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Abstract

We present a fully implicit Eulerian technique for simulating free surface viscous liquids which eliminates arti-

facts in previous approaches, efficiently supports variable viscosity, and allows the simulation of more compelling

viscous behaviour than previously achieved in graphics. Our method exploits a variational principle which auto-

matically enforces the complex boundary condition on the shear stress at the free surface, while giving rise to a

simple discretization with a symmetric positive definite linear system. We demonstrate examples of our technique

capturing realistic buckling, folding and coiling behavior. In addition, we explain how to handle domains whose

boundary comprises both ghost fluid Dirichlet and variational Neumann parts, allowing correct behaviour at free

surfaces and solid walls for both our viscous solve and the variational pressure projection of Batty et al. [BBB07].

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Physically based model-
ing

1. Introduction

Viscous liquids are a common feature of the world around
us. Household examples include honey, syrup, paints, cake
batter, and molasses; the unique behaviour exhibited by
these liquids is therefore extremely familiar to most of us.
Film and games often make use of increasingly exotic exam-
ples including wet mud, tar, lava, quicksand, or goo. The dis-
tinguishing characteristic of these liquids is their resistance
to shearing flow, resulting in extremely slow, damped motion
that, in the interior of the fluid, is not terribly compelling
to watch. However, at the interface between air and liquid
a host of complex and distinctive effects can arise. When
viscous fluid is poured onto a surface it will often begin
to coil or fold over upon itself, generating intricate surface
details. The unwieldy technical names for such phenomena
are cylindrical and planar viscous jet buckling, respectively;
however, they can readily be understood by considering that
liquid will prefer the path of least resistance. The falling fluid
above and the viscous pile below apply opposing forces, but
the surrounding air applies little to no resistance, causing
the fluid to bend or bow out to one side. This and many
more subtle behaviours are generated by the delicate cou-
pling of air and liquid, and the resulting motion may provide
important visual cues to a fluid’s material properties. A re-

Figure 1: An initially straight stream of viscous fluid buckles

and coils as it falls.

cent example comes from the makers of Bee Movie [Rui07],
who met with difficulties attempting to model honey with
standard viscous fluid simulators. Although they resorted to
a (non-physical) viscoelastic model, we postulate that the
true root of the problem lies not in the constitutive law, but
in the free surface boundary conditions. We present a new
method that enforces these conditions easily and accurately
for the first time, using a novel fully implicit time integration
scheme. This new method allows for the efficient simulation
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Figure 2: A block of fluid whose viscosity varies smoothly

along its length is dropped onto a flat plane; the far end

splashes in an inviscid manner, while the near end deforms

only slightly.

of a variety of complex viscous liquid phenomena that were
previously extremely difficult or impossible to reproduce.

1.1. Contributions

We now summarize our primary contributions. First, we
point out that in order to achieve convincing viscous be-
haviour it is in fact vital to enforce the traction-free bound-
ary conditions on the liquid free surface, which requires full
coupling between the components of velocity. We then pro-
ceed to develop a fully implicit variational interpretation of
the viscosity update which relates the total viscous dissipa-
tion to an energy term reflecting the change in fluid velocity.
We prove its equivalence to the standard PDE form and note
that since the minimization form is quadratic in velocity, the
problem is automatically well-posed and its discretization
is symmetric semi-definite, allowing efficient solution using
conjugate gradient. Furthermore, it leads to a simple volume-
weighting scheme on the MAC grid which implicitly en-
forces the difficult free surface boundary condition, greatly
simplifying implementation. Finally, we illustrate how to
combine this type of variational Neumann boundary condi-
tion with traditional Dirichlet boundary conditions, allowing
us to handle both free surfaces and solid walls. This is useful
for our viscous solve as well as the variational pressure pro-
jection introduced by Batty et al [BBB07]. We provide ex-
amples illustrating that this method is unconditionally stable,
eliminates artifacts in rotation and bending, conserves angu-
lar momentum, supports variable viscosity without modifi-
cation, and provides more accurate modeling of free surface
viscous liquids than previously seen in graphics.

2. Related Work

We will focus on demonstrating that correct free surface
boundary conditions are important for properly simulating
viscous liquids, and will use viscous buckling and coiling
as our key example. This phenomenon was first studied by
physicist G. I. Taylor [Tay68], and a thorough experimen-
tal study was carried out by Cruikshank & Munson [CM81].

Bejan later penned a review article on the subject [Bej87],
which also issued a rallying cry to the computational fluid
mechanics community to tackle this "new frontier".

Viscous fluids were introduced to computer graphics by
Miller & Pearce [MP89], who extended particle systems
with inter-particle forces to approximate melting and flow-
ing of viscous substances. Similarly, Terzopoulos et al.
[TPF89] demonstrated the ability to melt finite element
solids into collections of interacting particles.

The first work in computer graphics to simulate viscous
fluids using the 3D Navier-Stokes equations was Foster &
Metaxas [FM96], who adapted the classic MAC method of
Harlow & Welch [HW65]. Though quite effective, it re-
quired small time steps due to the use of explicit integration.
Stam [Sta99] introduced an implicit viscosity solve (along
with semi-Lagrangian advection) which enabled much larger
time steps, greatly improving simulation efficiency. By as-
suming constant viscosity, this method decouples the com-
ponents of velocity allowing each to be solved indepen-
dently. The resulting three linear systems are symmetric pos-
itive definite with a Poisson-like form and can be conve-
niently solved with a conjugate gradient method. We will
refer to this method as the classic decoupled solve.

Carlson et al. [CMVT02] adapted this model to handle
free surface liquids and variable viscosity; by further adding
a heat diffusion model they generated an impressive ani-
mation of a wax bunny steadily melting due to a nearby
heat source. However, their simplification of both the vari-
able viscosity term and the free surface boundary condition
introduced artifacts such as nonphysical damping of ballis-
tic motion, which they partially rectified by directly adding
back in the expected net translational motion (albeit choos-
ing to neglect rotation). Falt & Roble [FR03] later corrected
the translational error (though again, not the rotational er-
ror) by enforcing Neumann boundary conditions of the form
(∇~u) ·~n = 0 at grid-aligned air-fluid interfaces.

Rasmussen et al. [REN∗04] also studied the case of free
surface variable viscosity, but rather than dropping terms
they eliminated the coupling between velocity components
by proposing a combined implicit-explicit (IMEX) integra-
tion scheme. Under this scheme the dimensionally coupled
components are first integrated explicitly, and the remaining
decoupled, symmetric components are integrated implicitly.
For constant viscosity regions the explicit components ex-
actly cancel (assuming the input velocities are incompress-
ible) leaving behind the same three linear systems as before.
This technique was used to creating a stunning melting robot
sequence for the third Terminator film.

Hong et al. [HK05] demonstrated two-phase fluids with
discontinuous jumps in viscosity across the interface be-
tween constant viscosity fluids, simplifying earlier work by
Kang et al. [KFL00] and adapting it to the octree discretiza-
tion of Losasso et al. [LGF04]. Losasso et al. [LSSF06] ex-
tended this approach to multiple immiscible liquids, but still
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Figure 3: Three different simulations of a long sheet of fluid falling under gravity demonstrating the influence of viscosity on

buckling; from left to right viscosity values are 0.2, 1, and 5.

used constant viscosity for a given fluid to avoid the time
step restrictions of the IMEX integration scheme.

Several papers have examined non-Newtonian fluids, ie.
fluids whose stress is non-linearly related to the strain rate,
and whose behaviour lies on the continuum between fluid
and solid. Zhu & Bridson [ZB05] added a simplified fric-
tional plasticity model to a fluid simulator to animate the mo-
tion of sand. To simulate large viscoplastic flow Bargteil et
al. [BWHT07] started instead from the Lagrangian finite el-
ement viewpoint, and added remeshing and basis updates to
the invertible finite element method of Irving et al. [ITF04].
Wojtan & Turk subsequently extended this scheme with
an embedded deformation method and an explicit surface
tracker to retain thin features and speed up meshing [WT08].

Goktekin et al. introduced an explicit method for simu-
lating viscoelastic liquids [GBO04], by adding an elastic-
ity step to a fluid simulator based on an estimate of accu-
mulated strain. They captured the complex elastic behavior
of such fluids, including a small degree of buckling. How-
ever, our work differs from theirs in a few key points. First,
our method is fully implicit and unconditionally stable, and
properly handles rotation. Secondly, and more importantly,
we demonstrate that by correctly capturing the true free sur-
face boundary condition, we can capture the buckling of
purely viscous Newtonian fluids. For example, our method
can simulate honey or molasses without introducing spuri-
ous (nonphysical) elastic effects. In fact, it is complementary
to their method and could be used as a drop-in replacement
for their standard viscous step, which is entirely orthogonal
to the elastoplastic components of the work.

There are also examples of SPH methods [CBP05],
vorticity-based methods [ETK∗07], and Lattice Boltzmann
methods [Thu07] that support viscous fluids, though none
in graphics have displayed viscous buckling. In computa-
tional physics, a few papers have successfully tackled this
phenomenon including the SPH method of Rafiee et al.

[RMH07] and the unstructured mesh finite element method
of Bonito et al. [BPL06]. We will instead focus on Eulerian,
Cartesian grid-based simulation.

In computational physics, the classic MAC scheme has
been adapted to handle highly viscous (low Reynolds num-
ber) free surface fluids. A pair of papers by Hirt & Shan-
non [HS68] and Nichols & Hirt [NH71] looked at enforcing
the full traction-free surface boundary conditions in 2D, the
former examining the normal stress condition, the latter the
tangential stress condition. They assume each cell is either
full or empty, approximate the resulting surface normals as
either grid-aligned or at 45 degrees, and derive discrete con-
ditions for each case. Pracht used these same conditions in
an implicit approach [Pra71] that solves a large linear system
for pressure and velocity simultaneously.

The various incarnations of the GENSMAC method of
Tomé, McKee, and co-workers [TM94, TM99, TFC∗01] ex-
tended the general MAC framework to three dimensions in-
cluding explicit traction-free surface boundary conditions.
To our knowledge, GENSMAC is the first and only MAC-
type scheme to successfully simulate viscous jet buckling.
The free surface is again enforced using a case-based anal-
ysis, assuming incompressibility and a small set of possi-
ble surface normals. More recent work of de Sousa et al.
[dSMN∗04] used an accurate normal extracted from a sur-
face mesh, but it is unclear how this is used in applying
the boundary conditions. Noting difficulties with simulating
low Reynolds flow, Oishi et al. [OCF∗06] adapted GENS-
MAC to an implicit solve in 2D, but with decoupled pressure
and velocity (in contrast to Pracht’s work). They present re-
sults showing that to achieve reasonable time step sizes, it
is necessary to solve both the equations of motion and the
boundary conditions implicitly. They have since extended
this method to 3D [OTCM08], enabling the simulation of
3D coiling for quite viscous fluids. However, this technique
requires the solution of a large asymmetric linear system as
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well as unwieldy derivation and implementation of 26 cases
of discrete surface orientation arising in 3D.

There are also techniques that more accurately enforce
the boundary conditions in an explicit manner. These ap-
proaches perform a least-squares estimate of the velocity
gradient near the surface using several sample points and
an SVD operation, and then apply an extrapolation while
enforcing the boundary conditions [PZ02, HP04]. This con-
trasts with the simple constant extrapolation prevalent in
computer graphics (eg. [EMF02]).

3. Variable Viscosity Flow

We wish to simulate highly viscous incompressible fluids,
possibly with varying viscosity. In this setting, the Navier
Stokes equations have the following form:

~ut = −~u ·∇~u+ 1
ρ∇· τ− 1

ρ∇p+~g (1)

∇·~u = 0 (2)

τ = µ(∇u+(∇u)T ) (3)

where,~u is velocity, µ is dynamic viscosity, p is pressure, ρ is
density, ~g is external accelerations (eg. gravity), and τ is the
viscous shear stress tensor. We take the standard approach
in graphics of using operator splitting to solve for viscous
forces independently. In a given timestep we first apply ad-
vection and external forces, project the velocities to be diver-
gence free, solve for viscosity, and finally project the veloc-
ities to be divergence free a second time (see eg. [LSSF06]).
(Two pressure projections are needed because operator-split
viscosity formulations typically assume an incompressible
velocity field.) This leaves us with the following PDE for
integrating viscosity alone:

~ut =
1
ρ
∇·

(

µ(∇~u+(∇~u)T )
)

(4)

Previous approaches discretized this PDE form directly, us-
ing explicit, IMEX [REN∗04], or implicit schemes, giving
the following:

~u =~uold +
∆t

ρ
∇·

(

µ(∇~u∗ +(∇~u†)T )
)

(5)

For the sake of brevity, we use ~u to refer to the updated ve-
locity, while~uold refers to the input velocity. To define a par-
ticular integration scheme, ~u∗ and ~u† are chosen to be ei-
ther ~uold or ~u. A fully explicit scheme sets ~u∗ = ~u† = ~uold ,
a fully implicit scheme sets ~u∗ = ~u† = ~u, and the IMEX
scheme can be arrived at by setting ~u∗ = ~u and ~u† = ~uold .
(For constant viscosity ∇ · (∇~u)T = 0 due to incompress-
ibility, decoupling the components of velocity and leaving
the Poisson-like form usually given.)

The explicit scheme tends to require a small time step
for stability; one can employ sub-cycling, taking many vis-
cous sub-steps per overall time step, but for moderately vis-
cous fluids this quickly becomes untenable. Rasmussen et
al. partially addressed this with the IMEX scheme, whose

implicit part somewhat lessens the time step restriction. It
also decouples the three velocity components in the implicit
part, giving the usual three systems of the classic decoupled
solve. However, their primary reason for choosing an IMEX
scheme over a fully implicit one which would eliminate the
time step restriction entirely was that for their finite differ-
encing method the implicit scheme generates an asymmetric
linear system. Such a system cannot be solved with the usual
conjugate gradient method, requiring instead a more expen-
sive and potentially less robust solver such as GMRES. We
will show in section 5 that we actually can solve this problem
efficiently in a fully implicit way, by exploiting a variational
principle that guarantees symmetry.

4. Viscous Free Surface Boundary Conditions

Neglecting the effects of surface tension, the true free sur-
face boundary conditions for Navier-Stokes dictate that there
is zero traction~t applied on the plane of the surface. From
the definition of Cauchy stress, this gives us:

~t = σ~n = 0 (6)

where σ is the full Cauchy stress tensor and ~n is the normal
to the free surface. Splitting σ into components of pressure
p and shear stress τ, we have:

σ~n = (−pI+ τ)~n = 0 (7)

Since we have decoupled the velocity and pressure solves in
our method, we do the same with the boundary conditions.
If we assume as usual that the free surface pressure is zero
during the pressure solve, we’re left with the boundary con-
dition τ~n = 0. This implies:

µ(∇u+(∇u)T )~n = 0 (8)

A key point to note is that this couples together the compo-
nents of velocity even for constant viscosity [LIRO07]. To
correctly enforce it we must solve the full system (4) even if
decoupling occurs on the interior of the fluid.

Methods for enforcing this constraint fall into two cate-
gories: explicit and implicit. The explicit approach first ex-
trapolates the current surface velocities into the nearby air
region, possibly subject to the zero-traction constraint. Dur-
ing the viscous solve these air velocities are held fixed as
Dirichlet boundary conditions. In graphics, simple constant
extrapolation of velocity without constraint enforcement is
typical. The complexity of this approach can increase almost
arbitarily depending on the desired spatial accuracy for both
the extrapolation and the zero-traction constraint. However,
because it uses the input velocities as the starting point, its
temporal accuracy and stability are ultimately still limited
even in an otherwise fully implicit solve [OCF∗06]. In prac-
tice, this means that if the viscosity would otherwise dictate
a large change in surface velocity, it cannot occur because
the old extrapolated boundary velocities remain unchanged.
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Figure 4: A rotational velocity field ~u = (y,−x). The zero-

traction boundary condition must be correctly enforced in

order to preserve angular momentum.

In contrast, the implicit approach uses a Neumann bound-
ary condition, so that boundary velocities need not be known
in advance. The key difficulty encountered with this ap-
proach is that the full complexity of the extrapolate/constrain
process above must effectively be built into the linear sys-
tem, greatly increasing implementation complexity.

Considered naïvely, either of these approaches requires
estimating the normal direction, and determining exactly
where and how to discretize the constraint onto the simu-
lation grid. However, this boundary condition is in a sense
a “natural” or homogeneous Neumann boundary condition,
and finite element methods commonly exploit this property
to circumvent the need to enforce such conditions explic-
itly. For example, Bonito et al. used this idea in their finite
element simulations of viscous buckling [BPL06]. Our vari-
ational interpretation accomplishes the same goal within the
finite difference scheme, with an approach closely related to
that of Batty et al. [BBB07].

Before presenting the details, we emphasize that correctly
enforcing this boundary condition is not merely an esoteric
exercise, but crucial in animating the most attractive as-
pects of viscous flow. A common and seemingly reasonable
boundary condition one might apply to the classic decoupled
solve has the form (∇~u) ·~n = 0. This is the Neumann bound-
ary condition used by Falt & Roble (assuming grid-aligned
surfaces), and also corresponds to the constant extrapolation
of velocity used by Enright et al. [EMF02]. However, con-
sider the simple 2D rigid rotational velocity field defined by
~u = (y,−x), as seen in Figure 4. At a location on the positive
y-axis with surface normal~n = (0,1), equation (8) becomes
∂u
∂y

= 0 and ∂v
∂y

= 0. The true gradients of this rotational field

are ∂v
∂y

= 0 and, crucially, ∂u
∂y

= 1. We see that the incorrect
boundary condition directly works to halt rotational motion,
and for moderately viscous fluids the effect is that angular
velocity is rapidly damped out. Our technique will correctly
give ∂v

∂y
= 0 and ∂u

∂y
= − ∂v

∂x
= 1, eliminating this artifact.

5. A Variational Interpretation of Viscosity

We now consider how to phrase an implicit viscosity step
in terms of a minimization problem. One characterization of

the true solution to a Stokes viscous flow problem (i.e. ig-
noring advection) is that it is the unique velocity field which
minimizes the rate of viscous dissipation, subject to the con-
straint of incompressibility. This result, known as the min-
imum dissipation theorem, is originally due to Helmholtz
[Bat67]. If we express the deformation rate tensor as

ε̇ =
∇~u+(∇~u)T

2
(9)

then the rate of viscous dissipation is given by

Φ = 2µε̇ : ε̇ = 2µ‖ε̇‖2
F (10)

Recall that the : operator refers to tensor double contrac-
tion (analogous to a matrix dot-product) and ‖ · ‖F indicates
the Frobenius norm of a matrix. Unfortunately, simply min-
imizing this expression fails to produce the desired effect,
because we have decoupled pressure and viscosity. We no
longer have a classic Stokes problem and are not strictly en-
forcing incompressibility during this step. Instead what we
can do is try to enforce that the velocity changes as little
as possible, while simultaneously seeking a velocity field
that minimizes dissipation over the timestep. Putting this to-
gether we get:

min
~u

ZZZ

ρ
∥

∥

∥~u−~uold
∥

∥

∥

2
+2∆t

ZZZ

µ

∥

∥

∥

∥

∇~u+(∇~u)T

2

∥

∥

∥

∥

2

F
(11)

Here the volume integrals are taken over the fluid; no bound-
ary integrals are required. Calculus of variations can be used
to show that minimizing this expression gives us back ex-
actly the time-discretized PDE form for the viscous update,
even for the variable viscosity case—see appendix A for the
mathematical details. The integrals are quadratic in the new
velocity and obviously bounded below by zero, so the min-
imization is automatically well-posed, and the discretized
form will be symmetric semi-definite (as well as sparse),
guaranteeing that conjugate gradient can be used to solve it
efficiently. However, the most beneficial result of expressing
the viscosity update in this manner is that we no longer need
to handle the free surface with special cases: it is captured
automatically by minimization of this volume integral.

5.1. Discretization of the Variational Principle

Rather than tackling the PDE form directly, which would
include the complex free surface condition (8), we will dis-
cretize the variational principle (11), and then minimize this
discrete form. We store the velocity components in the MAC
grid configuration, so that the first integral has fractional
volume weights centred on faces, exactly as in Batty et al.
[BBB07]. Similarly, the viscous dissipation integral gives
rise to volume terms associated with the various components
of stress, which we locate on cell-centres and edges, as done
by Goktekin et al. [GBO04]. Notice that centred finite differ-
encing of adjacent MAC velocities places stress at these lo-
cations. As a result of this configuration, the volume weights
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Figure 5: The locations of stress samples on the MAC grid.

τ11,τ22,τ33 all sit at the central black circle. τ23 samples

are white squares, τ13 samples are black squares, and τ12
samples are the hatched squared.

for the second integral are chosen by computing the volume
fraction of fluid contained within the cube of volume ∆x3

surrounding each stress sample point. The actual method of
computing these volumes is dependent on the choice of sur-
face tracker. Estimates rather than exact volumes may be
used, but the volume estimates for the different locations
should be consistent. In our system we splat the union of
spheres around the particles onto a grid to get an approxi-
mate signed distance field, and then estimate volumes with
simple quadrature.

Discretizing and minimizing, we get a new discrete veloc-
ity update that closely mirrors the standard implicit solve:

u = u
old +

∆t

Vuρ





(Vp2µux)x

+(Vτ12 µ(uy + vx))y

+(Vτ13 µ(uz +wx))z





v = v
old +

∆t

Vvρ





(Vτ12 µ(vx +uy))x

+(Vp2µvy)y

+(Vτ23 µ(vz +wy))z





w = w
old +

∆t

Vwρ





(Vτ13 µ(wx +uz))x

+(Vτ23 µ(wy + vz)y)
+(Vp2µwz)z)





The V terms refer to cell-centered volumes (p, but note that
τ11,τ22,τ33 all sit here), face-centred volumes (u,v,w), and
edge-centred volumes (τ12,τ13,τ23). This is of course simi-
lar to the form given by Rasmussen et al. [REN∗04]. The im-
portant differences are the addition of volume weights, and
the use of the MAC grid so that centred differencing leaves
the various discrete derivatives in the correct locations. Ap-
pendix B gives a detailed discretization for a u-velocity up-
date in 2D for the sake of brevity, but the extension to higher
dimensions is straightforward. In practice we note it is of-
ten more convenient to use dimensionless volume fractions
rather than actual volumes.

5.2. Combining ghost fluid and variational boundaries

A natural question to ask is whether this type of variational
Neumann boundary can co-exist with Dirichlet boundary
conditions, especially of the second order accurate ghost

Figure 7: Left: A liquid-air-solid triple point for the pressure

projection case. Cyan indicates liquid, white indicates air,

grey indicates solid wall. The combined volume used for the

fluid weights is outlined by the bold line. Right: The liquid

signed distance field is extrapolated into the wall for use in

the ghost fluid Dirichlet boundary condition, with the ghost-

fluid interface identified by the bold line.

fluid-type employed by Enright et al. [ENGF03]. This is rel-
evant not only to the current work, in which the air boundary
is Neumann and the solid boundary is Dirichlet, but also to
the work of Batty et al. [BBB07] who used a similar natural
boundary condition to handle the Neumann pressure gradi-
ent constraint along non-grid-aligned solid walls. Their re-
sults were primarily restricted to examples lacking free sur-
faces, though they claimed that ghost fluid Dirichlet bound-
aries could straightforwardly be incorporated. This turns out
to be the case, as we outline below. For concreteness we fo-
cus on the variational pressure problem, in which ghost fluid
air-water interfaces must be handled carefully to avoid sur-
face artifacts. The same general method is applied for bound-
ary conditions in our viscous solve as well, by swapping air
for solid in the following discussion.

The main uncertainty is whether the fluid volume esti-
mates used in variational approaches ought to include the
volume from a cell in which a Dirichlet condition is being
applied. A “ghost fluid” point of view shows that the an-
swer is yes. The ghost fluid method treats the air side of the
interface as a smooth extension of the fluid domain, whose
variables are chosen in such a way as to enforce the Dirich-
let condition at the correct location. Therefore we assume
the fluid volume is also extended smoothly into the air re-
gion, and so include its volume in our minimization (Fig-
ure 7, left). To enforce both variational solid and ghost-fluid
air boundary conditions on different parts of the boundary,
we simply compute the fluid volume weights by including
air volume, but excluding solid volume. Then we apply the
ghost fluid method on top using the liquid signed distance
to determine the interface location, and ignoring the pres-
ence of weighting terms and solid walls. The discretization
of equation (11) from [ENGF03] becomes (up to scaling):

(voli+ 1
2
)

p f s−pi

θ∆x − (voli− 1
2
)

pi−pi−1
∆x

∆x
(12)

The signed distance data used for determining the posi-
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Figure 6: A cylinder of viscous liquid falls under gravity, and spontaneously develops a coiling and folding motion.

tion of the interface should be extrapolated smoothly into the
wall, much like in the work of Rasmussen et al. [REN∗04].
This ensures that the solver "sees" a smooth liquid surface
right up to the (implicitly defined) solid wall, rather than one
which erroneously bends away or terminates. This is illus-
trated in Figure 7, right.

6. Implementation

We augmented the basic FLIP approach of Bridson et al.
[ZB05] with our new viscous solve. While we emphasize
that our method plugs conveniently into any standard Carte-
sian grid-based graphics fluid simulator, an advantage of us-
ing FLIP with our method is that in combination they can
seamlessly handle liquids that range continuously from al-
most purely inviscid to extremely viscous in a single simu-
lation (Figure 2). We slightly reduced the memory footprint
of FLIP by using one particle per cell with a larger radius,
and transferring velocities from particles to the grid using a
wider SPH-like kernel. The rendered surface is generated by
wrapping a smoothed implicit surface around the underlying
particles. Despite only minimal optimization, our examples
typically required only a minute or two per frame for simu-
lation. For example, the buckling sheet averaged one minute
per frame on a 45x45x300 grid. Of that, about 50% is cur-
rently the viscosity step, which we solve with conjugate gra-
dient and an incomplete Cholesky preconditioner. We note
that while our method is inherently slower than that of Carl-
son et al. due to solving a unified system that is three times
larger, we believe that the improved behaviour is worth this
additional expense.

7. Examples

We now present a variety of examples demonstrating the
validity of our approach and the range of behaviours that
can be achieved. First, we illustrate the benefits of fully im-

plicit viscosity integration. In a 2D simulation with a mod-
erate coefficient of viscosity, we used the explicit, IMEX,
and our fully implicit schemes to simulate a blob of ini-
tially motionless fluid falling under gravity. (Because these
examples are 2D, for the explicit and IMEX schemes we
implemented the tangential stress condition as proposed by
Nichols & Hirt, setting ∂u

∂y
=− ∂v

∂x
, either implicitly or explic-

itly to match the integration scheme. In 2D τ~n = 0 implies
τ = 0, which is relatively easy to implement, but in 3D the
normal becomes important, greatly increasing the complex-
ity.) Our fully implicit approach is perfectly stable taking
one large step, whereas the explicit and IMEX approaches
require approximately 28 and 14 sub-steps, respectively, to
avoid blow-up.

Next we examined rotational motion of a 2D circular disk
of high viscosity fluid under zero gravity conditions. The
Falt & Roble Neumann conditions result in rotational motion
being lost instantly. Extrapolated explicit Dirichlet condi-
tions fare slightly better, since the boundary conditions con-
tain lagged velocities, but it still halts after a few timesteps.
Our variational approach does a much better job at maintain-
ing rotation without discernible artifacts, and rotates for hun-
dreds of frames. (The remaining dissipation is primarily due
to splitting errors related to the distinct advection and pres-
sure phases of the simulator - advection alone partially trans-
fers energy in rotational modes to divergent modes, which
are then removed by pressure projection.)

A common test of elastic bending is a beam pinned at
one end to a solid wall. We perform an analogous test on
a chunk of constant viscosity (non-elastic) fluid, by apply-
ing no-slip boundary conditions at the wall (Figure 8). The
implicit Neumann boundary conditions of Falt & Roble fail
due to the loss of rotation at the surface. The fluid is far more
damped than the viscosity would otherwise dictate, nearly
halting motion altogether. Furthermore, rather than rotating,
the fluid incorrectly shears and falls vertically instead of
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Figure 8: A beam-shaped blob of constant viscosity fluid is attached to a wall, and simulated with three different boundary

conditions. Left: Correct variational boundary conditions allow rotation, so viscous forces cause the fluid to bend in towards

the wall. Middle: Incorrect Neumann boundary conditions cannot handle rotation, so the fluid can only shear and the motion

is excessively damped. Right: Incorrect Dirichlet boundary conditions cannot change to reflect large changes in velocity, so the

fluid falls as if unsupported.

collapsing in towards the wall. The extrapolated Dirichlet
boundary condition likewise results in large shearing. It has
the additional problem that because the boundary velocities
are set before the solve, they cannot change in response to
the viscous forces propagating from the "pinned" end which
ought to partially counterbalance gravity. The bulk of the
fluid therefore falls under gravity as if it were not supported
at all. Our technique results in the correct behaviour.

Next we drop a long thin cylinder of viscous fluid onto a
plane (Figure 6). We successfully reproduce the strong buck-
ling and coiling effect that is characteristic of many com-
mon purely viscous fluids, and has not been accomplished
previously in graphics. To explore the effect of different co-
efficients of viscosity on the buckling behaviour, we drop
a sheet of fluid perpendicular to the ground plane (Figure
3). For low viscosities no buckling occurs, while for higher
viscosities the folds become much longer and more pro-
nounced.

To demonstrate that we can handle variable viscosity, we
drop a block of fluid whose viscosity varies continuously
from one end to the other (Figure 2). Initially the block falls
uniformly under gravity, illustrating that our method intro-
duces no erroneous rotational or translational forces. Once
it collides with the flat, featureless ground plane, the invis-
cid end collapses and splashes up against the far wall, while
the viscous end sags slightly on impact. Waves and turbulent
motion occurring at the inviscid end damp out as they pass
towards the viscous end, so that when the simulation con-
cludes the initial sharp edge of the fluid block is still visible.

Lastly, we illustrate that our approach to handling Dirich-
let and Neumann variational boundaries together lets us eas-
ily incorporate free surfaces into the method of Batty et al.
We drop a sphere of liquid inside a hollow Stanford bunny

mesh, generating complex splashing and interaction with the
bunny geometry (Figure 9).

8. Conclusions and Future Work

We have shown that by considering a variational principle
for the viscosity solve, we can achieve complex viscous fluid
effects that have been lacking in the graphics literature to
date. Nonetheless, there are several avenues for future work.
First, the complete free surface boundary condition couples
pressure to velocity, so a unified pressure-viscosity solve is
likely needed to handle this tighter coupling. Unfortunately
this requires solving a larger and more complex symmet-
ric indefinite system, and it is unclear if this would benefit
graphics applications. Similarly, we did not support surface
tension, although it can play a vital role in the surface be-
haviour. We could easily add it to the pressure solve (see
eg. [ENGF03]) or use another method from the graphics lit-
erature, but a fully unified implicit approach would be in-
teresting to consider. Finally, although the new linear sys-
tem of our method is symmetric positive definite, it is no
longer an M-matrix. This is the class of matrices with pos-
itive eigenvalues and non-positive off-diagonal entries, and
for which the modified incomplete Cholesky preconditioner
is expected to perform well. Research into alternative pre-
conditioners could therefore further accelerate our solver.
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Appendix A: Equivalence of the Minimization Form

Let D be the rate of deformation operator defined such that D(~u) =
(∇~u+(∇~u)T )/2. Suppose~u is the minimizer of (11). We introduce
an arbitrary vector~q, a scalar ε, and a scalar function g(ε) such that:

g(ε) =
RRR

fluid ρ‖~u + ε~q−~uold‖2

+ 2∆t
RRR

fluid µD(~u + ε~q) : D(~u + ε~q)

This function is quadratic in ε. Since ~u is the minimizer, we know
that ε = 0 is the minimizer of g, and thus g′(0) = 0. Thus the coef-
ficient of the linear terms of g must be 0, so we have:

0 =

ZZZ

fluid
ρ~qT (~u−~uold)+ 2∆t

ZZZ

fluid
µD(~u) : D(~q)

We now require a generalized integration by parts formula. For a
symmetric rank-two tensor A and a vector q the following can easily
be verified:

ZZZ

ω
D(~q) : A =

ZZ

∂ω
~qT A~n−

ZZZ

ω
~qT∇·A

i+½,j-1

i+½,j i+  ,ji-½,j
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Figure 10: The 2D stencil for the u-velocity update.

This allows us to eliminate the D(~q) term giving:

0 =
RRR

fluid ρ~qT (~u−~uold)

−2∆t
RRR

fluid~q
T∇·µD(~u)+ 2∆t

RR

surface µ~qT D(~u)~n

Since ~q is arbitrary, the terms multiplying it must be zero. Hence in
the fluid domain we have:

0 = ρ(~u−~uold)−2∆t∇·µD(~u)

therefore

~u =~uold +
∆t

ρ
∇·µ(∇~u +(∇~u)T )

which is the evolution equation for viscosity (5). On the surface of
the fluid we have

0 = 2∆tµD(~u)~n

or equivalently

µ(∇~u +(∇~u)T )~n = 0

which is the boundary condition on stress (8). Thus minimizing this
integral is equivalent to solving the PDE form.

Appendix B: Detailed 2D Discretization

The discretization of the implicit u-velocity update in 2D is:

u
i+ 1

2 , j
= uold

i+ 1
2 , j

+
∆t

ρV
i+ 1

2 , j

(A + B +C)

where

A = 2
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Figure 10 shows the corresponding stencil.
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