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Abstract
In this paper, we address the problem of representing and manipulating non-manifold, mixed-dimensional objects
described by three-dimensional simplicial complexes embedded in the 3D Euclidean space. We describe the de-
sign and the implementation of a new data structure, that we call the non-manifold indexed data structure with
adjacencies (NMIA), which can represent any three-dimensional Euclidean simplicial complex compactly, since
it encodes only the vertices and the top simplexes of the complex plus a restricted subset of topological relations
among simplexes. The NMIA structure supports efficient traversal algorithms which retrieve topological relations
in optimal time, and it scales very well to the manifold case. Here, we sketch traversal algorithms, and we compare
the NMIA structure with data structures for manifold and regular 3D simplicial complexes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling -Curve, surface, solid and object representations

1. Introduction

Non-manifold objects are subsets of the Euclidean space
which can be regarded as combinations of wire-frame, sur-
face, solid and cellular decompositions. Informally, a mani-
fold object is a subset of the Euclidean space for which the
neighborhood of each internal point is locally equivalent to
an open ball. Objects that do not fulfill this property at one
or more points are called non-manifold objects.

As pointed out by several authors 5, 16, 27, 22, 29, in a model-
ing system we need to represent non-manifold objects since
Boolean operators are closed in the non-manifold domain,
sweeping or offset operations may generate parts of differ-
ent dimensionalities, non-manifold topologies are required
in different product development phases, such as concep-
tual design, analysis and manufacturing. Furthermore, most
objects encountered in the applications contain a relatively
small number of non-manifold singularities. Thus, it is im-
portant to develop representations that scale well with the
degree of "non-manifoldness" of the object.

Non-manifold objects can be effectively described
through simplicial or cell complexes with a non-manifold
and non-regular (i.e., with parts of different dimensional-

ities) domain. The contribution of this work is in design-
ing and implementing a data structure for describing three-
dimensional simplicial complexes embedded in the 3D Eu-
clidean space, i.e., combinations of tetrahedral meshes with
lower dimensional entities described by a chain of edges, or
by a triangle mesh.

The trade-off when designing a data structure for a sim-
plicial, or cell complex is among its expressive power, its
storage cost and the efficiency of the algorithms for travers-
ing the complex (which are based on primitives for retriev-
ing incident and adjacent entities to a given one). To this
aim, we have developed a data structure that satisfies the fol-
lowing requirements: (i) to be as compact as possible, (ii) to
support retrieval of incidence and adjacency relations among
the entities in the complex in optimal time, (iii) to be able to
describe all kinds of non-manifold objects in 3D space parti-
tioned into a 3D simplicial complex, and (iv) to be scalable,
i.e., to exhibit just a low overhead cost due to the represen-
tation of non-manifold singularities.

Our data structure, that we call the non-manifold indexed
data structure with adjacencies (NMIA), encodes only the
vertices and the top simplexes of the complex, plus a re-
stricted subset of topological relations among simplexes.
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For comparison purposes, we also specialize a general
data structure for cell complexes, the incidence graph 12, to
describe a certain class of simplicial complexes, and we call
the resulting data structure the simplified incidence graph.
We compare our data structure with both the simplified inci-
dence graph and with a well-known data structure for a class
of simplicial complexes, the indexed data structure with ad-
jacencies.

The remainder of this paper is organized as follows. In
Section 2, we summarize some background notions, which
are necessary for understanding the related materials in this
work. In Section 3, we review some related work. In Sec-
tion 4, we describe the NMIA data structure. In Section 5,
we present an implementation of this data structure and dis-
cuss its storage cost. In Section 6, we present the algorithms
for retrieving topological relations for a simplicial complex
described by the NMIA data structure. In Section 7, we de-
scribe the simplified incidence graph, and we present a com-
parison of the NMIA structure with such data structure and
with the indexed data structure with adjacencies. Finally,
in Section 8, we draw some conclusions and discuss future
work.

2. Background

In this Section, we review some basic combinatorial notions
about simplicial complexes in arbitrary dimensions, and we
introduce the topological relations among the cells of a com-
plex. We use abstract simplicial complexes as basic tools to
capture the combinatorial structure of Euclidean simplicial
complexes.

2.1. Simplicial Complexes

Let V be a finite set of points that we call vertices. An ab-
stract simplicial complex on V is a subset Σ of the set of
(non-empty) parts of V such that {v} ∈ Σ for every point
v ∈ V , and if s ⊂ V is an element of Σ, then every subset of
s is also an element of Σ 18. Each element of Σ is called an
abstract simplex.

The dimension of a simplex s ∈ Σ, denoted dim(s), is de-
fined by dim(s) = |s| − 1, where |s| is the number of ver-
tices in s. A simplex of dimension k is called a k-simplex.
A complex Σ is called d-dimensional, or a d-complex, if
maxs∈Σ(dim(s)) = d. Each d-simplex of a d-complex Σ is
called a maximal simplex of Σ.

The boundary b(s) of a simplex s is defined as the set of
all proper parts of s. Simplexes ξ in b(s) are called faces of s.
Similarly, the co-boundary, or star, of a simplex s is defined
as ?s = {ξ ∈ Σ | s ⊂ ξ}. Simplexes ξ in ?s are called co-faces
of s. The link of a simplex s is the set of all faces of co-faces
of s, that are not incident at s. Any simplex s such that ?s = s
is called a top simplex of Σ. In the following, we will call
restricted star of a simplex s, ?s−{s}, and we will denote it
as st(s).

Two distinct simplexes are said to be incident if one of
them is a face of the other. Two simplexes are called k-
adjacent if they share a k-face. Two p-simplexes, with p > 0,
are said to be adjacent if they are (p−1)-adjacent. Two ver-
tices (i.e., 0-simplexes) are called adjacent if they are both
incident at a common 1-simplex. Two simplexes that are nei-
ther incident nor adjacent are said to be disjoint.

An h-path is a sequence of simplexes (si)
k
i=0 such that

two successive simplexes si−1, si are h-adjacent. Two sim-
plexes s and s′ are h-connected, if and only if there exists an
h-path (si)

k
i=0 such that s is a face of s0 and s′ is a face of

sk. A subset Σ′ of a complex Σ is called h-connected if and
only if every pair of its vertices are h-connected. Any max-
imal h-connected sub-complex of a complex Σ is called an
h-connected component of Σ. The term connected is used as
a shortcut for 0-connected.

A d-complex Σ where all top simplexes are maximal
(i.e., of dimension d) is called regular, or uniformly d-
dimensional. A (d−1)-simplex s in a d-complex Σ is a man-
ifold (d − 1)-simplex if and only if there are at most two d-
simplexes incident at s. Otherwise, s is called a non-manifold
(d − 1)-simplex. A regular (d − 1)-connected d-complex in
which all (d − 1)-simplexes are manifold is called a (com-
binatorial) pseudo-manifold (possibly with boundary). A
pseudo-manifold satisfying the additional property that all
its vertices have a link combinatorially equivalent either to
the (d−1)-dimensional sphere or to the (d−1)-dimensional
ball is called a (combinatorial) manifold.

A Euclidean simplex of dimension d is the convex hull of
d + 1 linearly independent points in the n-dimensional Eu-
clidean space En, with d ≤ n. We simply call a Euclidean
d-simplex a d-simplex when the context is understood: a 0-
simplex is a vertex; a 1-simplex an edge; a 2-simplex a tri-
angle; a 3-simplex a tetrahedron. Any Euclidean k-simplex
t generated by a set Vt ⊆Vs of cardinality k +1 ≤ d is called
a k-face of s.

A finite collection Σ of Euclidean simplexes is a Eu-
clidean simplicial complex when both (i) for each simplex
s ∈ Σ, all faces of s belong to Σ, and (ii) for each pair of sim-
plexes s and s′, either s∩ s′ = ∅ or s∩ s′ is a face of both s
and s′.

The domain, or carrier, of a d-dimensional Euclidean
simplicial complex Σ embedded in En, with d ≤ n, is the sub-
set of En defined by the union, as point sets, of all the sim-
plexes in Σ. The combinatorial structure of a Euclidean sim-
plicial complex is an abstract simplicial complex. The do-
main of a Euclidean simplicial complex which is described
by a combinatorial manifold is a manifold in En. Whenever
no ambiguity arises, we will use the term simplex to denote
an abstract, or a Euclidean, simplex. We will also use the
term complex to denote an abstract, or a Euclidean, simpli-
cial complex.
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2.2. Topological Relations

Let Σ be a d-complex. Let s ∈ Σ be a p-simplex, with
0 ≤ p ≤ d. For each integer value q, 0 ≤ q ≤ d, we define
the topological relation Rpq(s) as a retrieval function that re-
turns the q-simplexes of Σ that are not disjoint from s. In
particular:

• For p < q, Rpq(s) consists of the set of simplexes of order
q in the star of s.

• For p > q, Rpq(s) consists of the set of simplexes of order
q in the set of faces of s.

• For p > 0, Rpp(s) is the set of p-simplexes in Σ that are
(p−1)-adjacent to s.

• R00(v), where v is a vertex, consists of the set of vertices
w such that {v,w} is a 1-simplex of Σ.

Relation Rpq is called a boundary relation if p > q, a co-
boundary relation if p < q and an adjacency relation if p =
q. Boundary and co-boundary relations together are called
incidence relations.

3. Related Work

Most of the existing work in the literature focuses on
the two-dimensional boundary representation of three-
dimensional objects, and on the manifold domain. In the
manifold domain, several data structures have been pro-
posed for representing the decomposition of the boundary
of a three-dimensional manifold into a simplicial complex
1, 11, 15, 17, 21, 23, 28. The approach proposed in 15 has been gen-
eralized to manifold complexes in three and higher dimen-
sions 11, 2, while the half-edge data structure has been ex-
tended to the three dimensional case in 21. The compact cor-
ner table data structure 28 has been generalized to arbitrary
non-manifold meshes.

Most work in the context of non-manifold modeling has
been done in two dimensions for representing the boundary
of non-manifold, non-regular objects. The first proposal for
a topological data structure for boundary representation of
non-manifold objects is the radial-edge structure 29. In 16,
Gursoz et al. describe a vertex-based data structure, called
the tri-cyclic cusp structure, which extends the radial-edge
structure by maintaining also inclusion relations between the
local neighborhoods of a vertex. A similar structure has been
introduced by Yagamuchi and Kimura 30. A more compact
data structure, called the partial entity structure 19 has been
more recently proposed: it has been shown to require half of
the space of the radial-edge structure. The storage costs of
all such data structures do not scale with the number of non-
manifold singularities, since they have been developed un-
der the assumption that objects contain several non-manifold
joints. The radial-edge data structure has been specialized in
24 to the case of two-dimensional simplicial meshes.

In 8, a compact data structure for non-manifold and non-
regular two-dimensional simplicial complexes has been pre-

sented, which encodes both connectivity and adjacency in-
formation with a small memory overhead, and scales very
well to the manifold case. A compact scalable edge-based
data structure for non-manifold two-dimensional simplicial
complexes has been proposed by Campagna et al. 4, which
also scales well to manifold meshes, but it is restricted
to regular complexes. A few proposals exist for modeling
shapes in arbitrary dimensions through cell complexes. Se-
lective Geometric Complexes (SGCs) 27 can describe ob-
jects through cell complexes whose cells can be either open,
or not simply connected. In SGCs, cells and their mutual
adjacencies are encoded in an incidence graph 12, which
is a complete, but a verbose data structure. N-G-maps 20

are an implicit representation for a sub-class of pseudo-
manifolds, called quasi-manifolds, but they are also quite
space-consuming. The winged representation 25 can describe
d-dimensional pseudo-manifold simplicial complexes, i.e.,
just regular ones. It generalizes to arbitrary dimensions the
so-called incidence data structure with adjacency commonly
used for triangle and tetrahedral meshes 3.

An alternative approach to the design of non-manifold
data structures consists of decomposing a non-manifold
object into simpler and more manageable parts 7, 10, 13, 14.
The proposals in 10, 13, 14 are restricted to modeling two-
dimensional regular complexes, which describe the bound-
ary of a solid object. In 7, a sound decomposition for d-
dimensional non-manifold objects described through simpli-
cial complexes is defined, which is unique and produces a
description of an abstract d-complex (not necessarily em-
beddable in the Euclidean space) as a combination of nearly
manifold components. A data dimension-independent data
structure for such decomposition is defined in 9, which de-
scribes the components and their connectivity in a two-level
representation.

4. Design of the Data Structure

In this Section, we introduce the design choices performed
and the elements (entities and topological relations) of a data
structure for describing three-dimensional simplicial com-
plexes embedded in the three-dimensional Euclidean space.

4.1. Design Issues

In our data structure, we want to be able to describe 3D sim-
plicial complexes containing also one- and two-dimensional
top simplexes, that we call wire-edges and dangling faces,
respectively, in order to represent parts of different dimen-
sionalities in the object. Moreover, we need to describe situ-
ations in which the restricted star of an edge, or of a vertex.
consists of more than one connected component, in order to
represent edges and vertices in the object for which the man-
ifold condition does not hold. Note that, since we are dealing
with are 3-complexes embedded in E3, any 2-simplex, which
is not a top simplex, must be on the boundary of either one
or two simplexes.
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The above singularities can be summarized as the pres-
ence of:

1. several connected components in the restricted star of
some vertex (called a nm-vertex) (see Figure 1);

2. 1-dimensional top simplexes (wire-edges) (see Figure 2);
3. several connected components in the restricted star of

some edge ( called a nm-edge) (see Figure 3);
4. 2-dimensional top simplexes (dangling faces) (see Figure

4).

In all the figures, tetrahedra are in solid grey of two intensi-
ties; dangling faces are shaded; edges and vertices of interest
are highlighted in bold.
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Figure 2: a wire-edge, we,
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Figure 4: a dangling face,
d f , connecting two tetrahe-
dra

Thus, the data structure must describe correctly the pre-
vious four cases. Cases 1 and 3 involve connectivity issues,
and are discussed below.

4.2. Singularities at a non-manifold vertex

To take care of the connectivity information at an nm-vertex,
we observe that the restricted star of a nm-vertex v consists
of several connected components. We call each such compo-
nent a vertex-based cluster. If two simplexes si,s j belong to
the same vertex-based cluster in st(v), then there exists a 1-
connected path passing through only those simplexes which
form the cluster. These clusters cannot be ordered around v.

As no ordering is possible, the basic strategy of moving
around a non-manifold vertex is to perform a breadth-first

search and visit all simplexes that are related through rela-
tions R33, R23, or R32 in the same cluster (to be described in
Section 6).

4.3. Singularities at a non-manifold edge

The restricted start of an nm-edge consists of several con-
nected components. We call each such component an edge-
based cluster. Edge-based clusters can be ordered around the
edge, for instance, in counter-clockwise direction. Also, if
simplexes si,s j belong to the same connected component in
st(e), then there exists a 2-connected path from si to s j that
traverses through only those simplexes that are incident at
e. This implies that a cluster consists either of a single dan-
gling face, or of a collection of tetrahedra fanning out from
the nm-edge. This is an interesting property for navigation:
when we want to find all the elements within an edge-based
cluster, we simply move from one tetrahedron to the next
one by using relation R33. When we finish examining a clus-
ter, we need to find the next cluster. To this aim, for each
simplex si of dimension 2 or higher, we keep track of its left
and right neighbors around each of its edges when necessary.
This condition is described as follows:

• If a simplex si is the only element of a cluster, then both its
left and right neighbors (which may be identical) would
belong to some other clusters around e. These two sim-
plexes are the left and right neighbors of si with respect to
edge e.

• If the simplex on the left of si belongs to the same cluster
as si, then we say si has no left neighbor with respect to
edge e.

• A symmetric case holds for the right neighbor.

For example, consider the object in Figure 3. In Figure 5,
we show on the right a cross-section of the star of edge e, The
table in Figure 5 shows the edge-based clusters associated
with the nm-edge e by considering the clusters in a counter-
clockwise order.

4.4. Entities and Topological Relations

4.4.1. Entities

Given a simplicial complex Σ, the non-manifold indexed
data structure with adjacencies (NMIA) encodes all vertices
(0-simplexes), wire-edges (top 1-simplexes), dangling faces
(top 2-simplexes), and tetrahedra (3-simplexes) of Σ. Other
1- and 2-simplexes are not explicitly represented.

To describe edge- and vertex-based clusters, we introduce
three relations, that represent the incidence of the edge-based
clusters on an edge, and of the vertex-based clusters on a
vertex:

• Relation R0,clusters(v) is a retrieval function which asso-
ciates, with vertex v, one representative k-simplex for each
vertex-based cluster incident at v. Let us consider the ob-
ject in Figure 1 as an example. The object is reproduced in
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Figure 5: Clusters around a nm-edge e and their neighbor-
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Figure 6. There are four clusters incident at vertex v. We
take one representative from each of these clusters. One
possible way is shown on the bottom of Figure 6.

• Relation R2,clusters( f ) is a retrieval function which asso-
ciates, with each edge ei of a dangling face f , the edge-
based clusters incident at ei, in a counter-clockwise or-
dered sequence.

• Relation R3,clusters(s) is a retrieval function which asso-
ciates, with each edge ei of a 3-simplex s, the edge-based
clusters incident at ei, in a counter-clockwise ordered se-
quence.
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Figure 6: Vertex-based clusters at the vertex shown in bold,
and choice of representatives for each cluster shown in the
table

Thus, for each tetrahedron t, we encode the following re-
lations:

• Relation R30(t), which associates, with each tetrahedron t,

its four vertices ordered according to the orientation cho-
sen for t.

• Relation R33(t), which associates, with each tetrahedron t,
the four tetrahedra adjacent to t through a 2-simplex, (the
i-th tetrahedron in R33(t) is the one that does not contain
the i-th vertex of t).

• Relation R3,clusters(t), as defined above, for each of the six
edges of tetrahedron t (considered in an order compatible
with the orientation of t).

For each dangling face f , we encode the following rela-
tions:

• Relation R20( f ), which associates, with each dangling
face f , its three vertices (ordered according to the orien-
tation chosen for f ).

• Relation R2,clusters( f ), as defined above, for each of the
three edges of dangling face f (considered in an order
compatible with the orientation of f ).

For each wire-edge e, we encode relation R10(e), which
associates, with edge e, its two extreme vertices. Note that
there cannot exist edge-based clusters incident at a wire-edge
e. Finally, for each vertex v, we encode relation R0,clusters(v),
as defined above. Note that only one representative for each
vertex-based cluster is maintained.

5. Implementation of the NMIA Data Structure

In this Section, we describe our implementation of the
NMIA data structure, and we evaluate its storage cost. Al-
though the space needed to index one entity is just log2m
bits, where m denotes the total number of such entities in
the data structure, in our implementation, for simplicity, we
use one integer (represented on 32 bits) to index an entity.
We consider references and indexes as integers also in the
comparison presented in Section 7.

Our present design aims at supporting both efficient
traversal and mesh modifications. Short dynamic arrays are
used to store relations to make local modifications on con-
nectivity simpler.

For each entity (vertex, wire-edge, dangling face and
tetrahedron), we store a one-bit flag for temporarily mark-
ing a simplex as having been visited. These flags have to
be reset after each query. We encode the R30(t), R20( f ) and
R10(e) relations as arrays of indexes to the four, three and
two vertices of a tetrahedron t, of a dangling face f , and of a
wire-edge e, respectively.

For each tetrahedron t, relation R33(t) is encoded as a
2-bit flag f33, a (possibly empty) array containing the 2-
adjacent neighbors of t and a reference to this latter array.
A null reference means that t has no 2-adjacent neighbors.
Otherwise, f33 +1 is equal to the number of 2-adjacent tetra-
hedra.

Relation R3,clusters(t) stores the edge-based cluster infor-
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mation for each of the six edges of t. For each edge e of t, it
encodes:

• a 4-bit flag f3c to indicate the types of left and right neigh-
bors that t has at e. The meanings of the flag are reported
in Table 1. Note that, if f3c is equal to 1, 2, 3, or 6, then t
has one neighboring cluster at e; if f3c is equal to 4, 5, 7,
or 8, then t has two neighboring clusters at e. Otherwise,
it has no neighbor. Since t has six edges, six flags and up
to twelve neighbors have to be stored, and thus a total of
24 bits for each tetrahedron.

• an integer array of cluster entities containing the indexes
either to a tetrahedron or to a dangling face. The size of
this array is exactly equal to the number of cluster entities
to be stored.

• a reference to the cluster entity array.

flag left neighbor type right neighbor type

0 empty empty
1 empty dangling face
2 empty tetrahedron
3 dangling face empty
4 dangling face dangling face
5 dangling face tetrahedron
6 tetrahedron empty
7 tetrahedron dangling face
8 tetrahedron tetrahedron

Table 1: Meanings of the values of the f3c flag
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Figure 7: Encoding of the neighboring clusters of tetrahe-
dron t3 with respect to its six edges

As an example, let us consider the complex in Figure 7.
Consider tetrahedron t3. We label with e0,.., e5 the six edges
of t3, as shown in Figure 7 on the right. The neighboring
cluster information at the six edges are encoded with the
flags shown in the table in Figure 7. Edge e1 has flag value
5 because the left neighbor of t3 at edge e1 is a dangling

face (d f1), and the right neighbor is a tetrahedron (t2). At all
other edges, t3 appears as a cluster by itself, i.e., it has no
left nor right neighbors at other edges. Thus, all flag values
are 0. From the values of the six flags, we can tell that there
are only two entities related to t3 in R3,cluster(t3), whose in-
dexes are stored in the cluster entity array. We do not need to
store their types since such information are already encoded
by the flags.

For each dangling face f , relation R2,clusters( f ) is en-
coded in a completely similar way as R3,clusters for tetra-
hedra. Since a dangling face has three edges, R2,clusters is
scaled accordingly.

Finally, relation R0,clusters(v) for a vertex v is encoded by
using an array of 2-bit flags and an integer array of indexes,
each being an index to one representative (a wire-edge, a
dangling face, or a tetrahedron) of a cluster at v. The flag
indicates whether the representative is a wire-edge, a dan-
gling face, or a tetrahedron. As an example, let us consider
the complex depicted in Figure 6. The particular choice we
have made is encoded in the R0,clusters(v) relation as shown
in Table 2.

representative chosen: we0 d f1 d f0 t2

flag: 0 1 1 2

index of entity: 0 1 0 2

Table 2: Encoding of R0,clusters(v) for the non-manifold ver-
tex v of Figure 6

We have designed and implemented an algorithm for
building the NMIA data structure by starting from the col-
lection of all the top simplexes in the complex. The input
consists of all vertex coordinates plus the list of the top sim-
plexes, where each top simplex is expressed through the in-
dexes of its vertices. The algorithm reconstructs the adja-
cency information and detects the non-manifold situations
around vertices and edges. The current version is intended
to build the data structure statically to work off-line. In this
case, a preprocessing step is taken to make the connectivity
information at each simplex available.

5.1. Storage costs

Let nt ,d,w,nv denote the number of tetrahedra, dangling
faces, wire-edges, and vertices in a simplicial complex, re-
spectively. Let b be the number of boundary faces in the
complex (i.e., those triangles that belong to exactly one tetra-
hedron). Let ce and cv be the total number of clusters over
all the nm-edges and nm-vertices, respectively.

For the purpose of comparison with other data structures,
we also define the following quantities. Let n f be the total
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number of faces (including dangling faces). Let ne be the
total number of edges (including wire-edges).

Let kt be the total number of neighboring edge-based clus-
ters stored over all tetrahedra, and kd be the total number of
neighboring edge-based clusters stored over all the dangling
faces. Thus, we have that 2ce = kt +kd , because every edge-
based cluster appears twice, once as a left and once as a right
neighbor.

We need 3nv doubles for vertex coordinates, nt +d +w+
nv bits for the one-bit navigation flag. In the following, we
report the space requirements for each encoded relation:

• R30: 4nt integers
• R20: 3d integers
• R10: 2w integers
• R33: 2nt bits for flags + (4nt −b) integers for the R33 array

+ nt integers for references to the R33 array
• R3,clusters: 24nt bits for flags (of which each tetrahedron

has 6) + kt integers for the cluster arrays + nt references
to the cluster arrays

• R2,clusters: 12d bits for flags (of which each dangling face
has 3) + kd integers for the cluster arrays + d references
to the cluster arrays

• R0,clusters: 2cv bits for flags + cv integers for the cluster
arrays storing cluster representatives + nv integers keeping
tracking of the length of each cluster array + nv references
to the array.

Now, we evaluate and compare the space requirements
of the NMIA structure in the general case, in the case of
pseudo-manifold complexes and in the case of manifold
complexes. We assume that reference and indexes are stored
as 32 bits integers.

• General non-manifolds:

geometric information: 3nv doubles
topological entities: (nt +d +w+nv) bits
topological relations: (10nt −b+4d +2w+2nv +2ce +

cv) integers + (26nt +12d +2cv) bits.

• Pseudo-manifolds:
Pseudo-manifold complexes do not have dangling faces
and wire-edges (thus, d = w = 0), but they may have non-
manifold edges and non-manifold vertices. The space re-
quirements thus become:

geometric information: 3nv doubles
topological entities: (nt +nv) bits
topological relations: (10nt − b + 2nv + 2ce + cv) inte-

gers + (26nt +2cv) bits

• Manifolds:
Manifold complexes do not have dangling faces, wire-
edges and non-manifold edges. Each vertex has exactly
one cluster. So d = w = ce = 0 and cv = nv. The storage
requirements thus become:

geometric information: 3nv doubles

topological entities: (nt +nv) bits
topological relations: (10nt − b + 3nv) integers +

(26nt +2nv) bits

In practical applications, it has been shown that nt ≈ 6nv
6. Thus, the space requirements for a manifold are approxi-
mately equal to 73nv integers + 3nv doubles.

6. Retrieving Topological Relations

In this Section, we discuss how topological relations can
be retrieved in optimal, or almost optimal, time from the
NMIA data structure. This means that all non-stored rela-
tions can be retrieved in time linear in the number of enti-
ties involved in the specific relation, that is, for instance, the
edges incident at a given vertex v (the R01 relation) can be
extracted in time linear in the number of edges incident at
v. Such retrieval algorithms are the basis for developing effi-
cient traversal algorithms through the complex described by
the data structure.

Retrieving those relations which are explicitly stored in
the data structure, i.e., R30 and R33, for tetrahedra, R20, for
dangling faces, R10, for wire-edges, takes constant time.

Retrieving boundary relations R32(t) and R31(t) provides
as results the faces of tetrahedron t, specified as triplets of
vertices, and the edges of tetrahedron t, specified as pairs of
vertices, respectively, and can be performed in constant time.

To retrieve boundary relation R21( f ), we need to specify
face f in case f is not a dangling face. Thus, if f is a bound-
ary face of a tetrahedron t, then we specify f as face(t, i),
that is the i-th face of t, where i = 0, ..,3. The 1-simplexes
involved in R21( f ) are again specified as pairs of vertices.
Thus, relation R21( f ) is retrieved in constant time.

Relation R23( f ) can be extracted only for boundary faces
of tetrahedra. Face f is specified as face(t, i). The retrieval
algorithm makes use of relation R33(t) to find the other tetra-
hedron sharing f , if it exists. This takes constant time.

Retrieving relations R12(e) and R13(e) involves navigat-
ing around an edge e. The corresponding retrieval algorithms
are implemented in a very similar fashion. The edge being
queried can be a boundary edge of a dangling face or of a
tetrahedron, but not a wire-edge. An edge of a dangling face
f is addressed as edge(f, i) for i = 0, ...,2 and an edge of a
tetrahedron t is edge(t, j) for j = 0, ...,5. We use relations
R3,clusters or R2,clusters depending on whether e is an edge of
a tetrahedron, or of a dangling face. If a cluster is a collec-
tion of tetrahedra that fan out from edge e, we use the R33
relation to move from one tetrahedron to the next in the same
cluster, and R30 to make sure that both of them are incident
at e.

We illustrate through the example in Figure 8 how to re-
trieve both R12(e) and R13(e) relations, i.e., how to navigate
around an edge e in counter-clockwise direction. To this aim,
we perform the following steps:
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Figure 8: Navigating through the entities incident at a non-
manifold edge e (here we show a view perpendicular to edge
e, as shown in Figure 6

1. We start with e being an edge of t3.
2. Using R3,clusters(t3), we retrieve the left and right neigh-

bors of t3 with respect to e. These are d f1 and t2, respec-
tively. Then, we move to t2.

3. From R3,clusters(t2) we see that t2 has no right neighbor.
Thus, relation R33(t2) allows us to extract all the tetrahe-
dra which are face-adjacent to t2. By using R30(t2), we
can select t1 as the only tetrahedron that is also incident
at e. Then, we move to t1.

4. From R3,clusters(t1) we see that t1 has no right neighbor.
Thus, again we use the R33(t1) to retrieve the tetrahedra
which are face-adjacent to t1 and R30(t1) to select those
incident at e. This gives t0 and t2, and thus we move to t0.

5. From R3,clusters(t0) we see that the right neighbor of t0 is
d f0. Thus, we move to d f0.

6. From R2,clusters(d f0) we see that the right neighbor of
d f0 is d f1. Thus, we move to d f1.

7. From R2,clusters(d f1) we see that the right neighbor of
d f1 is t3. Thus, we are done, since we started with t3.

It can be easily seen that retrieving relation R12(e) takes
a time linear in the number of faces incident at e, i.e., it
can be performed in optimal time. Retrieving relation R13(e)
takes O(|R12(e)|) time, where |R12(e)| denotes the number
of faces incident at e, because of the possible presence of
dangling faces.

Relation R22( f ) is basically retrieved in the same way as
relation R12(e), one for each edge of face f . Therefore, it
takes O(|R22( f )|) time, which is optimal.

Retrieving relations R00(v), R01(v), R02(v), and R03(v) re-
quires a breadth-first search over all the clusters incident at
vertex v. Within each cluster, entities that are incident at v
are traversed by using R33, R30, R3,clusters, and R2,clusters re-
lations.

Again we illustrate, through an example, how to retrieve
all tetrahedra, dangling faces and wire-edges incident at a
given non-manifold vertex v (see Figures 9 and 10). In the
same way, we can retrieve all R0i(v) relations, where i =
0,1,2,3. Note that we use a queue to guide the breadth-first
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Figure 10: Navigation of the circled cluster

traversal of the star of v and that we mark a simplex as visited
when we insert it into the queue. We perform the following
steps:

1. We start with only t2 in the queue, which we have ob-
tained from R0,clusters(v).

2. Using R33(t2), we find that t1 is incident at v. Using
R3,clusters(t2), we find that d f2 is also incident at v. Thus,
t1 and d f2 are inserted into the queue.

3. Now, we dequeue t1 and examine R33(t1) and
R3,clusters(t1). This gives t2 and d f2, that are already
marked as visited.

4. Then, we dequeue d f2. and we examine relation
R2,clusters(d f2). This gives t0, t1 and t2, among which
only t0 is not visited. Thus, we insert t0 into the queue.

5. We dequeue t0 and we examine the R33(t0) and
R3,clusters(d f2) relations. This gives d f2, which has al-
ready been visited.

6. The traversal is finished, since the queue is empty. Reset
the flags of all the simplexes retrieved.

Retrieving relations R00(v) and R01(v) takes optimal time.
As in the case of R13, both R02(v) and R03(v) relations can
be retrieved in O(|R00(v)|) time due to the possible presence
of tetrahedra, for R02(v), or of dangling faces, for R03(v).
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Finally, by using R01 and R10 relations, we can retrieve
the R11(e) relation, i.e., all the edges incident at the extreme
vertices of edge e, in optimal time.

Note that in our design, we specify a face or an edge,
which is not a top simplex, implicitly in terms of one the top
simplexes (such as tetrahedra, dangling faces) containing it.
We use top simplexes as entities because the retrieval prim-
itives are usually used in the context of algorithms which
traverse the complex by moving from one top simplex to an-
other.

In case a k-simplex σ is specified explicitly through the
indexes of its (k + 1) vertices, and we need to retrieve the
index of the simplex, if σ is a top simplex, relation R00(vi)
must be retrieved for each vertex vi of σ. In the manifold
case the same strategy is commonly used, since a manifold
simplicial complex is usually encoded with the indexed data
structure with adjacencies.

7. Comparisons

In this Section, we present another data structure, that we
call the simplified incidence graph, which is a simplified
version of the incidence graph 12 for simplicial pseudo-
manifolds, we review the indexed data structure with ad-
jacencies for simplicial pseudo-manifolds, and we compare
the NMIA data structure with the former two.

7.1. Simplified Incidence Graph

The incidence graph 12 is a data structure for d-dimensional
cell complexes, in which every i-cell is stored as an entity,
and boundary topological relations Ri,i−1 for i = 1, ...,d as
well as co-boundary relations Ri,i+1 for i = 0, ...,d − 1 are
encoded. For simplicial complexes, boundary relations are
constant.

In the case of three-dimensional simplicial pseudo-
manifolds, co-boundary relations R12(e) and R01(v) can be
retrieved in optimal time (i.e., linear in the number of sim-
plexes in R12(e) and R01(v), respectively), by storing, for
R12(e), one representative 2-simplex for each edge-based
cluster incident at edge e, and, for R01(v), one representa-
tive edge for each vertex-based cluster incident at v. In the
manifold case, each edge and each vertex has only one clus-
ter. We call the incidence graph in which we store just one
representative for R01(v) and R12(e) relations the simplified
incidence graph.

The simplified incidence graph stores all 0-, 1-, 2- and
3-simplexes. It encodes the coordinates of each vertex (3nv
doubles for the 3D coordinates) and the following relations:

• relation R32(t): the four faces on the boundary of tetrahe-
dron t (4nt integers).

• relation R21( f ): the three edges on the boundary of face f
(3n f integers).

• relation R10(e): the two vertices on the boundary of edge
e (2ne integers).

• relation R23( f ): the one, or two tetrahedra that are inci-
dent at f (4nt integers).

• relation R∗

12(e): only one representative edge from each
edge-based cluster that is incident at e (ce + ne − k inte-
gers, where k is the number of nm-edges).

• relation R∗

01(v): only one representative edge from each
vertex-based cluster that is incident at vertex v (cv inte-
gers).

We can evaluate the storage requirements of the data
structure in the case of pseudo-manifolds and manifolds:

• Pseudo-manifolds:

geometric information: 3nv doubles
topological relations: (8nt +3n f +3ne +ce +cv −k) in-

tegers

• Manifolds: ce = k = 0 and cv = nv

geometric information: 3nv doubles
topological relations: 8nt +3n f +3ne +nv integers

If we assume that nt ≈ 6nv, the space requirements are
about 131nv integers + 3nv doubles.

It can be shown that all topological relations can be ex-
tracted in optimal time from the simplified incidence graph.

7.2. Indexed Data Structure with Adjacencies

The indexed data structure with adjacencies is a compact
data structure for simplicial pseudo-manifolds in arbitrary
dimensions, which encodes only 0- and d-simplexes and
their connectivity. We describe here the three-dimensional
instance of this data structure.

The indexed data structure encodes the vertex coordinates
(3nv doubles), all 0- and 3-simplexes plus the following re-
lations:

• relation R30(t): the four vertices on the boundary of t (4nt
integers).

• relation R33(t): the four tetrahedra that are adjacent to
tetrahedron t (4nt −b integers).

For both pseudo-manifold and manifold complexes, its
space requirements are:

geometric information: 3nv doubles
topological relations: 8nt −b integers

If we assume in the manifold case that nt ≈ 6nv, then the
storage cost is approximately equal to 48nv integers + 3nv
doubles.

Also, it can be easily seen that only boundary relations can
be retrieved in optimal time from the indexed data structure
with adjacencies. This data structure cannot support naviga-
tion through vertices and edges in optimal time.
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7.3. Comparison

For a manifold or a reasonably regular object such that ce
and cv are small, we can see that the space used by NMIA
data structure is about half of that used by the simplified
incidence graph.

The space requirements are about 1.5 times with respect to
those of the indexed data structure with adjacencies, which,
however, cannot support navigation through vertices and
edges, since only the encoded relations plus boundary re-
lations for tetrahedra can be retrieved efficiently.

8. Concluding Remarks

We have described the design and the implementation of a
new data structure, that we called the non-manifold indexed
data structure with adjacencies (NMIA), which can repre-
sent any three-dimensional abstract simplicial complex in
which any 2-simplex is on the boundary of at most two 3-
simplexes. The NMIA structure is compact, since it encodes
only the vertices and the top simplexes of the complex plus a
restricted subset of topological relations among simplexes. It
supports efficient navigation algorithms to retrieve topolog-
ical relations, and it scales very well to the pseudo-manifold
and manifold cases.

For comparison purposes, we have described a simplified
version of the incidence graph for simplicial complexes, the
simplified incidence graph, which, however, can only repre-
sent pseudo-manifolds. While it can be shown that this latter
data structure also supports navigation in optimal time, its
storage cost is almost twice that of the NMIA structure.

In order to accommodate non-manifold singularities and
fast navigation, the storage cost of the NMIA structure is
about 1.5 times that of the simple indexed data structure with
adjacencies, which supports efficient retrieval only of the R3i
relations, with i = 0,1,2,3.

In our future work, we plan to investigate extensions of
the NMIA data structure to higher dimensions, to develop
algorithms for updating the NMIA structure for simplifica-
tion purposes. Our aim is to design and develop a multi-
resolution volumetric model for non-manifold, and non-
regular 3D objects, which extends the model proposed in 8

to the three dimensional case. In this context, we plan to use
the NMIA data structure to represent the adaptive meshes
extracted from the multi-resolution model through selective
refinement queries.

9. Acknowledgments

This work has been partially supported by the project
MACROGeo (funded by the Italian Ministry of Edu-
cation, University and Research under contract number
RBAU01MZJ5).

References

1. B. G. Baumgart. Winged edge polyhedron repre-
sentation. Technical Report CS-TR-72-320, Stanford
University, Department of Computer Science, October
1972.

2. E. Brisson. Representing geometric structures in d di-
mensions: Topology and order. In Proceedings 5th
ACM Symposium on Computational Geometry, pages
218–227. ACM Press, June 1989.

3. E. Bruzzone, and L. De Floriani. Two data structures
for building tetrahedralizations. The Visual Computer,
6(5): 266–283, 1990.

4. S. Campagna, L. Kobbelt, and H.-P. Seidel. Directed
edges - a scalable representation for triangle meshes.
Journal of Graphics Tools, 4(3), 1999.

5. W. Charlesworth and D. C. Anderson. Applications
of non-manifold topology. In Proceedings Computers
in Engineering Conference and Engineering Database
Symposium, pages 103–112. ASME, 1995.

6. P. Cignoni, L. De Floriani, P. Magillo, E. Puppo, and
R. Scopigno. Selective refinement queries for volume
visualization of unstructured tetrahedral meshes IEEE
Transactions on Visualization and Computer Graph-
ics,to appear, 2003.

7. L. De Floriani, M. M. Mesmoudi, F. Morando, and
E. Puppo. Non-manifold decomposition in arbitrary
dimensions. In A. Braquelaire, J.-O. Lachaud, and
A. Vialard, editors, Discrete Geometry for Computer
Imagery, Lecture Notes in Computer Science, volume
2301, pages 69–80. Springer-Verlag, 2002. Extended
version to appear in Graphical Models, 2003

8. L. De Floriani, P. Magillo, E. Puppo, and D. Sobrero.
A multi-resolution topological representation for non-
manifold meshes. In Proceedings 7th ACM Symposium
on Solid Modeling and Applications (SM02), 2002.
Saarbrucken, Germany, June 17-21. Extended version
to appear in Computer-Aided Design, 2003.

9. L. De Floriani, F. Morando and E. Puppo. Represen-
tation of Non-manifold Objects Through Decomposi-
tion into Nearly Manifold Parts. In Proceedings 8th
ACM Symposium on Solid Modeling and Applications
(SM03), 2003. Seattle, USA, June 16-20, 2003.

10. H. Desaulnier and N. Stewart. An extension of mani-
fold boundary representation to r-sets. ACM Trans. on
Graphics, 11(1):40–60, 1992.

11. D. Dobkin and M. Laszlo. Primitives for the manipu-
lation of three-dimensional subdivisions. Algorithmica,
5(4):3–32, 1989.

12. H. Edelsbrunner. Algorithms in Combinatorial Geom-
etry. Springer-Verlag, 1987.

c© The Eurographics Association 2003.

81



Leila De Floriani, Annie Hui / A Data Structure for 3D Non-Manifolds

13. B. Falcidieno and O. Ratto. Two-manifold cell decom-
position of r-sets. In A. Kilgour and L. Kjelldahl, ed-
itors, Proceedings EUROGRAPHICS ’92, volume 11,
pages 391–404, September 1992.

14. A. Gueziec, G. Taubin, F. Lazarus, and William Horn.
Converting sets of polygons to manifold surfaces by
cutting and stitching. In Scott Grisson, Janet McAnd-
less, Omar Ahmad, Christopher Stapleton, Adele New-
ton, Celia Pearce, Ryan Ulyate, and Rick Parent,
editors, Conference abstracts and applications: SIG-
GRAPH 98, July 14–21, 1998, Orlando, FL, Computer
Graphics, pages 245–245, New York, NY 10036, USA,
1998. ACM Press.

15. L. Guibas and J. Stolfi. Primitives for the manipulation
of general subdivisions and computation of Voronoi di-
agrams. ACM Trans. on Graphics, 4(2):74–123, April
1985.

16. E. L. Gursoz, Y. Choi, and F. B. Prinz. Vertex-based
representation of non-manifold boundaries. In M. J.
Wozny, J. U. Turner, and K. Preiss, editors, Geometric
Modeling for Product Engineering, pages 107–130. El-
sevier Science Publishers B.V., North Holland, 1990.

17. K. I. Joy, J. Legakis, R. MacCracken. Data Struc-
tures for Multiresolution Representation of Unstruc-
tured Meshes In G.Farin, H. Hagen, B. Hamann, edi-
tors, Hierarchical Approximation and Geometric Meth-
ods for Scientific Visualization, Springer Verlag, Hei-
delberg, 2002.

18. V. A. Kovalevsky. Finite topology as applied to image
analysis. Computer Vision, Graphics, and Image Pro-
cessing, 46(2):141–161, May 1989.

19. S.H. Lee and K. Lee. Partial Entity structure: a fast and
compact non-manifold boundary representation based
on partial topological entities. In Proceedings of the
Sixth ACM Symposium on Solid Modeling and Appli-
cations, pp.159-170. ACM, June 2001. Ann Arbor,
Michigan.

20. P. Lienhardt. N-dimensional generalized combinato-
rial maps and cellular quasi-manifolds. Int. Journal of
Comp. Geom. and Appl., 4(3):275–324, 1994.

21. H. Lopes and G. Tavares. Structural operators for mod-
eling 3-manifolds. In Proceedings of the Fourth ACM
Symposium on Solid Modeling and Applications, pages
10–18. ACM, May 1997. Atlanta, Georgia, May 14-16.

22. Y. Luo and G. Lukács. A boundary representation of
form features and non-manifold solid objects. In Proc.
First ACM Symposium on Solid Modeling and Applica-
tions, Austin, TX, June 1991.

23. M. Mantyla. An Introduction to Solid Modeling. Com-
puter Science Press, 1983.

24. S. McMains and C. S. J. Hellerstein, Out-of-core build-
ing of a topological data structure from a polygon soup
In Proceedings Sixth ACM Symposium on Solid Mod-
eling and Applications, Ann Arbor, Michigan, 2001,
pages 171–182.

25. A. Paoluzzi, F. Bernardini, C. Cattani, and V. Ferrucci.
Dimension-independent modeling with simplicial com-
plexes. ACM Transactions on Graphics, 12(1):56–102,
January 1993.

26. J. Rossignac and D. Cardoze. Matchmaker: Mani-
fold BReps for non-manifold r-sets. In Willem F.
Bronsvoort and David C. Anderson, editors, Proceed-
ings of the Fifth ACM Symposium on Solid Modeling
and Applications, pages 31–41. ACM, June 1999.

27. J.R. Rossignac and M.A. O’Connor. SGC: A
dimension-independent model for point sets with in-
ternal structures and incomplete boundaries. In
J.U. Turner M. J. Wozny and K. Preiss, editors, Geo-
metric Modeling for Product Engineering, pages 145–
180. Elsevier Science Publishers B.V. (North–Holland),
Amsterdam, 1990.

28. J. Rossignac, A. Safonova, A. Szymczak. 3D compres-
sion Made Simple: Edgebreaker on a Corner Table. In
Proceedings Shape Modeling International 2001, Gen-
ova, Italy, May 2001

29. K. Weiler. The Radial Edge data structure: A topolog-
ical representation for non-manifold geometric bound-
ary modeling. In J.L. Encarnacao, M.J. Wozny, H.W.
McLaughlin, editors, Geometric Modeling for CAD
Applications, pages 3–36. Elsevier Science Publishers
B.V. (North–Holland), Amsterdam, 1988.

30. Y. Yamaguchi and F. Kimura. Non-manifold topology
based on coupling entities. IEEE Computer Graphics
and Applications, 15(1):42–50, January 1995.

c© The Eurographics Association 2003.

82


