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Appendix A. Derivations and Proofs

A.1. Proof of Lemma 1 (Nature of Min. Energy Path)
Proof: Consider a small segment of lengthdx along the
path. Assuming a speed ofvx along that segment, the to-
tal energy expended to traverse the distancedx is equal
to: Ex = m

R

(es + ew|vx|
2)dt = m(es + ew|vx|

2)(dx/|vx|) =

m(es/|vx|+ew|vx|)dx. In order to minimize the energy,∂Ex
∂|vx|

= 0 implies m(−es/|vx|
2 + ew)dx = 0. Therefore,|vx| =

√

(es/ew). In order to minimize the total energy expended,
the agent needs to traverse each segment of lengthdx (and
hence the whole path) at a speed of

√

(es/ew). For a to-
tal path length ofL, the total energy expended evaluates to
m(

√

(esew)+
√

(esew))L = 2mL
√

(esew). The above state-
ment also implies that the agent needs to take the shortest
path available from its source to destination in order to re-
duce the total distance traversed, and correspondingly the
total effort (or energy) expended.

A.2. Objective Function of Eqn. 4 is a convex function
Refer to Section 3.1 for notations and figures.E(vnew

A ) =

mτ(es +ew|vnew
A |2)+2m|GA −pA − τvnew

A |
√

(esew)

= mτes + mτew|vnew
A |2 + 2mτ

√

(esew)|vnew
A − (GA −pA)/τ|

It follows from first principles of convex functions [BV04]
that |vnew

A |2 and |vnew
A − (GA −pA)/τ| are individually con-

vex functions. A weighted sum (with all positive weights) of
convex functions is also aconvex function. Since bothmτew

andmτ
√

(esew) are greater thanzero, E(vnew
A ) is convex.

A.3. Minima of Eqn. 4 lies on the boundary of PVA

It follows from Lemma 1 thatvdes
A =

√

(es/ew) ̂(GA −pA).
Let vnew

A = (x,y). To find the minima of the objective func-

tion, we set∂E(vnew
A )

∂x = 0 and∂E(vnew
A )

∂y = 0, which impliesx/y

= (GA − pA)x/(GA − pA)y. Also, x2 + y2 = es/ew. Hence,
vnew

A = vdes
A . In casevdes

A /∈PVA, we need to compute the opti-
mal point within the region of permissible velocities (PVA).
We now provevnew

A lies on a linear boundary segment by
contradiction. Assume the optimal velocityv′ (= vnew

A ) lies
strictly inside thePVA region. Consider the segment joining
v′ to vdes

A . SinceE(vnew
A ) is convex, its projection function

along any line would also be convex [BV04]. Sincevdes
A is

theglobal minimum, E(vnew
A ) is strictly increasing along the

line segment fromvdes
A to v′. Sincev′ is insidePVA, the seg-

ment intersects thePVA at a point for which the objective
function evaluates to a smaller value. Hencev′ is not the op-
timal value, and we have arrived at a contradiction.

A.4. Proofs of Lemma 2 and Lemma 3
Proof of smoothness (Lemma 2). Proof: To show that the
trajectories generated are C1-continuous, we need to prove
that the paths are C0-continuous, and their derivative (i.e. ve-
locity) is also C0-continuous. We first assume that discrete
time steps of the underlying simulation approach zero in the
limit. Our simulation displaces the agent by the product of
the instantaneous agent velocity and the time change (Eu-
ler integration). Since time varies C0-continuously, the agent

traverses C0-continuous trajectory. In order to prove thatthe
velocity of the agent is C0-continuous, we need to prove that
our energy minimization formulation (Eqn. 4) computes ve-
locities that vary in a C0-continuous fashion.

Consider the agentA. We assume that the region of per-
missible velocities changes in a C0-fashion (i.e. for any
boundary curve ofPVA, and a point on that curve, the
path traced out by that point, with change in time, is C0-
continuous). Furthermore, the boundary curves themselves
are continuous, with at least C0 continuity at their end points

Consider the boundary segment along which the energy
function is minimized. Note that all the coefficients in Eqn.4
are either constant or vary with the positions of the agent and
its neighbors. To minimize Eqn. 4, we set the partial deriva-
tive of the objective function of Eqn. 4 to be equal to zero.
This results in finding the roots of a polynomial equation,
whose coefficients trace a C0-continuous path. A polyno-
mial equation with C0-continuous coefficients also has C0-
continuous roots [Coo08]. Hence as long as the minimum
lies on a specific boundary curve, the path traced by the ve-
locity is C0-continuous. Furthermore, as the minima changes
from one boundary curve to another curve, the partial deriva-
tive at their common end point should also evaluate to zero
(follows from the C0-continuity of thePVA boundary curves
at their end points).

Lemma 3: The total effort expended by an agent us-
ing our optimization formulation isguaranteed to be within
(π/2)/(1−ρ) of its optimal total expended effort.
Proof: Assume there exists a straight line path from the
source to the destination of lengthL. Furthermore, we as-
sume that the start and the goal positions of the agent are
not congested. During the course of the simulation, the
agent moves through phases of non-congestion (at speed
√

(es/ew)) and congestion (forρ of the simulation time).
During non-congestion, the agent makes progress by ex-
pending the minimum amount of energy towards its goal.
During congestion, the underlying collision avoidance al-
gorithm provides a set of velocities to make progress to-
wards the goal. Although the velocity may not be directed
towards the goal, we assume that the system assures forward
progress. In the worst case, the agent may move in a direc-
tion tangential to the desired one – thereby traversing a semi-
circle. Hence, the total distance traversed by the agent maybe
(π/2) times greater than the shortest possible distance. Since
the agent is in congestion for a fractionρ of total simula-
tion time, the total amount of expended energy is less than
2L

√

(esew))(π/2)/(1-ρ), which is not more than (π/2)/(1-ρ)
times the least possible energy possible.
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