hole), each time 
adding the shortest path that corresponds to a base-mesh 
edge.  
The paths are traced on the face graphs of the separate 
connected components and then converted to edge paths, 
adding extra, Steiner, vertices as necessary. Using the 
same arguments as in [PSS01] it is easy to show that the 
construction algorithm will always result in a segmenta-
tion consistent with the base mesh for models of genus 
zero. While in theory the method can fail for models of 
higher genus, in practice it performs well (Figures 3, and 
14). Occasionally, the segmentation creates so-called 
swirls [PSS01], which are resolved as described in 
[SPPH04]. 

(a) (b) (c) 
Figure 5: Segmentation and virtual triangulation: (a) initial 
segmentation (Section 4.2), (b) initial virtual triangulation 
(Section 5.1), (c) final segmentation and triangulation (Sec-
tion 5.2). 

The generated paths segment the mesh components that 
contain markers into patches, such that the real and virtual 
edges in each patch form a connected planar graph. The 
input and template meshes are now parameterized onto the 
base mesh, using the computed segmentation. Figure 5 (a) 
shows the initial segmentation of the female model from 
Figure 1. 

5. Base-Mesh Parameterization  

This section presents a framework for mapping meshes 
with multiple components and holes onto a base mesh. 
The framework enforces the mapping of markers on the 
input and template meshes to the vertices of the base 
mesh. To correctly parameterize gaps and holes we use 
virtual triangulation. In the past, virtual triangulation was 
used as pre-processing for planar parameterization, to en-
able parameterization of meshes with holes [SdS00] and to 
reduce parameterization distortion [LKL02]. Our work 
further develops this idea using iterative Delaunay triangu-
lation to improve the quality of parameterization and fa-
cilitate automatic gap and hole closure.  

The mapping is computed in two steps. An initial one-to-
one embedding from the mesh to the base domain is com-
puted and the gaps and holes are triangulated, enforcing 
base-mesh topology (Figure 5 (b)). The mapping and the 
virtual triangulation are then improved using a combined 
smoothing and re-triangulation procedure (Figure 5 (c)).  
When performing local completion, we simply skip some 
of the patches during parameterization. In the feline, 
Figure 14, the patch containing the bulk of the model was 
specified by the user to be ignored during the parameteri-
zation. Clearly, this significantly sped up the completion 
procedure (Table 1).  

5.1 Initial Embedding and Triangulation  

The algorithm parameterizes the input mesh onto the base 
mesh, by mapping each patch onto the corresponding 
base-mesh face. 
1. First, the method applies uniform embedding [Tut60] 

to parameterize each patch onto the base triangle. Note 
that a region of a gap or a hole, that is associated with 
a patch, is by construction bounded by real and virtual 
edges, thus forming a polygonal face when viewing the 
patch as a connected planar graph. Uniform embed-
ding is one-to-one for all connected planar graphs. 
Hence, it is guaranteed to generate a bijective mapping 
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from the patch to the base triangle. The embedding 
maps all the gap and hole regions to convex polygons.  

2. Next, the algorithm uses the mapping to triangulate the 
gaps and holes in the patch. The triangulation is per-
formed in 2D using the boundary vertex positions on 
the base-mesh triangle. The algorithm constructs a De-
launay triangulation of the hole regions using the Tri-
angle software package [She96].  

As mentioned in Section 1.2 our algorithm can handle in-
put meshes containing connected components with no 
markers. To include those in the parameterization, the 
method classifies each of them as belonging to the nearest 
patch that contains virtual triangles and embeds them into 
the triangulation as follows.  
For each component, it locates a virtual triangle nearest to 
it. The component is then embedded into the interior of the 
triangle using uniform embedding, where the interior do-
main is formed by subdividing the triangle twice using 
mid-edges. The surrounding virtual triangulation is up-
dated, adding the boundary vertices of the embedded com-
ponent to the boundaries of the appropriate hole (Figure 6 
(a)). In practice we found that the mapping gives better 
results if the insertion is performed after a few iterations of 
the improvement procedure (Section 5.2).  

After the triangulation, we obtain an initial bijective base-
mesh parameterization. The mesh generated by adding the 
Delaunay triangles to the input mesh has the same topol-
ogy as the base mesh. However, the distortion of the initial 
parameterization depends on the shape of the patches and 
so can be quite high. In addition, the initial virtual triangu-
lation may connect parts of the input that in reality are 
very far from each other (Figure 5 (b)). To reduce the dis-
tortion and improve the triangulation, a global improve-
ment procedure is applied.  

(a) (b) 
Figure 6: (a) Embedding two components with no markers. 
(b) The components after parameterization improvement.  

5.2 Parameterization Improvement 

The goal of the improvement procedure is to generate a 
globally continuous, low-distortion parameterization of the 
input meshes over the base-mesh domain. As pointed out 
by Khodakovsky et al. [KLS03], to achieve this we need a 
mechanism for relocating the mapped mesh vertices from 
one base-mesh triangle to another. Existing global parame-
terization methods [GVSS00; KLS03; THCM04; KS04] 
operate on closed meshes. The methods map base mesh 
faces to canonical equilateral base domains in 2D to facili-
tate the parameterization. 
We introduce a technique for bijective base-mesh smooth-
ing that similarly to [GVSS00] uses overlapping quad 
base-domains. However, instead of using canonical do-

mains as Guskov and others do, we derive the domain ge-
ometry from the base mesh, significantly reducing the 
mapping distortion (Figure 9).  
In our setting, each base-domain corresponds to a pair of 
adjacent faces in the base mesh and is constructed by sim-
ply unfolding the two faces in the plane (Figure 7). Since 
we require a convex domain, it is necessary to scale the 
triangles, as shown in Figure 8, in the infrequent case 
when the unfolded quad has a concave corner.  

 
                  (a)                                                        (b) 

Figure 7: (a) Two adjacent base-mesh faces, highlighted in 
red (with mapped mesh) and (b) their mapping (unfolding) 
into a planar quadrilateral domain. 

 
Figure 8: Unfolding a non-convex quadrilateral: (a) base-
mesh faces in 3D; (b) non-convex unfolding; (c) convex un-
folding. 

5.2.1 Base-Domain Parameterization and Remeshing 

The method improves the virtual triangulation by combin-
ing the smoothing with a retriangulation procedure. It iter-
ates over all the pairs of adjacent faces in the base mesh, 
applying the following steps:  

1. Parameterization: For each pair of faces, Step 1 con-
structs the quadrilateral domain and parameterizes the 
corresponding mesh patches in this domain. First, it 
maps the exterior bounding paths of the two patches to 
the edges of the quadrilateral using length-wise param-
eterization. To parameterize the interior vertices, it 
uses the parameterization method proposed by Yoshi-
zawa et al. [YBS04]. Thus the algorithm first applies 
the parameterization improvement framework with the 
mean-value weights [Flo03] until it converges. It then 
computes the stretch of the generated parameterization 
and re-parameterizes the mesh using mean-value 
weights scaled by a stretch factor. For both types of 
weights the parameterization on the planar domain is 
computed by solving a linear system using the conju-
gate gradient method. This makes our method more ef-
ficient than methods such as [KS04; THCM04] in 
which the mappings of the vertices are computed one 
by one. Similar to Schreiner et al. [SPPH04], we ob-
served that by introducing a stretch-preserving compo-
nent into the formulation, we improve the alignment of 
prominent features when mapping similarly shaped in-
put and template meshes to the same base mesh.  

2. Remeshing and projection to 3D: This step retrian-
gulates the holes and gaps contained in the two param-
eterized patches using Delaunay triangulation. Extra 
vertices are added as necessary to improve the triangu-
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lation quality [She96]. To compute the 3D positions 
for the new virtual vertices, we use mean value em-
bedding [Flo03] in 3D with the weights computed in 
the plane (Figure 3 (h)). The retriangulation improves 
both the parameterization and the gap and hole closure. 
In terms of distortion reduction, combining the param-
eterization with retriangulation has a similar effect to 
free-boundary parameterization. 

3. Cleanup: As explained in Step 4, the parameterization 
mechanism introduces some Steiner vertices into the 
mesh. These vertices can be later removed if the re-
moval does not cause triangle flips in the parameteri-
zation. The cleanup iterates over all the Steiner verti-
ces in the two parameterized patches and removes the 
ones which are no longer necessary. Empirically, 
throughout the iterations the number of Steiner vertices 
remains about 13% of the original model size. 

4. Introducing Steiner vertices: After the parameteriza-
tion and retriangulation, the vertices in the two patches 
may be mapped to a different base-mesh face from the 
one they were mapped to before. Hence, the boundary 
between the patches needs to be recomputed. In Step 1, 
we assumed that each patch is bounded by paths of 
edges. Therefore, we need to compute a path of edges 
that maps to the base-mesh edge shared by the pair of 
faces. The algorithm generates the path by intersecting 
the parameterized mesh with the planar domain’s di-
agonal that corresponds to the shared base-mesh edge. 
This obviously results in numerous Steiner vertices 
added to the mesh. However, we found that the 
cleanup step is later able to remove the vast majority 
of these vertices.  

The smoothing and triangulation procedure is repeated un-
til both the parameterization and the triangulation no 
longer change. By repeatedly smoothing pairs of mesh 
patches, we allow vertices to move freely all across the 
base. Figure 3 (g, h) shows the result of applying our algo-
rithm to parameterize and triangulate the broken teapot 
model. The parameterization preserves the shape of the 
input mesh and in particular the outline of the boundaries. 
The gap closure is close to optimal, with the correct com-
ponents connected to each other. 

Our framework can be used, as-is, to optimize different 
parameterization distortion metrics, by replacing the 
[YBS04] formulation in the parameterization stage with 
any other appropriate formulation [FH04]. While our 
framework is simpler and more efficient than cross-
parameterization [KS04], we found that it computes 
parameterizations with less distortion (Figure 9). We 
mapped David’s head to the sphere using 4 markers. For 
fair comparison, similar to [KS04], we used mean-value 
[Flo03] parameterization. The angular distortion for the 
mapping obtained using cross-parameterization was 0.16, 
using our method it was 0.04. Our mapping took 97 sec-
onds to compute, compared to 238 using [KS04]. 

After the mapping stage is completed, we have a bijective 
mapping between the base  mesh  and the  meshes  formed 

   
(a) (b) (c) 

Figure 9: Parameterization of David’s head (a) onto a 
sphere: (b) using [KS04], (c) using our method.  

by adding virtual triangles to the input and template 
meshes. Hence, by combining any two mappings, we get a 
bijective mapping between the closed meshes. Figure 3(i) 
shows the closed teapot mesh mapped to the mug. For 
mesh editing, this parameterization is used to map the 
boundaries from one mesh to the other.  

6. Blending 

For template-based completion we use the mapping com-
puted by the previous stage to construct a complete geo-
metric model by blending the input and template meshes.  

To facilitate blending we establish common connectivity 
for the input meshes using the remeshing approach pro-
posed in [KS04]. We use the connectivity of the closed 
input mesh (Figure 3) or the template (Figure 1) as the ba-
sis for common connectivity. The choice depends on the 
complexity and resolution of the two meshes. Using the 
finer, more detailed mesh provides a better approximation. 
To obtain the same connectivity for all the input geome-
tries, the algorithm simply uses the computed parameteri-
zation to map the vertices of one model to the other. Simi-
lar to [KS04] the algorithm refines the connectivity if it 
fails to capture all the details on one of the models. 

Since the input and template models often have very dif-
ferent shape, we cannot blend the 3D coordinates directly. 
To provide intuitive results we blend local shape descrip-
tors instead. In our examples we used the blending scheme 
of Sheffer and Kraevoy [SK04] to generate the completed 
models. Other methods, such as [SCOL*04; YZX*04] can 
also be employed. 

The blending uses information from the template in areas 
where input geometry is missing or unreliable, and input 
geometry where it is available. The level of reliability can 
be determined from data confidence values, [TL94] when 
available. In Figure 1 we marked input data on the hands 
as unreliable, replacing the fists in the input mesh with 
open palms from the template. In cases of mutual comple-
tion, we can have regions where the geometry is not de-
fined in both models. In these cases the geometry is de-
fined by the projection to 3D of the virtual triangles on the 
closed template (Section 5.2.1, Step 2). This is, for in-
stance, the case for part of the hair in Figure 12.    

Note that once we compute the common connectivity for 
the meshes, this connectivity provides a straightforward 
parameterization function between the two. Hence, the 
base mesh is no longer needed. An important consequence 
of this is that the Steiner vertices are no longer necessary 



V. Kraevoy and A. Sheffer / Template-Based Mesh Completion 

© The Eurographics Association 2005. 
 

to maintain the bijectivity of the mapping and can safely 
be removed (Figure 3 (j)). 

7. Results and Applications 

Throughout this paper we demonstrate several models 
constructed using our scheme. The statistics for the models 
are summarized in Table 1. Global completion took from 
20 seconds to 8 minutes for models of 10K to 200K trian-
gles. The times were measured on a 3GHz P4. These times 
are compatible with those we got from the authors of 
[ACP03]. However, as noted in the introduction our 
method is significantly more robust, succeeding on mod-
els, such as Figure 1, where [ACP03] fails. Our parame-
terization algorithm is significantly faster than previous 
cross-parameterization techniques [KS04;SPPH04].  

Model #∆ 
input/templ. 

#components 
input/templ. 

#markers time
(sec.)

Female 20455/27562 1/1 39 45 
Teapot 10739/3450 3/1 16 18 

2 females 195660/230831 2/2 37 472 
Head 40207/39996 3/1 12 123 
Teddy 12596/5120 11/1 4 102 
David 35373/5120 1/1 6 140 
Feline 13555/1536 1/1 20 33 
Hands 45634/5120 2/1 14 150 
Escher 1760/39996 1/1 13 25 

Table 1: Model statistics. For the David and feline models 
the input size is the size of the local completed region. 

The time complexity of the method is O(nlogn), where n is 
the number of vertices. The segmentation requires 
O(knlogn) time for tracing the paths, where k is the num-
ber of markers – tracing a single path takes O(nlogn). 
Since the number of markers does not grow with the 
model size, it can be viewed as a constant. The smoothing 
is performed a bounded number of iterations (we set the 
bound to 10 in all our examples). In each iteration solving 
the linear systems takes linear time (conjugate gradient) 
and the expected run-time of Delaunay remeshing is 
O(nlogn). 

For all of the examples, we required a relatively small 
number of markers (4 to 39) to establish the mapping and 
successfully complete the models. For comparison, Allen 
et al. [ACP03] required 74 markers for template-based 
completion between scans and templates of humans in the 
same pose. 

Figure 1 demonstrates the results of using our method for 
completion of large and complex holes. The scanned fe-
male model in Figure 1 differs significantly in terms of 
pose and body proportions from the canonical template 
that we used [Pos] (Figure 2). Despite these differences the 
completion algorithm correctly reconstructs the cross-hole 
connectivity and accurately completes the missing features 
based on the template.  

Figure 3 shows a genus one broken teapot model in which 
the gaps are larger than the  mesh fragments.  Despite this, 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 10: Completing a head from 3 fragments: (a,d) the 
input mesh, (b,e) the template, (d,f) the completed model. Fea-
tures, such as nostrils and mouth, not available in the input 
mesh were taken from the template. 

the connectivity is reconstructed correctly and the missing 
geometry is successfully completed. Figure 10 shows the 
reconstruction of a head from several components. Thanks 
to the near-perfect alignment achieved by our mapping, 
the method seamlessly blends partial features from the 
template and input meshes. In this example the upper half 
of the nose comes from the input while the lower half 
comes from the template, yet the two are blended seam-
lessly and the original geometry of both is clearly pre-
served. These two examples are typical for archeological 
applications in which the models need to be completed 
based on small fragments. 

 

(a) (b) (c) 
Figure 11: Completing teddy from 11 components using 
the sphere as a template and 4 markers: (a) input, (b) 
teddy mapped to the sphere (normal map), (c) completed 
model. 

There are many models for which no standard template 
exists. Such is the case for the teddy bear model generated 
from merged Z-camera scans (Figure 11). Nevertheless, 
the model is successfully completed using a simple sphere 
as a template. The markers are placed automatically at 
four roughly equidistant (in Euclidean space) points on the 
model and the sphere. The method robustly parameterizes 
and completes the model from eleven connected compo-
nents, most of which have no markers. The spherical 
parameterization (Figure 11 (b)) is globally continuous 
and has low distortion.  

Figure 12 shows another approach for completing meshes 
if a  template  is  not  readily available. In this example we 
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Figure 12: Mutual completion: (top) two incomplete scans; 
(bottom) completed models. 

have two incomplete input meshes of females in different 
poses taken from the CAESAR database [Cae]. To recon-
struct the models we compute the mapping between them 
and then perform blending to complete the sitting model 
with data from the standing one and vice versa. The algo-
rithm successfully completes not only the medium size 
holes on the standing model but also the huge hole on the 
behind of the sitting one. No markers were specified on 
the hair component of either model. Note that both models 
have gaps between the hair bun and the head. Therefore 
the geometry in this region on both models is defined by 
the virtual triangulation (Section 5.2.1 Step 2). 

 
(a) (b) 

  
(c) (d)  (e) 

Figure 13: Local completion of the hand region on the David 
statue. (a,b) Input mesh as solid and semi- transparent grey 
images showing the complex hole boundaries on the hand. 
(c,d) Compatible segmentation of the hand and sphere (The 
regions ignored by the algorithm are colored in cream, and 
correspond to two base mesh faces). (e) Completed hand. 

In the examples in Figures 13 and 14 we used local com-
pletion to close holes which are relatively small compared 
to the size of the models. In Figure 13 we show local 
completion of a bunch of complex holes on the hand of the 
David model. Due to the high genus of the statue, there are 
no natural global templates that we can use to complete it. 
Moreover, since the model contains 1M triangles, comput-
ing a global mapping can be quite time-consuming. At the 

same time, in contrast to the examples in Figures 1 and 12 
the holes are relatively small compared to the model size. 
Hence we chose to perform completion locally. Since 
there are no complex geometric features missing, we use 
the standard sphere as a template for the hand region. In 
this case, the user specifies a sequence of markers to de-
fine the boundary of the processed region on the input 
model (two loops on the top and bottom of David’s hand). 
The template ensures that the model’s genus is locally pre-
served, and no spurious handles are generated. Since the 
sphere contributes nothing to the model’s geometry, we 
skip the blending stage and use the virtual triangulation of 
the holes as-is in the completed model. 

In Figure 14, we complete the feline model, after break-
ing-off its tail. This completion is quite tricky as it requires 
connecting the three boundary loops between themselves 
forming the necessary handles. Regular hole completion 
methods are unsuitable for such a task as they typically 
treat each loop separately. Even manual alignment in this 
case can be quite challenging. By locally parameterizing 
the input model onto a figure eight template, we obtain the 
mapping automatically, achieving a perfect fit. 
 

 
Figure 14: Local completion operation, incorporating figure 
eight in place of the feline’s tail. The result is practically in-
distinguishable from the original model. 

Finally, Color Plate Figure 3 demonstrates the use of our 
method for mesh merging. In the top row two input hand 
meshes are simultaneously mapped to the template, sphere 
model. In the bottom row we generate a model inspired by 
Escher’s paintings. This is an example in which the input 
boundaries cannot be automatically mapped to the tem-
plate by existing techniques. It is practically impossible to 
cut a disk-like region of the template head model, contain-
ing the mapped spiral, nor is it possible to use axis-aligned 
projection to map the spiral boundaries.  

8. Summary 

We presented a robust new method for template-based 
mesh completion. As demonstrated by the examples, our 
new method is robust in the face of incomplete input 
meshes with multiple components and holes. It can suc-
cessfully complete models on which previous methods are 
likely to fail. It is very efficient and requires only a small 
amount of user interaction to specify the marker vertices. 
Our parameterization mechanism is more generic than 
previous techniques; it guarantees bijectivity and intro-
duces less distortion (Figure 9). For models with genus 
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greater than zero, the method may require additional 
markers, if the resulting patches contain handles. These 
markers can be introduced manually or automatically 
[SPPH04]. While our algorithm requires fewer markers 
than most previous techniques, an insufficient number of 
markers may lead to misalignment of model features.  

The computed bijective parameterization between the 
completed model, the template and the base mesh can be 
used in a variety of applications. An important application 
of template-based completion is the construction of pa-
rameterized shape spaces [ACP03]. Such spaces are useful 
for both statistical analysis and the synthesis of new 
shapes. Our current method requires the user to specify 
marker vertex correspondences between the input meshes 
and the template. To parameterize large families of mod-
els, such manual selection is impractical. In some cases the 
markers can be computed from the scan data. In general 
cases, however, the automation of marker selection re-
quires robust feature-matching techniques. We will ex-
plore such matching techniques in our future research.  
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Figure 1: Template-based mesh completion: (top) incomplete 
scan input – the semi-transparent grey image shows the mul-
tiple complex holes in the input; (middle) reconstructed 
model; (bottom) template and markers used to complete the 
model. 

 

  

   
Figure 2: Local completion of the hand region on the David 
statue.  

 
 

 

   

Figure 3: “Playing ball” and “a tribute to Escher”: (left) 
inputs, (center) templates, (right) merged models. 
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