
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2010)
M. Otaduy and Z. Popovic (Editors)

BoLeRO: A Principled Technique for Including Bone Length

Constraints in Motion Capture Occlusion Filling

Lei Li, James McCann, Nancy Pollard and Christos Faloutsos

Carnegie Mellon University

0 200 400 600 800
0

0.2

0.4

frame

b
o
n
e
 l
e
n
g
th

 (
m

)

 

 
RELB−RUPA

RELB−RFRM

RFRM−RWRB

−0.2
0

0.2
0.4

0.6

−0.4
−0.2
0

0.2
0.4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 200 400 600 800
0

0.2

0.4

frame

b
o
n
e
 l
e
n
g
th

 (
m

)

 

 
RELB−RUPA

RELB−RFRM

RFRM−RWRB

−0.2
0

0.2
0.4

0.6

−0.4
−0.2
0

0.2
0.4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 200 400 600 800
0

0.2

0.4

frame

b
o
n
e
 l
e
n
g
th

 (
m

)

 

 
RELB−RUPA

RELB−RFRM

RFRM−RWRB

−0.2
0

0.2
0.4

0.6

−0.4
−0.2
0

0.2
0.4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Original LDS/DynaMMo BoLeRO

Figure 1: Reconstructing two marker positions on the right arm from frame 100 to 500 of a walking motion (#132.43). Graphs

show bone lengths over time; markers are stills at frame 241. LDS/DynaMMo (textbfmiddle) fails to preserve inter-marker

distances present in the original motion (left). We propose BoLeRO which does much better (right).

Abstract

Given a motion capture sequence with occlusions, how can we recover the missing values, respecting bone-length

constraints? Recent past work uses Linear Dynamical Systems (LDS), which work well, except for occasionally

violating such constraints, and thus lead to unrealistic results. Our main contribution is a principled approach for

preserving such distances. Specifically (a) we show how to formulate the problem as a constrained optimization

problem, using two variations: hard constraints, and soft constraints; (b) we show how to efficiently solve both

variations; (c) we demonstrate the realism of our approaches against competitors, on real motion capture data,

illustrating that our ’soft constraints’ version eventually produces more realistic results.

1. Introduction

Given motion capture data, with occlusion, how can we re-
cover the missing values, so that we obey bone-length con-
straints?

Optical motion capture is a useful method for computer
animation. In this technique, cameras are used to track re-
flective markers on an actor’s body, and the pose of the ac-

Table 1: Comparison of Occlusion Filling Methods

Advantages Bone Length Black-out
Method constraints
Spline × X

MSVD × ×
LDS/DynaMMo × X

BoLeRO X X

tor is reconstructed from these marker positions. Of course,
such systems are not infallible, and inevitably some mark-
ers cannot be tracked due to occlusions or awkward camera
placement. Similarly, one could imagine concatenating two
such sequences of marker motion and treating the “transi-
tion” region as a large tracking failure.

Currently such occlusions are filled manually or through
ad-hoc methods. Straightforward methods, like linear inter-
polation and spline interpolation, do not agree with human
intuition, giving poor results. A more principled approach
to occlusion filling would be to use a statistical model that
accounts for correlations between markers and dynamics
across time. One intuitive formulation is a linear dynamical
system (LDS), which models observed data as noisy linear
projections of low-dimensional state which evolves via noisy
linear dynamics.

One problem with using LDS in this setting is that they do
not preserve inter-marker distances. While a joint-angle rep-
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resentation would solve this problem, it would both require
that a skeleton be fit to the data (which would prevent LDS
from being used for occlusion filling), and it would present a
weight-selection challenge (a small angle error in the shoul-
der is much more noticeable than a small angle error in the
wrist).

We show how to solve this problem in an explicit and
principled manner, by specifying inter-marker distance con-
straints and learning an LDS that operates in this constrained
space. The focus of our work is to handle occlusions auto-
matically, agreeing with human intuition. Ideally we would
like a method with the following properties:

1. Bone Length Constraint: It should be able to keep relative
distance for markers on the same bone.

2. Black-out: It should be able to handle “black-outs”, when
all markers disappear (e.g., a person running behind a
wall, for a moment).

Additionally, we also want our method to be scalable and
automatic, requiring few (and, ideally, zero) parameters to
be set by a human.

In this paper, we propose BoLeRO (Bone length con-
strained reconstruction for occlusion). Fig. 2 shows the re-
constructed signal for an occluded running motion. Our
method gives the best result close to the original value. Our
main idea is to simultaneously exploit two properties: (a)
body rigidness, through the bone length constraints; and (b)
motion smoothness, by using the dynamical system to keep
the moving trend. This two-prong approach can help us han-
dle even “black-outs”, which we define as time intervals
where we lose track of all the markers.

The main contributions of this paper are as follows:

1. We setup the occlusion filling problem and formulate the
bone length constraints in a principled way.

2. We propose effective algorithms (Expectation-
Maximization-Newton/Gradient) to solve the problem,
yielding results agreeing with human intuition.

3. We perform experiments on real motion capture se-
quences to demonstrate the additional benefits from en-
forcing the bone length constraints.

The rest of the paper is organized as follows: In Section 2,
we review the related work; the proposed method and its dis-
cussion are presented in Section 3; the experimental results
are presented in Section 4. We conclude the paper in Sec-
tion 5.

2. Related work

Past occlusion filling methods and related techniques for oc-
clusion filling can be classified into the following categories:
(1) interpolation methods; (2) skeleton based [HFP∗00,
ZVDH03]; (3) dimensionality reduction and latent vari-
ables [LM06, PH06, THR07]; (4) database backed [HGP04,
CH05]; (5) dynamical systems [WFH08,LMPF09].
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Figure 2: Original and reconstructed xyz-coordinates of the

marker on right knee for a running motion (subject#127.07)

with occlusion from time 25 to 90 (marked with vertical

lines). This is 45% of 145 frames in total. x,y,z are in blue,

green and red respectively. Top to bottom figures correspond

to original motion, reconstruction from spline, MSVD, LDS

and our proposed BoLeRO, respectively.

Interpolation methods: Linear interpolation and splines,
are commonly used in time series smoothing and also mo-
tion capture systems to handle missing markers. These in-
terpolation methods are generally effective for short period
occlusions or occasional missing markers.

Skeleton based methods: Herda et al [HFP∗00] used a hu-
man body skeleton to track and reconstruct the 3-d marker
positions. Their method could predict the position using
three previous markers by calculating the kinetics, when a
marker is missing. Markers in motion capture system are
usually captured in 3D space, while many applications work
in joint angle space, thus a mapping from raw 3D data to
joint angles is often required. Instead of fixed skeleton, Kirk
et al [KOF05] proposed a method to automatically construct
structural skeleton from motion capture data. Zordan and
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Van Der Horst [ZVDH03] used a fixed limb-length skele-
ton to map the markers on full body to a representation in
joint angles plus reference body center. Our proposed ap-
proach works directly in 3D space, there it does not require
such mapping. These skeleton methods could work well for
short segment of occlusions, however our method could han-
dle much longer occlusions, as well as black-outs.

Dimensionality reduction and latent variable models:

Liu and McMillan [LM06] proposed a method that projects
the markers into linear principal components and recon-
structs the missing parts from the linear models. This ap-
proach is similar to the Missing Value SVD (MSVD) [NJ03]
with single iteration. Furthermore, they proposed an en-
hanced Local Linear method from a mixture of such lin-
ear models. Park and Hodgins [PH06] also used PCA to
estimate the missing markers for skin deformation captur-
ing. There were also work on nonlinear models for human
motion. Taylor et al [THR07] used a conditional restricted
Boltzmann machine (CRBM) with discrete hidden states to
model human motion. Their approach could learn non-linear
binary representations for a motion frame, conditioned on
several previous frames. Therefore, their method could fill
in the missing values from the prediction of several previous
frames.

Database backed approach: Hsu et al [HGP04] proposed
a method to map from a motion control specification to a tar-
get motion by searching over patterns in existing database.
Chai and Hodgins [CH05] used a small set of markers as
control signals and reconstruct the full body motion from a
pre-recorded database. These methods could also generate
motions follow the bone lengths, however they are repeti-
tions or interpolated motions taken directly from database,
thus could not generate new motions. The subset of mark-
ers should be known in advance, while our method does not
assume fixed subsets of the dimension observed or missing.

Dynamical systems: Previously, Kalman filters were used
for tracking system [DU03] with carefully defined parame-
ters. Shumway and Stoffer [SS82] proposed EM algorithm
to learn the model parameters. Wang et al [WFH08] took a
nonparametric approach to model human motion and pro-
posed a Gaussian process dynamical model, which includes
a chain of latent variables and nonlinear mapping from the
latent space to observed motion. In case of missing observa-
tion, it could use the learned model to estimate expectation
of missing markers. Aristidou et al [ACL08] used Kalman
filters to predict the missing markers, with parameters con-
forming to Newton dynamics. Recently, Li et al [LMPF09]
used Linear Dynamical Systems to model motion capture
data, and proposed an algorithm to recover the missing val-
ues. We will use it as the baseline method for comparison
and describe it in more details in Section 3.1.

Liu and McMillan [LM06] provide a nice summary of re-

lated work on occlusion for motion capture data as well as
of techniques for related tasks such as motion tracking.

Comparing against all these methods, our proposed
BoLeRO can (a) capture the coupling between multiple
markers like dimensionality reduction does; (b) it can gen-
erate motions that follow the dynamics of natural human
motion like LDS/Kalman filters do; (c) it can enforce inter
marker distances for those on the same bone (exactly or with
a small toleration) as the skeleton method does; (d) it mod-
els the motion as a whole, instead of treating each frames
individually, and thus BoLeRO is able to use the observed
portion as much as possible. That is, each previous method
exhibits only one or two of the above properties, but not
all of them. This is the intuition why our BoLeRO method
achieves better recovery of occlusions.

3. Proposed Method: BoLeRO

A typical motion capture system usually uses optical cam-
eras to track passive markers in 3-D space. Mathemati-
cally, the observations of marker positions form a multi-
dimensional time series, denoted as X (a T×m matrix). In
case of marker occlusion (denoted asXm, the set of variables
that are missing from the T×m matrix X ), the goal is to fill
in the blanks to reconstruct most natural motion according
to the human eye. The relevant symbols are described in Ta-
ble 2.

Our method is motivated by observing the important role
of rigid bones in human body that preserve relative posi-
tions of markers: markers on the same bone will maintain
a given distance between them. We capture these fixed dis-
tances through bone length constraints. Our approach ad-
dresses the occlusion filling problem by enforcing the bone
length constraints on top of a traditional dynamical system
for motion capture data.

How should we incorporate BLC into the dynamic sys-
tems? There are two choices with varying implications:
namely, hard constraints and soft constraints. The former
exerts exact inter-marker distances for same bone markers,
while the latter general follows the constraint while allow-
ing occasional violations. We will describe each of them and
compare their effectiveness in later sections. Here we first
define the meaning of bone length in our context.

Definition 1 A set B lists bone length constraints (BLC), and
it contains the following elements:

B = {〈i, j,di, j〉|marker i, j on the same bone}

where di, j is the distance between marker i and j.

Definition 2 A matrix W is said to indicate the missing ob-
servation if

W (t, i) =

{

1 i-th marker missing at time t,

0 i-th marker observed at time t

c© The Eurographics Association 2010.
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Definition 3 A pair of marker i and j are said to conform to
the BLC B if their coordinates of all time tick follows

〈i, j,di, j〉 ∈ B⇒‖x
(i)
t −x

( j)
t ‖

2 = d
2
i, j

where x
(i)
t denotes the coordinates for i-th marker at time t.

Table 2: Symbols, Acronyms and Definitions

Symbol Definition

X a motion sequence with missing values
(x1, ...xT) of T time-ticks in m dimen-
sions

Xg the observed values in a motion se-
quence X

Xm variables for the missing values in a mo-
tion sequence X

x
(i)
t position of marker i at time t

zt hidden variables at time t

W 01 matrix indicating missing values
(1=missing)

m number of dimensions (e.g., marker po-
sitions) - m=123 here

H number of hidden dimensions

BLC bone length constraint
EMN/EMG expectation, maximization and New-

ton/gradient descent

3.1. Background

Linear Dynamical Systems (LDS, also known as Kalman fil-
ters) are commonly used in motion tracking systems. The
basic idea is to identify the hidden variables (e.g. veloc-
ity, acceleration) in observed data (marker positions) and
build a statistical model to characterize the transitions of
hidden variables. Such models could then reproduce the mo-
tion dynamics, as well as the correlations among markers by
choosing a proper number of hidden variables. In LDS, a
multi-dimensional motion sequence is modeled with a hid-
den Markov chain, as follows.

z1 = µ0 +ω0 (1)

zn+1 = F · zn +ωn (2)

xn = G · zn + εn (3)

where Θ = {µ0,Γ,F,Λ,G,Σ} is the set of parameters. µ0 is
initial state of the whole system, xn and zn denote marker
coordinates and hidden variables at time n, respectively. F

implies the transition dynamics and G is the observation pro-
jection. ω0, ωi and εi(i = 1 . . .T) are multivariate Gaussian
noises with the following distributions:

ω0 ∼N (0,Γ) ωi ∼N (0,Λ) ε j ∼N (0,Σ) (4)

In the case of missing observations, Li et al [LMPF09]
proposed DynaMMo, an expectation-maximization (EM)

like algorithm to recover the marker positions by estimat-
ing the expectation of occluded values, given the observed
parts, E[Xm|Xg]. Their algorithm finds solutions to maxi-
mize the expected log-likelihood with respect to the model
parameters, the hidden variables and the missing observa-
tions as well. However, their method would have a hard time
for multiple markers of long occlusions as we point out the
experiments.

3.2. BoLeRO-HC (hard constraints)

Intuition: The traditional method to estimate the missing
values in the sequence data is to minimize a squared loss
function on Eq (1)-(4), penalizing the model complexity.
While a LDS based method such as DynaMMo [LMPF09]
could recover short occlusion, it suffers in cases of longer
and multiple marker occlusions, because reconstructed
markers may break rigid bodies and violate bone length con-
straints. Our proposed method is based on the basic intuition
on human motion: those markers attached to the same bones
should not fall apart. Our main contribution in the current
paper is to demonstrate the usefulness of domain knowl-
edge, in this case bone length constraints in occlusion fill-
ing. Following this intuition, we propose BoLeRO-HC (hard
constraints), enforcing the exact bone length constraints in a
LDS-based model. We make a first conjecture, bone length
constraints will help recover motion occlusions better, in ad-
dition to traditional dynamics information as modeled by
LDS. Here we first formulate the domain knowledge and de-
fine the bone length constraints.

Problem formulation: We will first present the proposed
BoLeRO-hard constraint here. With the bone length con-
straints (BLC), we link the naturalness of a motion to
whether it conforms to desired bone lengths under tempo-
ral movement. In our model, we assume the motion is mov-
ing according to the linear dynamical systems. Given an oc-
cluded motion sequence X , occlusion indication matrix W

and an additional BLC B, the problem is to fill in the oc-
clusion so that the resulting motion follows the moving dy-
namics as captured by LDS and conforms to the bone length
constraints. Our proposed BoLeRO will recover the miss-
ing markers by estimating the “good” expectation E[Xm|Xg],
which conforms to the inter-marker distances on the same
bone. The sequence of marker coordinates are modeled
based on LDS as above (Eq. (1)-(3)) with additional con-
straints. Mathematically, the occlusion filling problem and
its cost function are defined as follows.

Problem 1 (BoLeRO, hard constraints) Given (a) Xg (the
observed marker positions), (b) B (bone length constraint),
and (c) occlusion indication matrix W , find Θ and Xm to
solve the following objective function:

min Q(Xm,Θ) (5)

subject to‖x
(i)
t − x

( j)
t ‖

2−d
2
i, j = 0 ∀〈i, j,di, j〉 ∈ B
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with the objective function Q(·) to be

Q(Xm,Θ) =
1

2
E[(z1−µ0)

T Γ−1(z1−µ0)

+
T

∑
t=2

(zt −F · zt−1)
T Λ−1(zt −F · zt−1)

+
T

∑
t=1

(xt −G · zt)
T Σ−1(xt −G · zt)]

+
log |Γ|

2
+

T −1

2
log |Λ|+

T

2
log |Σ|

where x
(i)
t is coordinates of i-th marker at time t, and Θ de-

notes model parameters Θ = {F,G,z0,Γ,Λ,Σ}.

Algorithm: The main goal of the learning algorithm is to
find optimal values for Xm such that the objective func-
tion Q(Xm,Θ) is minimized under the bone length con-
straints. To solve the optimization problem, we observe that
the constraints have nothing to do with the hidden vari-
ables and model parameters Θ, which suggests the follow-
ing coordinate-descent style algorithm. At the high level,
our proposed algorithm optimizes the parameters and un-
knowns piece-wisely and iteratively through the “EMN”
procedure (Expectation, Maximization, and Newton opti-
mization), as shown in Algorithm 1: We use Expectation-
Maximization [LMPF09] to estimate the posterior distri-
bution P(Z|X ), its sufficient statistics (E[zt ], E[ztz

T
t ] and

E[ztz
T
t−1]), and Θ respectively (steps 1 and 2 in Algo-

rithm 1), and fill in missing values using Newton’s method
to solve the Lagrange derived from the BLC (step 3 in Al-
gorithm 1). Finally, we update the model parameters Θ by
maximizing the log likelihood (i.e. minimizing Q), and iter-
ate until convergence.

In more detail, our proposed BoLeRO-HC uses Lagrange
multipliers to handle constraints for frames with missing val-
ues. The Lagrangian is given by:

L(Xm,Θ,η) =
1

2
E[(z1− z0)

T Γ−1(z1− z0) (6)

+
T

∑
t=2

(zt −Fzt−1)
T Λ−1(zt −Fzt−1)

+
T

∑
t=1

(xt −Gzt)
T Σ−1(xt −Gzt)

+
1

2
log |Γ|+

T−1

2
log |Λ|+

T

2
log |Σ|]

+
T

∑
t=1

∑
〈i, j,di, j〉∈B

ηti j(‖x
(i)
t −x

( j)
t ‖

2−d
2
i, j)

where η = {ηti j} are Lagrange multipliers. Note here we
also include the dummy Lagrange multipliers for observed
markers, however, because since those marker positions are
known, it will not affect the result.

To derive a solution for the constrained optimization
problem, we follow the “EMN” guideline, expectation

(P(Z|X )), maximization (Θ), and Newton optimization
(Xm): we first take derivative of L with respect to Θ, yield-
ing the forward-backward belief propagation (also known as
Kalman filtering and smoothing) for expectation step and
maximization equations. Since Θ is not involved in con-
straints, the resulting updating equations are the same as
those in [LMPF09] and derived in Appendix A.

To estimate Xm and η’s, we use Newton’s method to iter-
atively search and minimize the objective function with re-
spect to the constraints. The optimal solution is specified by
critical point, which requires ∂L

∂Xm
= 0 and ∂L

∂η
= 0. In this

step, we iteratively update the Xm and η in the Newton’s de-
scent direction. Let xM

t and ηt denote the unobserved marker
positions and Lagrangian multipliers at time t, respectively.
During each iteration, we update them according to the fol-
lowing update rules:

(
xM

t

ηt

)new

←−

(
xM

t

ηt

)

−α(∇2
xM

t ,ηt
L)−1 ·∇xM

t ,ηt
L (7)

where ∇xM
t ,ηt
L is the partial gradient and ∇2

xM
t ,ηt
L is the

Hessian matrix. Their detailed derivations are given in ap-
pendix B.

3.3. BoLeRO-SC (soft constraints)

Intuition - Motivation The hard constraint formulation
above would be ideal, except that in reality, markers slightly
move, and reality itself violates the bone length constraints
(BLC)! In such cases, hard constraints may land to a solu-
tion with abrupt discontinuity in the recovered marker posi-
tion, albeit the corresponding marker distances are well pre-
served.

This implies we do not have to underscore the exact
preservation of the bone length, while the ideal system
should allow some “reasonable” variation. The intuition
comes naturally, the recovered missing values should be a
trade off between approaching the maximum likelihood and
preserving bone length. To alleviate this problem, we relax
the bone constraints and instead solve the following soft con-
strained problem. Our objective is the likelihood, with addi-
tional penalty on the deviation from the desired bone length
of those missing markers on the same bones.

Problem Formulation Following the intuition, we get the
following objective function: the negative log likelihood pe-
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Algorithm 1: Proposed EMN algorithm for BoLeRO-
HC
Input: Xg, B (BLC), W (missing indication matrix), H

(hidden dimension)
Output: Recovered motion sequence: X̂

// initialization

Xm← 0; // or other initialization

X̂ ← Xg∪Xm;
F,G,µ0← random values;
Γ,Λ,Σ← I;
Θ←{F,G,µ0,Γ,Λ,Σ};
repeat

E-step: estimate the posterior P(Z|X̂ ;Θ) and its1

sufficient statistics E[zt |X̂ ;θ], E[ztzt
T |X̂ ;θ], and

E[ztzt−1
T |X̂ ;θ] using belief propagation

(Eq.(15-30));
M-step: Minimizing Eq (6) with respect to Θ2

(Eq.(32-36))

Θnew← argmin
Θ
L(Xm,Θ,η)

for t← 1 to T do3

// N-step: estimating missing

using Newton’s method

k← number of missing markers at time t;
ηt ← (0, . . . ,0

︸ ︷︷ ︸

k

)T ;

α← 1/2 ; // step size

repeat

D←∇xM
t ,ηt
L(·); // Page.10 Eq.(37)

H←∇2
xM

t ,ηt
L(·); // Page.10 Eq.(38)

y← X̂
(i)
t ∀i.Wt,i = 1 ;

(
y

ηt

)new

←−

(
y

ηt

)

−αH ·D

X̂
(i)
t ← y ∀i.Wt,i = 1 ;

until converge ;

until converge ;

nalized by the deviation from the bone length constraints.

min f (Xm,Θ) (8)

=
1

2
E

[

(z1−µ0)
T Γ−1(z1−µ0)

+
T

∑
t=2

(zt −F · zt−1)
T Λ−1(zt −F · zt−1)

+
T

∑
t=1

(xt −G · zt)
T Σ−1(xt −G · zt)

]

+
log |Γ|

2
+

T −1

2
log |Λ|+

T

2
log |Σ|

+
λ

2

T

∑
t=1

∑
〈i, j,di, j〉∈B

(Wt,i|Wt, j)(‖x
(i)
t −x

( j)
t ‖

2−d
2
i, j)

2

where Wt,i|Wt, j = Wt,i +Wt, j−Wt,iWt, j.

Algorithm: To solve the optimization problem, we propose
a coordinate descent approach, alternatingly optimizing over
a set of unknown variables or parameters (see Algorithm 2):

1. E-step: fix Θ and missing Xm, using Kalman filtering and
Kalman smoothing to estimate posterior P(Z|X ;Θ),

2. M-step: update the model parameters Θ,
3. G-step: Fix Θ, estimate the missing Xm under soft con-

straints using gradient descent, with the previously com-
puted P(Z|X ;Θ).

By taking partial derivatives over Θ and setting to zero, we
obtain the same equations for E-step and M-step as in above
EMN for hard constraints. While N-step is replaced with the
gradient descent on soft constraints. The update rule for G-
step is:

x
(i)
t ← x

(i)
t −α ·

∂ f

∂x
(i)
t

(9)

where x
(i)
t denotes the i-th marker coordinates at time t.

∂ f

∂x
(i)
t

= I(i) ·Σ
−1 · (xt −G ·E[zt ])

+2λ ∑
〈i, j,di, j〉∈B

(Wt,i|Wt, j)(‖x
(i)
t −x

( j)
t ‖

2−d
2
i, j)(x

(i)
t −x

( j)
t )

(10)

The learning rate depends on the proper choosing of the
learning step size α. We developed an adaptive scheme for
adjusting α according to value of the objective function. The
basic idea is to enlarge α whenever the objective decreases
and to shrink α whenever it increases.

To make the scheme work, we observe that the partial

derivative ∂ f

∂x
(i)
t

is independent of all the rest time ticks. So

in our algorithm, we isolate the optimization for each time
tick, and adaptively choose the learning rate for that time
tick. Specifically, we define the following time-decomposed
objective function:

ft(xt) =
1

2
E[(xt −G · zt)

T Σ−1(xt −G · zt)] (11)

+
λ

2 ∑
〈i, j,di, j〉∈B

(Wt,i|Wt, j)(‖x
(i)
t −x

( j)
t ‖

2−d
2
i, j)

2

Observing ∂ ft

∂x
(i)
t

= ∂L

∂x
(i)
t

, the update rule becomes

x
(i)
t ← x

(i)
t −α ·

∂ ft

∂x
(i)
t

(12)

The adaptive gradient descent method works as follows: it
only accepts the update when the update will decrease the
time-decomposed objective function ft , doubling α in this
case; otherwise halving α.
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Algorithm 2: Proposed EMG algorithm for BoLeRO-
SC
Input: Xg, B (BLC), W (missing indication matrix), H

(hidden dimension)
Output: Recovered motion sequence: X̂

// initialization

Xm← 0; // or other initialization

X̂ ← Xg∪Xm;
F,G,µ0← random values;
Γ,Λ,Σ← I;
Θ←{F,G,µ0,Γ,Λ,Σ};
repeat

E-step: estimate the posterior P(Z|X̂ ;Θ) and its1

sufficient statistics E[zt |X̂ ;θ], E[ztzt
T |X̂ ;θ], and

E[ztzt−1
T |X̂ ;θ] using belief propagation

(Eq.(15-30));
M-step: Minimizing Eq (8) with respect to Θ2

(Eq.(32-36))

Θnew← argmin
Θ

f (Xm,Θ)

for t← 1 to T do3

// G-step: estimating missing

using gradient descent

α← 1 ; // step size

repeat

foreach i s.t. W (t, i) = 1 do

D← ∂ f

∂x
(i)
t

; // Eq.(10)

(x
(i)
t )new← x

(i)
t −α ·D

if ft((xt)
new) < ft(xt) then accept update

update X̂ with (xt)
new;

α← 2α;
elsereject update

α← α
2 ;

until converge ;

until converge ;

4. Experimental Results

We performed experiments on real human motion capture
data to evaluate the effectiveness of our proposed method.

We used a public dataset from CMU mocap
database [CMU]. Each motion consists of 200 to 1500
frames and 123 features of marker positions (41 markers),
converted to body local coordinates by estimating root
position and body facing. We rescaled units into meters,
which will improve the computation stability since all
numbers are within the range of [-2, 2].

For each of the motion in our trial, we create its bone
length constraints, B, by estimating the average inter-marker
distances (e.g. marker RTHI and RSHN are on the same
bone). Alternatively, we can construct the BLC by es-

timating the variance of the inter marker distances and
thresholding, or algorithms by Kirk et al [KOF05] and de
Aguiar [dATS06], however bone length estimation is beyond
the scope of our paper. For both baseline and BoLeRO, we
set the hidden dimension H = 16, which is corresponding
to over 95% of energy in original data. We set λ = 106 for
BoLeRO-SC in our experiments.

To evaluate the effectiveness of our proposed methods
BoLeRO-HC and BoLeRO-SC, we select a trial set with
9 motions representing a variety of motion types, includ-
ing running, walking, jumping, sports, and martial art. We
did a statistical test as well as case studies. In statistical
test, we randomly occluded a marker for a random consec-
utive segment, and tested the reconstruction with all can-
didate methods. Each trial is repeated 10 times with a dif-
ferent random occlusion. Fig. 4 shows reconstruction mean
square error (Eq. 13) against the original motion. Notice
BoLeRO-SC consistently has lower mse over the baseline
LDS/DynaMMo while BoLeRO-HC occasionally does.

mse =
∑t,iWt,i(X̂t,i−Xtrue

t,i )2

∑t,iWt,i
(13)

where W indicates missing markers (if = 1).

We also test the methods on two or more markers miss-
ing as well. Fig. 3 shows a case of running motion (sub-
ject#127.07) and reconstruction results by two methods.
Two markers on the right leg (RKNE for knee and RSHN
for shin) are occluded from frame 25 to 90 inclusive. Fig. 2
shows the time plot of coordinates for one marker on the
right knee, where spline and MSVD clearly deviates much
from the original data, hence we did not include them in the
following distance plot. Fig. 3(e)-3(g) show the distances be-
tween the two markers and adjacent markers on the body
skeleton (thigh-to-knee, knee-to-shin and shin-to-ankle in
blue, red and green respectively). All three distances should
ideally be constant. The result generated by baseline method
violates the bone constraint (particularly around frame 70),
while BoLeRO clearly improves the quality of reconstruc-
tion by obeying the corresponding BLC. Additional results
and animations are shown in the accompanying video.

5. Conclusions

We focus on the problem of occlusion in motion capture
data, and specifically on the reconstruction so that we obey
bone length constraints.

Motion capture is a useful technique to obtain realistic
motion animation, where optical cameras are used to track
marker movement on actors. Unfortunately markers will be
out of view sometimes, especially in full body motions like
running, football playing and bounce walking, etc., and it
takes hours/days for human experts to manually fix the gaps.
How can we handle the occluded motion and fill in the gaps
automatically and effectively, while respecting bone-length
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(a) Frame 70 from Original Mo-
tion
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(c) Frame 70 from BoLeRO-HC
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(d) Frame 70 from BoLeRO-SC
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(f) Bone length from baseline
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(g) Bone length from BoLeRO-HC
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Figure 3: Recovery result for an occluded running motion (subject #127.07). Two markers on the right leg (RKNE and RSHN,

marked with solid circles in top) are occluded from frame 25 to 90 (marked with vertical lines in bottom). Top row: markers

articulated with circles. Bold lines illustrate the bones of interest. Bottom row: bone lengths in original, baseline, BoLeRO-HC,

and BoLeRO-SC, for thigh-to-knee (blue), knee-to-shin (red) and shin-to-ankle(green) respectively. Notice that the original,

BoLeRO-HC, BoLeRO-SC lengths are near constant while the baseline has a severe violation of BLC.
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Figure 4: Comparison between baseline(LDS/DynaMMo), BoLeRO-HC, and BoLeRO-SC. 4(a) average mse for

LDS/DynaMMo(blue), BoLeRO-HC(green), BoLeRO-SC(orange). 4(b),4(c) scatter plots of mse’s in 90 trials on 9 motions.

Our BoLeRO-SC consistently wins over DynaMMo (see (c) - all points are at or below diagonal), with a maximum of 80x

improvement (see (a)), while BoLeRO-HC loses occasionally (see (b), points above diagonal).

constraints? In this paper, we propose BoLeRO, a principled
approach to reconstruct occluded motion using bone length
constraints on body dynamics. The novelty is that it sets up
the problem as a linear dynamical system with constraints,
thus explicitly exploiting both the smoothness in motion dy-

namics, as well as the rigidness in distances between rele-
vant markers. We give two versions of it: “hard constraints”,
and “soft constraints”, where the reconstructed bone-lengths
may slightly differ from the ideal ones.
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The second contribution is that we propose a novel, fast
algorithm to solve both versions of the problem, using
our “EMN/EMG” formulation (expectation, maximization,
Newton/gradient descent): The idea is to alternatingly esti-
mate (a) the hidden variables (b) the parameters of the Linear
Dynamical System and (c) the Lagrange multipliers (only in
BoLeRO-HC) and missing values; and iterate until conver-
gence.

Experiments on real data show that either version of
BoLeRO are significantly better than straightforward alter-
natives (splines, linear interpolation) and they matches or
outperforms very sophisticated alternatives like Kalman fil-
ters and recent missing-value algorithms [NJ03, LMPF09].
Among our two version, we recommend the “soft con-
straints” BoLeRO, which overwhelmingly outperforms the
’hard constraints’ version.
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Appendix A: Inference: Forward-backward estimation

Forward-backward Message Passing

Given the parameters Θ = (F,G,µ0,Γ,Λ,Σ), the estimation
problem is finding the marginal distribution for hidden state
variables given the observed data, e.g. ẑt = E[zn | X ](n =
1, . . . ,T).

Assume the posterior up to current time tick is
p(zn|x1, . . . ,xn, denoted by:

α̂(zn) =N (µn,Vn) (14)

We could obtain the following forward passing of the be-
lief. The messages here are µn, Vn and Pn−1(needed in later
backward passing).

Pn−1 = FVn−1F
T +Λ (15)

Kn = Pn−1G
T (GPn−1G

T +Σ)−1 (16)

µn = Fµn−1 +Kn(xn−GFµn−1) (17)

Vn = (I−Kn)Pn−1 (18)

(19)

The initial messages are given by:

K1 = ΓG
T (GΓG

T +Σ)−1 (20)

µ1 = µ0 +K1(x1−Gµ0) (21)

V1 = (I−K1)Γ (22)

(23)

For the backward passing, let γ(zn) denote the marginal pos-
terior probability p(zn|x1, . . . ,xT) with the assumption:

γ(zn) =N (µ̂n, V̂n) (24)
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The backward passing equations are:

Jn = VnF
T (Pn)

−1 (25)

µ̂n = µn +Jn(µ̂n+1−Fµn) (26)

V̂n = Vn +Jn(V̂n+1−Pn)J
T
n (27)

From the passed belief, we could obtain the following esti-
mation:

E[zn] = µ̂n (28)

E[znz
T
n−1] = Jn−1V̂n + µ̂nµ̂

T
n−1 (29)

E[znz
T
n ] = V̂n + µ̂nµ̂

T
n (30)

where the expectations are taken over the posterior marginal
distribution p(zn|x1, . . . ,xT).

Expectation-Maximization Learning

The new parameter Θnew is obtain by maximizing L in Eq. 6
with respect to the components of Θnew given the current
estimate of Θold . Taking the derivatives and let them be zeros
gives the following results:

µ
new
0 = E[z1] (31)

Γnew = E[z1z
T
1 ]−E[z1]E[zT

1 ] (32)

F
new = (

T

∑
n=2

E[znz
T
n−1])(

T−1

∑
n=1

E[znz
T
n ])−1 (33)

Λnew =
1

T−1

T

∑
n=2

(E[znz
T
n ]−F

new
E[zn−1z

T
n ]

−E[znz
T
n−1](F

new)T +F
new

E[znz
T
n−1](F

new)T )

(34)

G
new = (

T

∑
n=1

xnE[zT
n ])(

T

∑
n=1

E[znz
T
n ])−1 (35)

Σnew =
1

T

T

∑
n=1

(xnx
T
n −G

new
E[zn]x

T
n

−xnE[zT
n ](Gnew)T +G

new
E[znz

T
n ](Gnew)T ) (36)

The resulting equations in E-step and M-step of EMN/EMG
algorithms are traditionally known as Kalman filtering and
Kalman smoothing. We would refer readers to [SS82] for
more details.

Appendix B: BoLeRO-HC details

BoLeRO-HC uses Newton’s method to iteratively search the
optimal solution through the update Eq. 7. The partial gradi-
ent is given by:

∇xM
t ,ηt

=

(

IM
t Σ−1 · (xt −G ·E[zt ])+2∑i, j δB(t, i, j)ηi jt(x

(i)
t −x

( j)
t )

(‖x
(i)
t −x

( j)
t ‖

2−d2
i, j) for all δB(t, i, j) = 1

)

(37)

where IM
t is a (0,1)-matrix, with each row has exactly one

nonzero elements corresponding to the missing marker in-
dices at time t. The auxiliary function δB(t, i, j) is defined
as

δB(t, i, j) =

{

1 if〈i, j,di, j〉 ∈ B∧ (Wt,i = 1∨Wt, j = 1)

0 otherwise

By further taking partial derivative, we can get the Hessian,

∇2
xM

t ,ηt
=

∂∇xM
t ,ηt

∂(xM
t ,ηt)T

(38)

Details are straightforward and omitted for brevity.
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