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Abstract

We propose a framework for pairwise registration of shapes represented by point cloud data (PCD). We assume
that the points are sampled from a surface and formulate the problem of aligning two PCDs as a minimization
of the squared distance between the underlying surfaces. Local quadratic approximants of the squared distance
function are used to develop a linear system whose solution gives the best aligning rigid transform for the given
pair of point clouds. The rigid transform is applied and the linear system corresponding to the new orientation is
build. This process is iterated until it converges. The point-to-point and the point-to-plane Iterated Closest Point
(ICP) algorithms can be treated as special cases in this framework. Our algorithm can align PCDs even when
they are placed far apart, and is experimentally found to be more stable than point-to-plane ICP. We analyze
the convergence behavior of our algorithm and of point-to-point and point-to-plane ICP under our proposed
framework, and derive bounds on their rate of convergence. We compare the stability and convergence properties
of our algorithm with other registration algorithms on a variety of scanned data.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Registration plays an important role in 3D model acquisi-
tion, object recognition, and geometry processing. Given as
input two shapes, often called the model and the data, each
in its own coordinate system, the goal of registration is to
find a transformation that optimally positions that data with
respect to the model. In this paper, we consider the registra-
tion problem when both the model and data inputs are given
as point cloud data (PCD). This is a common problem in
3D scanning, where multiple views of an object need to be
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ford Graduate Fellowship.
‡ Part of this research has been carried out within the Compe-
tence Center Advanced Computer Vision and has been funded by
the Kplus program. This work was also supported by the Austrian
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brought into a common coordinate system, and in geome-
try processing, where point cloud representations need to be
aligned for applications such as texture transfer, morphing,
or watermarking [CWPG04].

A popular method for aligning two point clouds is the It-
erated Closest Point (ICP) algorithm [BM92, CM91]. This
algorithm starts with two point clouds and an estimate of the
aligning rigid body transform. It then iteratively refines the
transform by alternating the steps of choosing corresponding
points across the point clouds, and finding the best rotation
and translation that minimizes an error metric based on the
distance between the corresponding points.

Despite a large amount of work on registration, conver-
gence behavior of many registration algorithms, under dif-
ferent starting conditions, and error metrics, is poorly un-
derstood. Experimentally, it has been shown that the rate of
convergence of ICP heavily depends on the choice of the
corresponding point-pairs, and the distance function that is
being minimized [RL01]. Many enhancements of ICP-style
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algorithms for registration propose different error metrics,
and point selection strategies, to improve ICP’s convergence
behavior [GIRL03, Fit01, JH03, CLSB92, RL01].

Two distance metrics are commonly used in ICP and its
variants. The point-to-point distance of Besl [BM92] uses
the Eucledian distance between the corresponding points.
This leads to an ICP algorithm that converges slowly for
certain types of input data and initial positions. Another
error metric is the point-to-plane distance of Chen and
Medioni [CM91], which uses the distance between a point
and a planar approximation of the surface at the correspond-
ing point. When the initial position of the data is close to
the model, and when the input has relatively low noise, ICP
with point-to-plane error metric has faster convergence than
the point-to-point version. However, when the shapes start
far away from each other, or for noisy point clouds, point-to-
plane ICP tends to oscillate and fails to converge [GIRL03].

Another reason behind the slow convergence of registra-
tion algorithms based on ICP, is the local nature of the min-
imization. The only information used by the algorithm is
the point correspondences. As a result, the minimized error
function only approximates the squared distance between the
two point clouds up to first order.

In this paper, we propose an optimization framework for
studying registration algorithms. We pose registration be-
tween two point clouds as an optimization over the space
of rigid transforms. We develop an objective function that is
a second order approximant to the squared distance between
the model and the data. Higher order information about the
surfaces represented by the point clouds, such as local curva-
tures, are incorporated into the quadratic approximant. Using
such approximant to the squared distance function, we de-
velop a registration algorithm. When the model and the data
PCDs are close, our algorithm has a rate of convergence sim-
ilar to ICP with point-to-plane error metric. Moreover, our
method has a stable behavior even when the initial displace-
ment is large. We also explain the convergence properties of
the point-to-point and point-to-plane ICP variants, in terms
of the accuracy of the distance function that they use during
minimization.

2. Registration of Point Cloud Data

Let P = {p1,p2, . . . ,pn} andQ = {q1,q2, . . . ,qm} be two
point clouds inIRd. The goal of the registration algorithm
is to find a rigid body transformα composed of a rotation
matrix R and a translation vectort that best aligns thedata
PCDQ to match themodelPCDP.

Registration algorithms based on ICP work as follows.
Given the initial position of the data with respect to the
model, the algorithm chooses a set ofk point pairs(pi ,qi)
from the model and the data. The distance between the
model and data PCDs is approximated by the sum of dis-
tances between the point pairs. The algorithm then searches

for the rigid transform that minimizes the residual distance,
ε, between the model and the transformed data:

ε(α) =
k

∑
i=1

d2(α(qi),pi), (1)

whered can be point-to-point distance of Besl or point-to-
plane distance of Chen and Medioni. Notice, however, that
the basic assumption is that the sum of squared distances
between pairs of points is a good approximation for the dis-
tance between two PCDs.

In the point cloud setting, we actually know that the model
and data PCDs are not arbitrary collections of points, but
are sampled from some underlying surfacesΦP andΦQ. In
this case, it is more appropriate to minimize the distance
from the data PCD to thesurfacerepresented by the model
PCD. Pottmann and Hofer showed that when the data and
the model are close, the point-to-plane distance is a good
approximation to the distance between a data point and the
surface represented by the model PCD. On the other hand,
when the model and the data are far apart, the point-to-point
distance is a better choice [PLH02].

The goodness of a given error metric is determined by two
properties. First, we would like the error metric to accurately
reflect the distance between a data pointq and the surface
represented by the model PCD. Second, we would like the
distance approximation to be valid not just at a pointq, but in
a neighborhood around it. Both point-to-point and point-to-
plane error metrics are based only on first order information
about the underlying input surfaces. As a result, they do not
provide a good approximation to the distance when we move
around in the neighborhood of a data pointq.

In this paper, we are concerned with developing a good
approximation to the distance function between two point
clouds. In order to show theoretical bounds on the con-
vergence behavior of registration algorithms based on our
distance function, we pose the problem of registration of
two point clouds as an optimization problem over the space
of rigid transforms. This leads to the following optimiza-
tion problem: we are searching for the best rigid transform
α = (R, t) that minimizes the error given by

ε(α) =
m

∑
i=1

d2(Rqi + t,ΦP), (2)

whereR is the rotation matrix andt is the translation vector.
The functiond2(Rqi + t,ΦP) is the distance from the trans-
formed data pointqi to the surface represented by the PCD
P. Given the optimization problem of Equation2, it is clear
that the convergence behavior of any such optimization pro-
cedure depends on the accuracy of the functiond2. We call
d2 thesquared distance functionto the surfaceΦP. Since the
surfaceΦP from which the point model was sampled is gen-
erally complicated and unknown, a good approximant to the
squared distance function is required.
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Contributions of the present paper

We develop a quadratic approximant to the squared distance
function to the surface represented by a point cloud, and use
this approximant in a registration algorithm. Our approxi-
mant has the desired property of being valid not only at the
query point where it is computed, but also in a neighborhood
around the query point. This property allows us to pose the
registration problem in an optimization framework, and use
methods such as Newton iteration, that depend on comput-
ing accurate derivatives of the objective function. In our op-
timization framework using the squared distance function,
point-to-point and point-to-plane ICP variants are reduced
to two special cases of the general minimization problem.

Our distance function approximates the squared distance
from a data query point to the surface represented by the
model PCD up to second order. We develop two methods
for computing such local quadratic approximants. The first,
uses local curvature of the surface to incorporate second or-
der information into the squared distance function. The sec-
ond method, approximates the global error landscape by lo-
cally fitting quadric patches to the squared distance function
to the surface. The quadric patches are stored in a special
octree like structure called thed2tree. For any pointq, the
registration algorithm queries this special structure for the
corresponding approximant to the squared distance to the
surface. Unlike common ICP variants, the d2tree data struc-
ture allows us to perform registration without explicitly us-
ing nearest neighbors for correspondence.

Both of the above techniques incorporate information
about the shape of the neighborhoods of the input surface
into the error function. As a result we get better convergence
behavior than purely local methods of ICP. Using our dis-
tance function, we develop a registration algorithm for point
clouds that has fast convergence and is more stable behavior
than standard ICP variants. When two point clouds are close
to each other, our algorithm has quadratic convergence, sim-
ilar to point-to-plane ICP. However, unlike point-to-plane
ICP, our algorithm has more stable convergence behavior
and is less prone to oscillations when the initial distance be-
tween the model and the data is large.

3. Registration using the squared distance function

In this section, we assume the existence of a functiond2

that for any pointx ∈ IRd, gives the squared distance to the
model PCD surfaceΦP. Such a squared distance function
defines the error landscape for our objective function as in-
dicated by Equation2. So this functiond2 is important for
registration algorithms. Later in Section4, we describe how
to generate local quadratic approximantsF+ of this function
d2(x,ΦP). Assuming these approximants are available, we
now show how the registration problem can be solved in a
least squared sense by a gradient descent search. Simply put,
we try to place one point cloud in the squared distance field

of the other, in order to minimize the placement error. Given
ΦP, we expect the points near itsmedial axis MA(ΦP) to
have bad quadratic approximants, since locally, the squared
distance function is not smooth. If we detect such points, we
leave them out of our optimization procedure.

We employ an iterative scheme to solve the nonlinear opti-
mization problem over the complex error landscape. At each
stage, we solve for a rigid transform composed of a rotation
R followed by a translationt. We useF+ to solve for the
rigid transformα = (R, t) that brings the data PCDQ to the
model PCDP. We apply this transform and repeat.

3.1. Registration in 2D

We first explain the process in 2D. At any pointx = [x y] ∈
IR2, we assume the availability of an approximantF+ such

thatF+(x)≈ d2(x,ΦP). Let F+ be specified in the form

F+(x) = Ax2 +Bxy+Cy2 +Dx+Ey+F,

where A,B,C,D,E,F are the coefficients of the approxi-
mant. More compactly, we can writeF+ in a quadratic form
as

F+(x) = [ x y 1 ] Qx [ x y 1 ]T , (3)

whereQx is a symmetric matrix that depends onx. Impor-
tantly, the approximantF+(x) is a valid locally aroundx.

We denote any pointqi of the data PCDQ by [xi yi ].
Let a matrixR corresponds to a rotation by angleθ around
the origin. Our goal is to solve for a rigid transform, which
consists ofR followed by a translation vectort = [tx ty], that
minimizes∑m

i=1 F+(Rqi + t). For smallθ, we can linearize
the rotation by using sinθ ≈ θ and cosθ ≈ 1. So after each
iteration step, we get,[xi yi ] 7→ [xi −θyi + tx θxi + yi + ty].
If locally Qqi approximately stays fixed, the residual error
between the transformed data and the model PCDs is given
by

ε(θ, tx, ty) =
m

∑
i=1

[ xi −θyi + tx θxi +yi + ty 1 ]Qqi

[ xi −θyi + tx θxi +yi + ty 1 ]T ,

(4)

whereQqi denotes the matrix representing the approximant
of the squared distance function toΦP around the pointqi .
Our goal is to find values ofθ, tx, andty that minimizes this
residual error. Setting the respective partial derivatives of the
errorε to zero, we get the following linear system m

∑
i=1


Ii Ji Ki

Ji 2Ai Bi

Ki Bi 2Ci





θ

tx

ty

=

−

 m

∑
i=1


Li

2Aixi +Biyi +Di

Bixi +2Ciyi +Ei


 , (5)
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whereIi = 2(Cix
2
i −Bixiyi +Aiy

2
i ), Ji = Bixi−2Aiyi ,Ki =

2Cixi−Biyi , Li = Bi(x2
i −y2

i )+2(Ci−Ai)xiyi +Eixi−Diyi
and,Ai ,Bi ,Ci ,Di ,Ei ,Fi denotes the entries of the matrixQqi .
The transformation resulting from solving Equation5 is ap-
plied toQ. This completes one iteration of our gradient de-
scent process. Next we use the approximants corresponding
to the new positions ofqi to get another linear system whose
solution is again applied to the data PCD. This process is
iterated until the residual error falls below a pre-defined er-
ror threshold or a maximum number of iteration steps is
reached.

Since we do not make any assumption about the initial
alignment ofP andQ, the rigid transform computed at any
step, can be large. In such cases, we can only take small
steps in the direction of the transform because its compu-
tation is based on approximants that are valid locally. This
issue of applying a 1/η-fraction of a rigid transform is an
important problem and has been studied in depth in other
places [Ale02].

We propose a simple way for computing fractional trans-
forms. In our notation, the computed transform vector
[θ tx ty] denotes a rigid transform composed of a rotation
matrix R followed by a translation vectort. This mapsq to
a pointRq+ t. Let the fractional transform be composed of
a rotation matrixR′ and a translation vectort′. We define
(R′,t′) to be a 1/η fraction of (R,t) if the following relation
holds,

(..(R′(R′q+ t′)+ t′)...η times)≡ Rq+ t. (6)

From this relation, we can getR′ = R1/η, and t′ = (R−
I)−1(R′− I)t where,I is the identity matrix. ByR1/η, we
mean a rotation around the origin by angleθ/η. We defer
the important issue of choosing a suitable value forη to Sec-
tion 5.

3.2. Registration in 3D

In this section, we extend the results from the previous
section to point cloud surface data inIR3. For any point
x = [x y z] ∈ IR3, let the corresponding local quadratic ap-
proximantF+ be specified in the form

F+(x) = Ax2 +Bxy+Cy2 +Dxz+Eyz+Fz2+

Gx+Hy+ Iz ,
(7)

whereA throughI are the coefficients of the quadratic ap-
proximant. With slight abuse of notation, this equation can
be written in a quadratic form asF+(x) = xQxxT , wherex
now denotes[x y z 1].

Once again, our goal is to find the rigid transform which
bringsQ in best alignment withP. Let the rigid transform
be composed of a rotation matrix,R, that is parameterized
by three angles (α,β,γ) in theX-Y-Z fixed angle orientation
convention, followed by a translation vectort = [tx ty tz].

Under small motion, the rotation matrix can be linearized as,

R =

 cosα −sinα 0
sinα cosα 0

0 0 1

 cosβ 0 sinβ
0 1 0

−sinβ 0 cosβ


 1 0 0

0 cosγ −sinγ
0 sinγ cosγ


≈

 1 −α β
α 1 −γ
−β γ 1

 .

(8)

Henceq 7→ Rq+ t.

Now the registration problem reduces to finding values of
α,β,γ, tx, ty, tz that minimize the residual error

ε(α,β,γ, tx, ty, tz) =
m

∑
i=1

(Rqi + t)Qqi (Rqi + t)T . (9)

This least square problem can be solved by setting the re-
spective partial derivatives to zero. The resulting linear sys-
tem is given by[

m

∑
i=1

(
Pi Si

ST
i Ri

)][
α β γ tx ty tz

]T =

−


m

∑
i=1



Ui

Vi

Wi

2Aixi +Biyi +Dizi +Gi

Bixi +2Ciyi +Eizi +Hi

Dixi +Eiyi +2Fizi + Ii




,

(10)

where,

Pi =


Ji Mi Ni

Mi Ki Ti

Ni Ti Li

 ,

Si =


Bixi −2Aiyi 2Cixi −Biyi Eixi −Diyi

−Dixi +2Aizi −Eixi +Bizi −2Fixi +Dizi

Diyi −Bizi Eiyi −2Cizi 2Fiyi −Eizi

 ,

Ri =


2Ai Bi Di

Bi 2Ci Ei

Di Ei 2Fi

 ,

Ji = 2(Cix
2
i −Bixiyi +Aiy

2
i ),

Ki = 2(Fix
2
i −Dixizi +Aiz

2
i ),

Li = 2(Fiy
2
i −Eiyizi +Ciz

2
i ),
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Mi = −Eix
2
i +Dixiyi +Bixizi −2Aiyizi ,

Ni = −Diy
2
i +Eixiyi −2Cixizi +Biyizi ,

Ti = −Biz
2
i −2Fixiyi +Eixizi +Diyizi ,

Ui = Bi(x
2
i −y2

i )+2(Ci −Ai)xiyi +Eixizi −Diyizi +Hixi −Giyi ,

Vi = Di(z
2
i −x2

i )−Eixiyi +2(Ai −Fi)xizi +Biyizi − Iixi +Gizi ,

Wi = Ei(y
2
i −z2

i )+Dixiyi −Bixizi +2(Fi −Ci)yizi + Iiyi −Hizi ,

andAi throughIi correspond to the entries of the matrixQqi

that represents the local quadratic approximant around the
pointqi .

As in the 2D case, whenever the computed transform (R,t)
is large, we utilize a fractional transform given byR′ = R1/η

and t′ = (R− I)−1(R′ − I)t where,I denotes the identity
matrix. A 1/η-fraction of the rotation matrixR can be com-
puted by the techniques proposed by Alexa [Ale02].

4. Squared Distance Function

Given a 3D point cloudP, we describe two methods for con-
structing a quadratic approximantF+ to the squared distance
functiond2 from any pointx ∈ IR3\MA(ΦP) to ΦP. At any
pointx, our goal is to construct an approximantF+ such that
F+(x) ≈ d2(x,ΦP) is second order accurate. Points on the
medial axisMA(ΦP) have non-differentiable squared dis-
tance function and hence, their second order accurate ap-
proximants do not exist. In the construction phase, we en-
sure that the approximants are non-negative overIR3, since
F+ is used as an objective function in a minimization pro-
cess as shown in Section3. In 2D, similar approximants can
be easily computed.

Before we describe how to computeF+ for a given
PCD, we summarize a few basic results on the squared dis-
tance function of a surface as observed by Pottmann and
Hofer [PH03]. For each point on a given surface, we assume
that the unit normal~n along with the principal curvature di-
rections~e1,~e2 are given. These three unit vectors combine
to form a local coordinate system called theprincipal frame.
At umbilical points, where the principal curvature directions
are not well-defined, any two orthogonal unit vectors on the
tangent plane may be used as~e1,~e2. Let ρi be theprinci-
pal radius of curvaturein the direction~ei . Thenormal foot-
point y denotes the closest point on the surface fromx. Let
x1,x2,x3 represent the coordinates ofx in the principal frame
aty. The signed distance fromx to its normal footprint is de-
noted byd. The sign ofd is positive ifx and the centers of
the osculating circles aty, lie on the same side of the surface
aroundy.

The second order Taylor approximant [PH03] of the
squared distance function to the surface at a pointx can be
expressed in the principal frame aty as

Fd(x) = Fd(x1,x2,x3) =
d

d−ρ1
x2

1 +
d

d−ρ2
x2

2 +x2
3. (11)

We shall useδ j , j = 1,2, to denoted/(d−ρ j ).

Let us look at two important special cases.

• For d = 0 we obtainFd(x1,x2,x3) = x2
3. Thus, if we are

close to the surface, i.e. in its‘near-field’, the squared dis-
tance function to the tangent plane at the normal footpoint,
is a quadratic approximant.
• Ford =∞ we obtainFd(x1,x2,x3) = x2

1 +x2
2 +x2

3, which
is the squared distance fromx to its footpointy. So the
distances to normal footpoints are second order accurate
if we are in the‘far-field’ of the surface.

In order to useFd as an objective function for a minimiza-
tion, we want the approximant to be non-negative overIR3.
To this end, we replaceδ j with

δ̂ j =

{
d/(d−ρ j ) if d < 0,

0 otherwise.

The resulting approximantF+ is positive definite and is
given by

F+(x) = δ̂1x2
1 + δ̂2x2

2 +x2
3. (12)

This quadratic approximantF+ of d2 is simply a weighted
sum of the squared distance functionsx2

1,x
2
2,x

2
3 to three

planes: the two principal planes and the tangent plane at the
normal footpoint. Based on this observation, we transform
Equation12 to the global coordinate system as,

F+(x) = δ̂1 (~e1 · (x−y))2 + δ̂2 (~e2 · (x−y))2 +

(~n · (x−y))2 . (13)

We can now express this equation in the form given by Equa-
tion 7 to get values for the coefficientsA throughI .

4.1. On-Demand Computation

Given a pointx, in our first method for computing a second
order accurate squared distance fieldF+ for a given PCDP,

x

p y

n

e
1

Φ
P

ρ
1

d

Figure 1: A query pointx ∈ IR2 has a footpointy ∈ IR2 on
the surfaceΦP represented by a PCD P. We approximate the
footpoint byp, the closest point in P fromx. The principal
frame at the footpoint is spanned by~e1 and~n. The osculating
circle to ΦP at p has a radius of curvatureρ1. In the figure,
the signed distance d fromx to the footpointp is positive.
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we perform anon-demandcomputation of Equation13. For
this method we first need to compute the normal footpoint
of x to P. As an approximation, we treatp, the closest point
to x in P, as the normal footpoint. This point is found using
an approximate nearest neighbor data structure [AMN∗98].
Figure1 shows the scenario in 2D. When theP is a sparse
sampling ofΦP, we can use the underlying moving least
square (MLS) surface to get a better approximation for the
normal footpoint [AK04]. We further need to evaluate local
curvatures at points ofP in order to use Equation13. These
quantities are computed in the preprocessing step of our al-
gorithm.

At each point of a given PCD, we first determine the prin-
cipal frame using a local covariance analysis as detailed in
[CP03, MNG04]. If the the underlying surfaceΦP is reg-
ular, at each of pointp of P, a local parametrization ex-
ists. In the principal frame atp, we estimate the local sur-
face by least square fitting a quadratic function of the form
ax2 + bxy+ cy2 + dx+ ey to the neighboring points inP.
Once we estimate the coefficientsa throughe, we can use
facts from differential geometry to get the Gaussian curva-
tureK and the mean curvatureH using

K =
4ac−b2

(1+d2 +e2)2 (14)

H =
a(1+e2)−bde+c(1+d2)

(1+d2 +e2)2 .

Finally we evalute the principal radii of curvatureρi as
1/(H±

√
H2−K).

The correctness of these estimates depends on the sam-
pling density of the given PCD and on the measurement
noise. Further, the neighborhood size used for the least
square fits can be adapted to the local shape [MNG04]. In
low noise scenarios, when the local estimates of the differ-
ential properties can be reliably computed, the approximants
F+ given by this method are good.

4.2. Quadratic Approximants using d2Tree

Our second method for computing approximate quadratic
approximants involves least square fitting of quadratic
patches to a sampled squared distance function. For a given
PCD, these quadratic patches are pre-computed and stored
in a special data structure called thed2Tree[LPZ03]. Given
any pointx, in this method we do a point location in the cells
of the d2Tree and return the quadratic approximant stored in
the corresponding cell.

Simply put, the d2Tree is an octree-like (quad-tree in 2D)
data structure, where each cell stores a quadratic fit to the
squared distance function, correct to some maximum error
threshold. The approximants are stored in the form as given
in Equation7 (Equation3 in 2D). Details of a top-down con-
struction ofd2Treecan be found in [LPZ03]. Here we de-

Figure 2: d2Tree can be used in 2D (left) and in 3D (right) to
store quadratic approximants of the squared distance fields
correct to some error threshold. The maximum number of
levels and the error threshold, which are parameters used
during the construction of this quad-tree like data-structure,
determine the size of the cells. In the 2D case, we overlay
the Voronoi diagram of the PCD on top of the d2Tree, to
illustrate that small cells are created around the medial axis.

scribe a bottom-up construction, which is computationally
more efficient.

As a first step, a sampled squared distance field is build for
an input PCD by sweeping the space starting from the PCDP
and propagating the squared distance information [LPZ03].
Depending on the number of levels, which is an input to the
algorithm, the space is divided into smallest allowable cells
(see Figure2). In each cell, a quadric patch, that best fits the
sampled squared distance field, is computed. The fitting er-
ror and the matrices used to compute the coefficients of the
fit are saved in each cell. At the next level, the neighboring
cells (four in 2D and eight in 3D) are merged to form a larger
quadric patch, only if the resulting fitting error is below the
given error threshold. The larger quadric patches can be ef-
ficiently fitted by re-using the matrices stored in the smaller
cells. The quadratic matrix stored in any cell is made positive
semi-definite during construction. The maximum number of
levels of the tree and the error threshold are the required pa-
rameters for the construction of this data structure. Notice
that there exists a tradeoff between the size of the cells and
the accuracy of the quadratic approximants.

Unlike the on-demand method for computing quadratic
approximants described before, the d2Tree approach does
not need estimates of the local curvature or any nearest
neighbor structure. Quadratic approximants computed by
d2Tree, implicitly learn the local curvature information by
fitting quadrics to the sampled squared distance field. We
find this method to be robust to noisy or under-sampled PCD.
Given a query pointx, computingF+(x) simply involves
a point location in this d2Tree structure, and does not re-
quire any explicit correspondence between points of the in-
put PCDs.
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x

z

Figure 3: Funnel of Convergence for aligning a bunny with itself. The bunny is rotated (around the y-axis) and translated (along
the x-z plane) to generate different initial positions for thedata PCD. The figure in the middle denotes the sampling pattern used
to get the initial positions. The rotation angle is sampled at10◦ intervals, while the maximum radial translation of the bunny
is around5× the height of the bunny. Regions in black denote convergence to the correct solution. The convergence funnel
of the point-to-plane ICP (left) is found to be quite narrow and unstable. Under similar conditions, our on-demand algorithm
(right) is found to have a significantly broader, and much more stable convergence funnel. The shape of the convergence funnel
corresponding to our d2Tree based approach is similar.

4.3. Point-to-point and point-to-plane ICP error metrics
as special cases of quadratic approximant

In our framework, the standard ICP algorithms can be re-
duced to special cases by selecting suitable approximants to
the squared distance function. Basic point-to-point ICP uses
squared distance to the closest point as its approximant, i.e.
F+(x) = ‖x− y‖2 while the Chen–Medioni point-to-plane
ICP usesF+(x) = (~n · (x− y))2 as the quadratic approxi-
mant (Equation7). In the form given by Equation13, point-
to-point ICP haŝδi = 1, and point-to-plane ICP hasδ̂i = 0.
From an optimization perspective, there are only slight dif-
ferences between this ICP-like algorithm and the standard
ICP [BM92], which does not linearize the motion [Pot04].
However, as pointed out in Section4, such approximants are
second order accurate only in the ‘far field’ and ‘near field’
of the PCD, respectively, and hence neither of these algo-
rithms is well-behaved for all initial placements of the model
and data PCDs.

5. Convergence Issues

In this section, we discuss the convergence behavior of
point-to-point and point-to-plane ICP algorithms, and then
give bounds on the convergence rates for our algorithm. In
contrast to ICP algorithms, our scheme uses second order
accurate square distance approximants at all point in space,
and hence, exhibits better convergence properties.

Experimentally, the point-to-point ICP algorithm con-
verges linearly. In a recent result, Pottmann has provided
theoretical justification for this behavior [Pot04]. We define
a low residualproblem as one where the data shape fits the
model shape well, and azero residualproblem as one where

the fit is exact. For a low residual problem, when the min-
imizer is approached tangentially, point-to-point ICP has a
very slow convergence[Pot04, RL01].

We recall that the Chen-Medioni approach iteratively
minimizes the sum of squared distances to the tangent planes
at the normal footpoints of the current data point locations.
This implies a gradient descent in the error landscape, where
the squared distance to the tangent plane is used to define the
objective function. From an optimization perspective, this
process corresponds to Gauss–Newton iteration. For a zero
residual problem, and a sufficiently good initial position,
this algorithm converges quadratically [Pot04]. In practice,
the Chen-Medioni method also works well for low residual
problems. Notice that in the ‘near-field’, the squared distance
to the tangent plane is a second order accurate approximant
to d2. So point-to-plane ICP performs much better for fine
registration than the point-to-point ICP algorithm. However,
there is no reason to expect convergence when the two PCDs
are sufficiently apart in the transform space, and in practice,
this is found to be true.

For low residue problems, our algorithm also exhibits
quadratic convergence, which means that the error reduction
is of the form

ε+ ≤Cε2
c (15)

where,C denotes the convergence constant,εc denotes the
error in the current step, andε+ denotes the error after ap-
plication of the computed rigid transform. Here, the error
measures the distance of a position of the PCD to the op-
timal final position, e.g. via the quadratic mean of the dis-
tances between current and final data point locations. For
each pointqi , our algorithm computes a second order ap-
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Algorithm 1 Brings a data PCDQ in alignment to a model
PCD P usingon-demandcomputation ord2Treebased ap-
proach or point-to-point ICP or point-to-plane ICP.

1: if usingon-demandmethodthen
2: Build an approximate nearest neighbor structure for

P.
3: Pre-compute principal frame and radii of curvature

ρ j , j = 1,2, at each pointpi ∈ P as described in Sec-
tion 4.1.

4: else ifusingd2Treemethodthen
5: Build d2Treewith a suitable error threshold. (see Sec-

tion 4.2)
6: end if
7: count← MAX COUNT

8: repeat
9: for each pointqi ∈Q do

10: ComputeF+(qi) using method described in Sec-
tion 4.1for on-demandapproach. Ford2Treebased
approach refer to Section4.2. For point-to-point or
point-to-plane ICP refer to Section4.3.

11: end for
12: UsingF+(qi), build and solve the linear system given

in Section3.
13: if Armijo condition not satisfiedthen
14: Take 1/η fraction of the computed rigid transform

(see Section3). Value ofη chosen via line-search
to satisfy Armijo rule (see Section5).

15: end if
16: if (residual error< ERRORTHRESHOLD) then
17: break
18: end if
19: count← count−1
20: until count 6= 0

proximantF+ to the squared distance function of the sur-
faceΦP represented by PCDP. Using these approximants,
we derive the best aligning transform forQ by following
a gradient descent with Newton iteration steps [Kel99] in
the rigid transform group (see Section3). We continue un-
til the residual error falls below a pre-defined threshold or a
maximum number of iteration steps has been reached. Since
the presented method is a Newton algorithm, it converges
quadratically [Kel99, Pot04].

As mentioned in Section3, if the residueε is large, we ap-
ply only 1/η fraction of the computed transform to prevent
oscillations, or even divergence. Various line search strate-
gies exist for choosing good values forη [Kel99]. In our
implementation, we used theArmijo condition[Kel99] to se-
lectη. This results in adamped Gauss–Newton algorithm. It
is well known in optimization, that algorithms which uses
the Armijo rule converge linearly. Hence, to ensure faster
convergence for large residue problems, it may be better to
select a quadratic approximant of the motion, instead of a
linear one [Pot04].

Our gradient descent based optimization can get stuck at a
local minimum. We bound the maximum residual error for a
given PCD pair, and use it to detect a local minimum. A point
cloud P, sampled from a surfaceΦP, is said to besampled
r-dense, if any sphere with radiusr centered onΦP contains
at least one sample point inP [HDD∗92]. Suppose that the
model PCDP is an rP-dense sampling ofΦP. Further, as-
sume the measurement noise only perturbs any point by a
maximum amount ofσP andσQ respectively for the given
PCDs P, Q. Under this restrictive sampling model, when
ΦQ represents a subset ofΦP, a final residual matching er-
ror ε greater thanM(rP +σP +σQ)2 indicates the algorithm
has been stuck at a local minima during the search process.
When such a situation happens, we may randomly perturbQ
to a new orientation, and try to align the two PCDs starting
from that position.

To further study this global convergence property, we de-
fine thefunnel of convergencefor a registration algorithm, as
the set of all initial poses of a PCDQ, which can be success-
fully aligned withP, using the given algorithm. Notice that
the funnel only measures global convergence and not speed.
A broad funnelindicates that the algorithm can successfully
handle a wide range of initial positions. An algorithm is said
to have astable funnelif the convergence zones, in the trans-
form space, are clustered and not arbitrarily distributed. A
stable funnel is desirable, since this can enable a system-
atic way of generating positions for random re-starts, using
some branch and bound approach. Experimentally, we ob-
serve that our algorithm has a broader and more stable fun-
nel of convergence as compared to the point-to-plane ICP
variant. This can be explained by the fact, that our algorithm
makes use of higher order surface properties.

6. Results

We test our algorithm on a variety of data sets with differ-
ent amounts of noise, and compare its performance against
point-to-point and point-to-plane ICP algorithms.

A brief summary of our registration framework is given
in Algorithm 1. We compare the performance of approaches
based on the choice of the approximantF+ of the squared
distance function at any pointx:

1. on-demand computation of quadratic approximant (Sec-
tion 4.1)

2. quadratic approximant using d2Tree (Section4.2)
3. squared point-to-point distance (point-to-point ICP)
4. squared distance to the tangent point at the footpoint ofx

(point-to-plane ICP)

In our implementation, we test for Armijo condition to en-
sure stability of the algorithms.

On the bunny model, which consists of 50,282 points,
we compare the convergence funnel of point-to-plane ICP
and that of our algorithm based on on-demand computation.
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Figure 4: Plots of residual error vs iteration count for bunny PCD. When themodelanddataPCDs, both corrupted with noise,
start far apart in the transform space, the point-to-plane ICP fails to converge to the correct solution (left). However, algorithms
using any of the other square distance approximants do converge, with the d2Tree based approach converging fastest. Middle:
For good initial position and small residual problem (the two PCDs align well), the point-to-point ICP algorithm has a slow
convergence, while optimization based on any of the other squared distance approximants, converges quadratically. The figure
to the right shows the effect of changing the error threshold value used for constructing the d2Tree. As the threshold is increased,
a larger neighborhood of the squared distance function is captured by each of the cells of the tree and hence, the algorithm
converges faster. However, for sufficiently high error threshold values, the distance approximants get too crude, and the method
starts to deteriorate.

A copy of the same PCD is rotated around they-axis and
translated to different positions along thex-zplane. Figure3
shows that the convergence funnel of point-to-plane ICP is
quite narrow when the initial displacement is large. Under
similar conditions, our algorithm is found to have a much
broader convergence funnel. Our convergence funnel is also
more stable. Experimentally, the initial translation is found
to have little effect on the convergence of our algorithm.

Next we compare the convergence rates for the four vari-
ants listed before. For both on-demand and d2Tree based ap-
proaches, the pre-computation time depends on the sizen of
the model PCD. For point-to-point, point-to-plane and on-
demand computation, at each iteration,F+ for a pointx can
be computed in O(1) time after the nearest neighbor query
has been answered. For d2Tree, the nearest neighbor query
is replaced by point location in the d2Tree cells. The solution
of the linear system involves an inversion of a 6×6 matrix.
Since the amount of work in each iteration step for any of
the algorithms is roughly same, we simply count the number
of iterations for comparing speed.

In Figure4, we plot the residual error vs iteration count
for four approaches. In the presence of noise and for large
residues, point-to-plane ICP often fails to converge. In such
noisy scenarios, since the estimates of local principal radii
are bad, our on-demand algorithm is found to be marginally
worse than point-to-point ICP. The d2Tree based method
still converges fast, since the cell-sizes automatically get
adjusted during their construction phase, to partially aver-
age out the effect of noise. However, in low residual cases,
for reasons explained in Section5, all algorithms except
for point-to-point ICP converge quadratically. The threshold
value used for constructing the d2Tree is also varied. As the
threshold is increased, a larger neighborhood of the squared

distance function is captured by each of the cells of the tree
and hence, the algorithm converges faster. However, for suf-
ficiently high error threshold values, the distance approxi-
mants get too crude, and the method starts to deteriorate.

Our algorithm is able to handle the case when the data
PCD is a subset of the model PCD. We take a partial scan
of the bunny consisting of 17,600 points. This scan is from
scanned data and is corrupted with measurement noise. We
used the on-demand algorithm to match the partial scan to
the complete bunny model PCD. The starting arrangement
and the final match are shown in Figure5.

Finally we test the robustness of our approach in pres-
ence of noise and varying sampling density.We try to align
a part (consisting of 14,519 points) of a ball-joint with the
socket of a hip-bone represented by 132,538 points. Note
the sampling density and sampling pattern are vastly differ-

Figure 5: Partial Match: A partial scan of the bunny (shown
in purple) is registered to the bunny, themodelPCD. The
initial arrangement of the PCDs is shown to the left. Our
algorithm found the correct match (middle,right) in six iter-
ations.
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Figure 6: Partial Match: The goal is to fit a part (shown in
purple) of the ball-joint to the hip-bone (shown in green).
The starting arrangement (left) and the final alignment
(right) are shown. The whole ball-joint is shown to help the
reader judge the correctness of the match. Our algorithm is
robust enough to handle varying sampling density and noise
in the given PCDs.

ent across the two models. The ball-joint is much densely
sampled compared to the hip-bone. Even in this case, for
reasonable starting positions, we got a good final alignment
(see Figure6). The whole ball-joint is shown just to illustrate
the goodness of the alignment. We manually selected a part
of the ball-joint to satisfy our constraint thatΦQ represents
a subset ofΦP.

7. Conclusion and Future Work

We have developed a framework for pairwise registration of
point cloud data. In this framework, registration is treated
as a distance minimization between the surfaces represented
by the PCDs. We develop quadratic approximants of the
squared distance function to a point cloud and use the ap-
proximants to perform a minimization. Since our approx-
imants are second order accurate, we can use them for a
Gauss-Newton optimization. As a result, compared to other
commonly used registration algorithms, our algorithm is sta-
bler and has a faster convergence rate.

Extending the framework to compute partial matches will
be very useful. Finally, we plan to extend our framework to
solve the problem of simultaneously aligning more than two
PCDs.
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