
Eurographics / ACM SIGGRAPH Symposium on Computer Animation (2008)
M. Gross and D. James (Editors)

Visual Simulation of Shockwaves

Jason Sewall Nico Galoppo Georgi Tsankov Ming Lin†

University of North Carolina at Chapel Hill‡

Abstract

We present an efficient method for visual simulations of shock phenomena in compressible, inviscid fluids. Our
algorithm is derived from one class of the finite volume method especially designed for capturing shock propa-
gation, but offers improved efficiency through physically-based simplification and adaptation for graphical ren-
dering. Our technique is well suited for parallel implementation on multicore architectures and is also capable
of handling complex, bidirectional object-shock interactions stably and robustly. We describe its applications to
various visual effects, including explosion, sonic booms and turbulent flows.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism G.1.8 [Mathematics of Computing]: Partial Differential Equations

1. Introduction
Recent developments in simulating natural phenomena have
made it possible to incorporate stunning, realistic animations
of complex natural scenes filled with flowing, bubbling,
and burning fluids. Computer-animated and live-action films
alike have made great use of these advances in modeling to
recreate familiar and interesting effects. Notably, little inves-
tigation has been made on how to properly capture shocks
and propagate discontinuities in visual simulation. These re-
markable phenomena give rise to dramatic events such as ex-
plosions, turbulent flows, and sonic booms. Such effects are
common in films and are notoriously difficult to handle with
numerical methods. Additionally, many state-of-the-art sim-
ulation techniques do not fully take advantage of the kind of
new, powerful hardware that is emerging; these algorithms
are often not designed to handle large domains efficiently
and many that are based on specially simplified formulations
often are not applicable to phenomena occurring at large spa-
tial scales.

This paper presents a method for efficient simulations
of nonlinear, compressible gas dynamics and how it may be
best utilized to generate visually interesting, plausible ani-
mations. Many natural phenomena are nonlinear but can of-
ten be reasonably approximated through linearization; one
example is elasticity. The equations of fluid motion are not

† e-mail: {sewall, nico, gtsankov, lin}@cs.unc.edu
‡ Chapel Hill, NC, 27599-3175 USA

generally suitable for linearization — waves crashing on the
beach, curling smoke, and surging shockwaves all arise from
the nonlinear characteristics of the system. To solve these
highly nonlinear equations in a reasonable amount of time,
numerical methods typically discretize simplifications of the
true equations that still capture the nonlinearity of the sys-
tem.

Furthermore, shocks that arise in problems of gas dy-
namics themselves present a numerical challenge; a shock
is a region of rapid spatial variation in a small interval that
propagates with tremendous speed — the blast wave that em-
anates from an explosion or the bow shock that forms around
a supersonic projectile are some examples of these phenom-
ena. These have a striking effect on the fluid motion but are
very difficult to simulate properly with traditional numerical
methods; the scale of motion we desire to capture (namely
the space the shock traverses) is at odds with the need to
represent the shock itself. Many numerical techniques be-
have poorly or fail completely in the presence of discontin-
uous solutions — to simulate shocks with such methods, the
resolution of the discretization must be high enough for the
shock to appear as a smooth transition, and thus can be pro-
hibitively expensive to compute.

Physically correct methods for shockwave modeling fo-
cus less on conventional metrics of accuracy (such as or-
der of convergence) and emphasize the ability to propagate
discontinuities stably and with minimal diffusion. Specifi-
cally, techniques based on the finite volume method (FVM)
have been developed that handle discontinuities well and al-

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org

Sewall, Galoppo, Tsankov, and Lin / Visual Simulation of Shockaves

(a) A mushroom cloud generated by our method

(b) A stack of rigid bodies knocked over by a shock

(c) A bow shock and turbulence formed by the passage of a super-
sonic bullet

Figure 1: Dramatic scenes generated by our method

low for relatively coarse grids to capture shock behavior.
Our method, through judicious simplification and applica-
tion, adapts and improves the efficiency of a class of FVM
techniques designed to capture shocks on coarse grids effi-
ciently.

We have demonstrated our method on generating anima-
tions of complex fluid motion, including chambered explo-
sions, nuclear detonations, and the turbulence and bow shock
around a supersonic projectile (see Fig. 1). Our method is

also able to describe the interaction of coupled fluids and
objects; we demonstrate shockwaves knocking over stacked
objects and blowing a brick house to pieces, as well as the
effects of an explosion within a tower of heavy blocks. Our
method is able to considerably reduce the computational
complexity of these highly complex effects to the level com-
parable to existing fluid animation techniques in graphical
simulation. Furthermore, our method is naturally amenable
to parallelization on multicore architectures.

2. Previous Work
In addition to many decades of research in computational
fluid dynamics, there is a considerable amount of literature
on the modeling of fluid phenomena in computer graph-
ics [Sta99, LGF04, APKG07, CFL∗07, BBB07]. The sem-
inal works of Foster and Metaxas [FM96], Stam [Sta99],
and Foster and Fedkiw [FF01] on incompressible fluid sim-
ulation were among the first to examine this topic for vi-
sual simulation. For a detailed explanation of the numeri-
cal methods and the mathematics behind them, we refer the
readers to a recent set of comprehensive course notes on fluid
simulation [BFMF06].

Recent work on fluid simulation based on the finite
volume methods has been discretized on irregular grids
[FOK05, ETK∗07, WBOL07]. Subsequent improvements
[KFCO06, CGFO06, CFL∗07] to these methods have com-
bined the best features of the initial publications to achieve
impressive results.

The finite volume method has received much attention
from the aeronautics community; our technique uses nu-
merical Riemann solvers based on the work done by Roe
[Roe81], van Leer [vL77], and others. For a superb introduc-
tion to the topic of the finite volume method and Riemann
solvers, see [Lev02].

The problem of describing the evolution of shocks —
known as “shock capturing” — has been addressed from
a variety of directions. Our work follows the vein of Rie-
mann solver-based approaches that strive to treat areas with
and without shocks with the same numerical technique.
Another family of approaches, generally known as front-
tracking methods, uses standard solvers in areas away from
shocks and explicitly models shocks as evolving surfaces
in the domain. Front-tracking approaches have been suc-
cessful, but are extremely complicated for two- and three-
dimensional simulations and have difficulty handling situa-
tions where multiple shocks interact. The survey of Fedkiw
et al. [FSS03] gives a good overview of the topic.

Relatively little work in computer graphics has utilized
the Euler equations — that is, the compressible, inviscid
simplification of the Navier-Stokes system of equations —
all of the aforementioned methods from the graphics com-
munity are based on an incompressible simplification of the
equations. Yngve et al. [YOH00] present a method for high-
energy, compressible fluid simulation based on finite differ-
ences, which they use to simulate explosions and their sec-
ondary effects. Sewall et al. [SMML07] use a method similar
to finite volume on irregular grids to simulate compressible
flow.

c© The Eurographics Association 2008.

20

Sewall, Galoppo, Tsankov, and Lin / Visual Simulation of Shockaves

Feldman et al. [FOA03] simulate combustive phenom-
ena based on an incompressible model of flow with addi-
tional density tracers, and Selle et al. [SRF05] present an
approach that generates what they describe as “rolling ex-
plosions”. Like Feldman et al., they use an incompressible
model of fluid, which precludes the presence of shocks. Our
approach aims to model phenomena similar to those ad-
dressed by Yngve et al [YOH00]. The greater fidelity and
higher efficiency afforded by our method opens up a wide
range of new applications of these phenomena to visual ef-
fects.

Work done by Müller et al. [MCG03] and Adams et al.
[APKG07] on particle-based fluid with the Smooth Particle
Hydrodynamics (SPH) method strives to represent incom-
pressible flow. The natural tendency of the space between
particles to expand and collapse suggests potential future ap-
plication to compressible phenomena.

Several methods have addressed the considerable chal-
lenge of coupling fluids to objects. Geneveaux et al.
[GHD03] suggest an explicit method for the bidirectional
coupling of grid-based fluids to solid bodies using a par-
ticle representation of the surface. Carlson et al. [CMT04]
use distributed Lagrange multipliers to achieve stable fluid-
object coupling and Guendelman et al. [GSLF05] describe
how to handle the interaction of infinitely thin shells with
fluids. Chentanez et al. [CGFO06] use an implicitly-coupled
model of fluid and elastic bodies to obtain stable interac-
tions. Batty et al. [BBB07] use variational principles to de-
velop a simple extension to the pressure projection step to
achieve stable two-way coupling in incompressible fluids.
We achieve bidirectional coupling through voxelization (as
with [CMT04] and [BBB07]). We use simple modifications
to the Riemann solvers on boundary interfaces to affect the
interaction.

There has been some work on simulating the effects of
blast waves through analytical models of blast propagation.
Mazarak et al. [MMA99] used an expanding ball to deter-
mine forces on bodies to fracture or propel them. Neff and
Fiume [NF99] use similar analytic models of blast waves to
fracture objects and are also unable to generate the afore-
mentioned effects of shock dynamics. These approaches are
typically quite fast, but their extremely simple model of blast
dynamics does not allow for the effects of shock-object in-
teraction — notably reflection and vortex shedding — nor
do they have the ability to visualize the blast itself. Neff and
Fiume [NF99] use similar analytic models of blast waves to
fracture objects and are also unable to generate the afore-
mentioned effects of shock dynamics.

3. Method

The key challenge is to simulate shockwave and
compressible-gas dynamics by designing a practical
numerical method that can stably handle moving bound-
ary conditions in three-dimensional space and is efficient
enough to be used in a visual simulation production pipeline.
We present a basic introduction to the finite volume method
and refer the readers to [Lev02] for more detail.

3.1. Conservation laws
We seek solutions to the Euler equations of gas dynamics.
These equations form a hyperbolic conservation law, the
general, three dimensional form of which is:

qt +F(q)x +G(q)y +H(q)z = 0 (1)

where subscripts indicate partial differentiation.
Here q is the vector of unknowns and F, G, and H are

vector-valued flux functions specific to each conservation
law. A conservation law states that a quantity of unknowns
q over an arbitrary domain S changes in time due only to the
flux across the boundary ∂S of the domain.

3.1.1. Integral form
The derivatives found in partial differential equations such
as Eq. (1) are not defined around discontinuities; to capture
them properly we use an integral form of the equations.

In one dimension, consider an interval [a,b]; the change
in q over that interval is due to the flux at a and the flux at b.
More formally,

d
dt

Z b

a
q(x, t)dx = F(q(a, t))−F(q(b, t)) (2)

where F is a flux function such as F, G, or H from Eq. (1)
and we follow the convention that ‘positive flux’ is left-going
and ‘negative flux’ right-going.

3.2. The finite volume method
The finite volume method (FVM) on regular grids follows
directly from Eq. (2); the presentation here is for scalar equa-
tions in one dimension with scalar unknowns q and scalar
fluxes f , but the formulae for systems of equations in multi-
ple dimensions are straightforward extensions of these.

We discretize the spatial interval [a,b] into m intervals
(“cells”) of equal size ∆x = b−a

m . For each time tn, we have
m quantities Qn

i defined as the average value of q over the
cell:

Qn
i =

1
∆x

Z χ
r
i

χl
i

q(x, tn) dx (3)

where we have χ
l
i = a + i∆x, and χ

r
i = χ

l
i + ∆x as the posi-

tions of the cell boundaries. Observe that χ
r
i−1 = χ

l
i .

We apply Eq. (2) to each of the intervals i

d
dt

Z χ
r
i

χl
i

q(x, t)dx = f
(

q
(
χ

l
i , t

))
− f

(
q
(
χ

r
i , t

))
(4)

and integrate Eq. (4) from tn to tn+1Z χ
r
i

χl
i

q(x, tn+1) dx−
Z χ

r
i

χl
i

q(x, tn) dx =Z tn+1

tn
f
(

q
(
χ

l
i , t

))
− f

(
q
(
χ

r
i , t

))
dt (5)

Observe that we can substitute Eq. (3) if we divide Eq. (5)
by ∆x.

Qn+1
i −Qn

i =
1

∆x

Z tn+1

tn
f
(

q
(
χ

l
i , t

))
− f

(
q
(
χ

r
i , t

))
dt (6)

c© The Eurographics Association 2008.

21

Sewall, Galoppo, Tsankov, and Lin / Visual Simulation of Shockaves

The right-hand side of this equation is a flux difference
that cannot generally be evaluated exactly; we approximate
the integrals with averages over the cell interfaces from
[tn, tn+1]:

Fn
χl

i
≈ 1

∆t

Z tn+1

tn
f
(

q
(
χ

l
i , t

))
dt (7)

Substituting Eq. (7) into Eq. (6), we obtain the most basic
FVM update scheme:

Qn+1
i = Qn

i −
∆t
∆x

(
Fn

χl
i
−Fn

χr
i

)
(8)

This scheme is first-order and is subject to the numer-
ical viscosity typical of first-order methods. Second-order
schemes such as the Law-Wendroff scheme [LW60] can be
employed with comparable computation effort; we comple-
ment this with a flux limiter, which minimizes diffusive and
dispersive artifacts. We have used the MC limiter of van
Leer [vL77] in our method.

3.3. The Riemann problem

According to Eq. (7), the flux at Fi− 1
2

is dependent on the
state Qi− 1

2
at the interface between Qi−1 and Qi over the

interval (tn, tn+1); thus we must determine the value at this
interface as it evolves in time. Qi here is the vector version
of the discrete unknowns first introduced in 3.2.

Given the initial data:

Q(x,0) =
{

Ql , x < 0
Qr, x≥ 0 (9)

we wish to solve for Q(x, t) for t > 0 subject to the
governing equations. This formulation is known as the
Riemann problem for the governing equations; the resulting
Q(0, t) obtained can then be used to compute the flux at the
cell interface.

3.3.1. Riemann problem for linear systems

Let us consider linear, constant-coefficient (but not neces-
sary scalar) hyperbolic conservation laws, i.e. Eq. (1) where
the flux function F takes the form F(q) = Aq, where A is a
flux matrix. (Assume that the other flux functions G, and H
are of the same form).

Such a system of order n can be diagonalized into n
decoupled equations Q+

t + ΛQ+
x = 0, where Q+ = R−1Q.

Here R is the matrix of right eigenvectors of A, and Λ is
a diagonal matrix of the eigenvalues of A satisfying A =
RΛR−1.

The solution to the Riemann problem for these equations
is given by n weighted eigenvectors Wi = αiri (also known as
waves) propagating with speeds λi, the corresponding eigen-
values.

The waves Wi are determined by projecting the jump in
the initial states ∆Q = Qr−Ql onto the space formed by the

eigenvectors of the system:

∑
i

Wi = ∑
i

αiri = ∆Q (10)

Ra = ∆Q (11)

a = R−1
∆Q (12)

where a = [α0,α1, . . . ,αn−1]
T

The waves define k intermediate states Q∗i = Ql +
∑

i
j=0 Wj, and the solution to the Riemann problem is there-

fore the piecewise-constant function

Q(x, t) =

Ql , x < λ1t
...

...
Q∗i , λit < x≤ λi+1t

...
...

Qr, x≥ λnt

(13)

3.3.2. The Riemann problem for nonlinear systems
For nonlinear systems such as the Euler equations, the wave
structure of the solution is much more complicated and
costly to compute — typically, iterative root-finding meth-
ods must be employed at each cell interface to determine the
intermediate states Q∗i .

However, it is often possible to obtain good results by
approximately solving the Riemann problem; through lin-
earizations of the flux evaluated at carefully chosen states,
we can obtain solutions that fit Eq. (13). Such approximate
Riemann solvers must be used with care, as they can often
produce non-physical solutions. We discuss the applicability
of these solvers and how these undesirable conditions can be
addressed in Sec. 3.4.1.

3.3.3. Upwinding flux splitting
The basic FVM Eq. (8) update scheme developed in Sec. 3.2
is not able to stably handle hyperbolic systems; we need to
modify it to obey the principle of upwinding. We must take
care to ensure that waves traveling in the positive direction
use information from the negative direction.

Rather than use Eq. (8) to compute cell updates, we em-
ploy a scheme

Qn+1
i = Qn

i −
∆t
∆x

(
Fn+

χr
i

+Fn−
χl

i

)
(14)

where Fn−
χr

i
is the part of the flux Fn

χr
i

traveling in the negative

direction and Fn+
χr

i
the part traveling in the positive direction.

The waves Wi and speeds λi from the solution to a Rie-
mann problem at χ

r
i is then

Fn−
χr

i
=

j

∑
c=0

λcWc Fn+
χr

i
=

k

∑
c= j

λcWc (15)

Where . . . < λ j < 0 < λ j+1 < .. .; waves traveling with neg-
ative speeds are added to Fn− while those traveling with
positive speed are added to Fn+.

c© The Eurographics Association 2008.

22

Sewall, Galoppo, Tsankov, and Lin / Visual Simulation of Shockaves

3.3.4. Solution procedure
Given cell values Qn for time tn, a timestep is performed as
follows to compute Qn+1:
1. For each interface between cells, compute the

wavespeeds λi and fluxes Fn
i by solving the Riemann

problem at that interface (described in Sec. 3.4.2)
2. Find the wavespeed with largest magnitude from |λi| to

compute timestep length ∆t as described in Sec. 3.4.4.
3. For each cell i, advance to next time Qn+1 using the

fluxes Fn at its neighboring interfaces χ
l
i , χ

r
i using

Eq. (14).
For three-dimensional problems (see Sec. 3.4.4), we

must compute three fluxes for each cell in the domain; solv-
ing the Riemann problems in step 1 becomes the computa-
tional bottleneck for non-trivial systems of equations. While
expensive to obtain, carefully calculated fluxes are the key
to handling discontinuous solutions on a coarse grid. Next,
we describe what the Riemann problem is and how it can be
used to compute flux between cells.

3.4. The Euler equations
We are interested in studying the motion of a compress-
ible gas; the natural choice is the Euler system of equa-
tions. The simplification of Navier-Stokes that omits viscous
terms results in this nonlinear hyperbolic system of conser-
vation laws. The omission of viscosity is a reasonable one
to make for many physical problems in gas dynamics, just
as the incompressible simplification of Navier-Stokes fre-
quently used in graphics is reasonable for liquid simulation.

The Euler equations in conservation form (see Eq. (1)
are

q =

ρ

ρu
ρv
ρw
E

 , F(q) =

ρu

ρu2 + p
ρuv
ρuw

(E + p)u

G(q) =

ρv

ρvu
ρv2 + p

ρvw
(E + p)v

 , H(q) =

ρw

ρwu
ρwv

ρw2 + p
(E + p)w

 (16)

Here ρ is density, u, v, and w the components of velocity, p
the pressure, and E the total energy. An additional equation
of state completes the system

E =
p

γ−1
+

ρ

2

(
u2 + v2 +w2

)
(17)

where γ is the adiabatic exponent of the fluid — typically 1.4
for air. It should be noted that for solutions to be physically
valid, ρ, p, and E must all be strictly greater than zero.

3.4.1. Approximate Riemann solutions
As discussed in Sec. 3.3.2, computing the exact solution to
the Riemann problem for nonlinear systems such as the Eu-
ler equations is prohibitively expensive for practical prob-
lems. Suitably approximated solutions to the Riemann prob-

lem are often able to achieve acceptable results for a fraction
of the cost of solving them exactly.

We would like to apply the method for solving Rie-
mann problems for linear systems presented in Sec. 3.3.1
to nonlinear problems; to this end we desire a matrix A
such that A approximates F′(Q); here F′(Q) is the Jaco-
bian of F as seen in the quasilinear form of the conser-
vation law. This is simply the chain rule applied to (1):
Qt −F(Q)x = Qt −F′(Q)Qx = 0.

In a seminal paper, Roe [Roe81] presented a simple
method for approximating F′(Q) that preserves important
conditions of the system, and it is this method that we have
adapted for our solver. Roe’s method uses a flux matrix A
that is F′(Q̄) evaluated at a specially chosen state Q̄ given
Ql and Qr — this state has come to be known as the Roe
average state.

Eigenvectors and eigenvalues of the flux Jacobian The
eigenvectors of the Jacobian F′(Q) give the waves neces-
sary to compute the intermediate states as in Sec. 3.3.1, and
its eigenvalues give the characteristic speeds λi with which
these waves propagate. The eigenvalues of the flux Jacobian
F′ as computed from (16) are:

λ0...4 = (u− c,u,u,u,u+ c) (18)

and the corresponding eigenvectors are:

r1 =

1

u− c
v
w

H−uc

 r2 =

1
u
v
w

1
2 (u2 + v2 +w2)

r3 =

0
0
1
0
v

 r4 =

0
0
0
1
w

 r4 =

1

u+ c
v
w

H +uc

 (19)

Here c =
√

γp
ρ

is the speed of sound and H = E+p
ρ

the total
specific enthalpy. We have given only the eigenvalues and
eigenvectors for F′, but those for the Jacobians of the other
flux functions G′ and H′ have similar structure.

Roe average state Given two states Ql = [ρl ,ul ,vl ,wl ,El]
and Qr = [ρr,ur,vr,wr,Er], the Roe average is

Q̄ = [ρ̄, ū, v̄, w̄, H̄]T ρ̄ = ρl+ρr
2 (20)

ū =
√

ρlul +
√

ρrur
√

ρl +
√

ρr
v̄ =

√
ρl vl+

√
ρrvr√

ρl+
√

ρr
(21)

w̄ =
√

ρlwl +
√

ρrwr
√

ρl +
√

ρr
H̄ =

El +pl√
ρl

+ Er+pr√
ρr√

ρl+
√

ρr
(22)

The specific variables shown here (in contrast to the conser-
vative variables given in (16)) appear because they are pre-
cisely what is necessary to evaluate the eigenvalues Eq. (18)
and eigenvectors Eq. (19) and obtain the waves and speeds
for a given Riemann problem.

c© The Eurographics Association 2008.

23

Sewall, Galoppo, Tsankov, and Lin / Visual Simulation of Shockaves

This average state has attractive properties when con-
sidering the structure of the Riemann problem; were we to
choose a simple arithmetic average of the quantities at Ql
and Qr, the resulting eigenvectors may fail to be distinct
and the solution fail entirely. The criteria behind this par-
ticular choice of average are explained in detail in [Roe81]
and [Lev02].

Enforcing physicality Using the Roe average state Eq. (20)
to approximately solve the Riemann problem is significantly
faster then computing the exact solution to the Riemann
problem, but the solver is known to generate nonphysical
states for certain inputs Ql and Qr. While the exact solution
to the Riemann problem could be computed to obtain the
physically valid intermediate state, this is unnecessary and
overly expensive for visual simulation. When the approxi-
mate Riemann solver produces invalid states, we apply slight
corrections to enforce physicality. We clamp ρ and p to be
no less than 0.05 — in the case of p, this entails adjusting E
according to Eq. (17).

For example, the fluid-rigid body simulations illustrated
in Figs. 1(b), 5, 2, and 3 demonstrate plausible motion, and
would not be possible using a simple approximate Riemann
solver without these corrections.

3.4.2. Riemann solver for Euler equations
We have developed the theory of Riemann solvers for the
Euler equations sufficiently to present the procedure for
computing the Riemann solution at interface given left and
right states Ql and Qr.
1. Compute Roe average Q̄ using Eq. (20)
2. Make Q̄ physically valid if needed, as per Sec. 3.4.1
3. Compute wavespeeds λi using to Eq. (18)
4. Compute eigenvectors ri using Eq. (19)
5. Project ∆Q onto eigenspace by computing the wave co-

efficients αi and waves Wi using Eq. (12)
6. Compute left and right fluctuations Fn± using Eq. (15)

3.4.3. Boundary conditions
We apply boundary conditions where needed through mod-
ified Riemann solvers; these do not solve for the flux at an
interface due to two adjacent cells; we compute a ‘ghost’ in-
termediate state at the interface to determine these fluxes. In
practice, we have found three types of boundary conditions
useful:

Free-slip: This common boundary condition simply states
that the component of flow normal to the interface is zero.
We obtain this by modifying the Roe average Eq. (20)
used in the cell to have zero velocity in the component
normal to the boundary; thus ū on a no-slip boundary nor-
mal to the x-direction is set to zero. Other components of
the intermediate state Q̄ are simply treated as though Ql
were equal to Qr.

Velocity: This is a generalization of free-slip boundary con-
ditions; rather than enforce zero velocity along an inter-
face, some user-specified velocity is imposed as the inter-
mediate component of velocity in the appropriate direc-
tion. Other components are treated as though the two ad-
jacent cells were identical except for the energy E; given

an imposed velocity ū and the same component of veloc-
ity in the adjacent cell ur, the velocity in the ghost cell
is uL = 2ū(ū− ur). Due to this difference in velocity, the
energy in the ghost cell is not equal to its neighbor and is
adjusted with Eq. 17.

Absorbing: It is often desirable to perform simulations
where outgoing waves are simply absorbed rather than re-
flected; the computational domain behaves as if it were
suspended in an infinite passive medium. At these inter-
faces, the fluxes in the Riemann problem are simply set to
zero.

3.4.4. Dimensional splitting
The discussion so far has been limited to one dimension —
our equations Eq. (16) are three-dimensional, but the solu-
tion procedure in Sec. 3.3.4 performs updates in only a sin-
gle dimension.

To solve three-dimensional problems, we perform di-
mensional splitting. To advance from time tn to tn+1, we
make sub-step “passes” of a one-dimensional solver in each
direction — first using the flux function F along x for all
rows of constant y and z, then using G along y for all rows
of constant x and z, and finally using H along z for all rows
of constant x and y.

This approach allows us to apply the one-dimensional
techniques previously described here in a straightforward
manner; however, we must address how best to choose the
timestep to take over the three passes.

Choosing a timestep The timestep size ∆t that we are able
to take while advancing the solution with Eq. (8) is limited
by the maximum characteristic speed λmax from Eq. (18) in
the solution we are updating, as per the Courant-Friedrichs-
Lewy (CFL) condition [CFL28]. For simulation in a single
dimension, the procedure in Sec. 3.3.4 works perfectly — we
compute the solution to all Riemann problems in the domain,
which gives us the maximum characteristic speed, which we
use to compute the timestep ∆t = ∆x

λmax
. With dimensional

splitting, we are not able to compute the maximum speed in
dimension y prior to advancing the solution in x with some
previously chosen ∆t; the maximum speed in y depends the
results of the x-pass and is not generally equal to the λmax
from the x pass.

There are several ways to address this problem — for
example, we could adopt a guess-and-check approach of es-
timating a timestep, advancing the solution with it, checking
to see if it satisfies the CFL condition based on the maximum
speed of the next level, and rewinding the whole computa-
tion if not, but this would be prohibitively expensive.

We take the very simple approach of always advancing
the solution in a dimension with the largest timestep that
satisfies the CFL condition in that dimension. This method
clearly has effects on the solution; effectively, the grid is
‘warped’ over a timestep based on the ratios of maximum
speeds in each dimension. However, we have found these ef-
fects to be negligible in the simulations we have run, even in
cases where the flow (and therefore λmax) is highly biased
along a single dimension (see for example Figs. 1(b), 1(c),
and 5).

c© The Eurographics Association 2008.

24

Sewall, Galoppo, Tsankov, and Lin / Visual Simulation of Shockaves

Our approach has an advantage over other methods and
is particularly desirable for visual simulation; each dimen-
sion is advanced according to the chosen CFL number of the
simulation. No dimension is forced to take a timestep at a
low CFL number because of other, higher speed dimensions.
This technique helps reduce the numerical artifacts that fre-
quently plague visual simulations of natural phenomena.
3.5. Fluid-object interaction

Figure 2: Tower (without cap) blown apart by internal blast

Figure 3: Tower (with cap) blown apart by internal blast

We employ a method for bi-directional fluid-object cou-
pling that is simple, stable, and efficient. At each timestep,
solid objects are voxelized onto the grid and cells occupied
by solids marked as such.

To capture the objects’ effect on the fluid, we use the
aforementioned free-slip modification to the Riemann solver
along the boundary (in Sec. 3.4.3). This solver ensures that
incoming waves are reflected off of solid bodies and enables
effects like those seen in Figs. 1(b), 5, 2, 3, and 4; these
demonstrate the effects of the solids in the scene on the flow.

The force exerted by the fluid on the objects is obtained
by multiplying the pressures at each incident cell by the in-
terface’s normal direction and applying the resulting force
to the object. This simple technique is responsible for the
forces buffeting the objects in Figs. 1(b), 5, 2, and 3.

Any rigid body simulator is suitable for use with our
method; we have used the Bullet collision and dynamics en-
gine [bul] because of its completeness and availability. Our
voxelization is a simple custom tool based on triangle-grid
intersections.

Considerable work [CMT04,CGFO06,BBB07] has been
done to achieve stable fluid-solid interactions in the past, but
these methods have focused on the interaction of rigid bod-
ies with incompressible fluids. Stability problems frequently
arise in such situations because of the differing needs of the
rigid body dynamics and the fluid simulator; the implicit
solver for incompressible fluid simulation generally takes
large timesteps, which can result in a loosely-coupled, un-
stable simulation when rigid bodies are handled naïvely. Our
method naturally takes many small, inexpensive timesteps to
advance the solution; this allows tighter communication be-
tween the rigid body and fluid simulators and results in a
more stable interaction.

4. Results
We have implemented and tested our algorithm on several
challenging scenarios. In this section, we first show some
demonstrations of our algorithm, then describe our render-
ing methods, and finally discuss timing and parallelization
results.

4.1. Applications

Figure 4: An explosion in a confined space

We have constructed a number of scenarios that demon-
strate the ability of our method to simulate visually interest-
ing phenomena. The first segment of supplementary video
is a two-dimensional simulation demonstrating vortex shed-
ding — a traveling shock crosses a sharp obstacle and a
powerful vortex forms in its wake. Further reflections of the
shocks create new vortices which combine and travel around
the domain.

Fig. 1(a) shows a mushroom cloud formed in the after-
math of a nuclear explosion; a low-density, high-temperature
region left by the expanding shock is forced upwards by the
pressure gradient caused by gravity; as it rises, the region ex-
pands and curls downward, forming a distinctive mushroom
shape.

Fig. 1(b) demonstrates our method’s ability to interact

c© The Eurographics Association 2008.

25

Sewall, Galoppo, Tsankov, and Lin / Visual Simulation of Shockaves

(a) (b) (c)

Figure 5: Rigid body-fluid interaction

with moving boundary conditions; the stack of rigid bod-
ies in this scene are bidirectionally coupled to the fluid. A
traveling shock topples them, reflects off a nearby wall, and
rebounds on the objects, throwing them away. The bodies’
force upon the fluid creates vorticial patterns in the gas.

Fig. 1(c) shows a two-dimensional slice of a three-
dimensional simulation of a projectile traveling faster than
the speed of sound. The bow shock ahead of the body is typ-
ical of this type of rounded object and the rarefaction region
behind the projectile creates a twisting trail of turbulence.

Fig. 2 and fig. 3 are similar; in each, a cylindrical tower
of 600 bricks is toppled by an explosion from within. Fig. 2
has no cap; the explosion forces nearly all of the air out of
the cylinder as it bursts out of the top. The low-pressure area
formed inside the cylinder causes it to collapse in upon itself
while the force of the explosion venting from the top of the
structure send bricks flying. Fig. 3 has a very heavy cap atop
it; the explosive force cannot escape so easily and is partially
reflected back into the structure, forcing a hole in the base
and blowing out bricks near the top.

Fig. 4 shows an explosion occurring in an enclosed area;
the force of the explosion forces air through the small open-
ings in the chamber and creates high-density, turbulent ten-
drils.

Fig. 5 shows a series of frames from a simulation where
a “house” made of 480 concrete bricks is struck by a pow-
erful shock, causing the bricks to fly in all directions. The
bricks shape and reflect the shock as it propagates through
the scene.

Fig. 6 is a visual recreation of the first moments of the
detonation of the first nuclear bomb ‘Trinity’. The glossy
“bubble” around the explosion is the expanding shockfront;
the heat at the interface is such that light traveling through
the region is dramatically refracted. Inside the shock, dust
and flame are rising with a bright glow.

4.2. Rendering

Our three-dimensional demonstrations were modeled in
Blender [ble] and rendered with the V-Ray raytracer [vra];
the visualization of fluid effects in 3D were handled by our
Monte Carlo volume raytracer plug-in for V-Ray. Atmo-
spheric scattering was not used; these renders use ρ as ad-
vected by the fluid for the emissive and absorbing factors for

the volume tracer, with color dictated by a blackbody col-
ormap.

Figure 6: The initial moments of the “Trinity test” — the
first atomic bomb

The two-dimensional demonstrations were rendered
with our simple custom 2D plotting tool; those using a
monochrome colormap demonstrate our method’s preser-
vation of sharp shock features through a schlieren plot —
namely, we plot

√
|∇ρ|. The term schlieren refers to a par-

ticular type of image formed by the passage of light through
inhomogeneous media that causes shadows to appear in ar-
eas of high inhomogeneity.

Scene resolution sim. fps avg. ∆t sim. time
Blast chamber 120×80×120 1.56 1.4e-4 s 16.25 min
Rigids w/ refl. 60×60×100 0.779 2.5e-4 s 29.93 min
Tower (top) 60×80×60 1.14 7.2e-4 s 30.21 min
Trinity 200×75×200 0.102 2.9e-5 s 32.88 min
Tower (no top) 60×100×60 0.939 6.8e-4 s 51.74 min
Mush. cloud 120×100×120 0.243 2.4e-2 s 57.74 min
House 100×100×100 0.310 4.6e-5 s 58.35 min
Projectile 250×100×100 0.191 1.0e-5 s 191.5 min

Figure 7: Demonstrative timings of our method showing
grid resolution, simulation frames per second, average sim-
ulation timestep, and the total computation time needed for
the entire simulation run.

c© The Eurographics Association 2008.

26

Sewall, Galoppo, Tsankov, and Lin / Visual Simulation of Shockaves

1 2 4 8 16
threads

0

50

100

150

200

250

si
m

.
fp

s

25x25x25

1 2 4 8 16
threads

0

5

10

15

20

25

si
m

.
fp

s

50x50x50

1 2 4 8 16
threads

0.0

0.5

1.0

1.5

2.0

2.5

si
m

.
fp

s

100x100x100

1 2 4 8 16
threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2
si

m
.
fp

s
250x100x100

Figure 8: Parallelization The performance of our al-
gorithm increases with the number of threads. We mea-
sured performance as simulation frames per second with an
OpenMP implementation benchmarked on a 16-core Intel
Xeon machine.

4.3. Timings
We present performance data in Fig. 7; these timings were
collected on a 2GHz Core 2 laptop. Memory usage is linear
in the number of grid cells — each demonstration fits within
500MB of memory. These timings are all for a single thread
of computation; parallelization is discussed in Sec. 4.4.

Direct comparisons with previous works are difficult to
produce because little or no timing information is available
for these papers. Figure 2 in [YOH00] shows a 2D slice of
a 1013 simulation of a shockwave interacting with a station-
ary wall; they reported a simulation time of ‘overnight’. We
reproduced this simulation with our method; for a 1013 grid,
we recorded a total simulation time of 15 minutes. Conser-
vatively estimating that our hardware is nearly 7 times faster
and that ‘overnight’ is about 10 hours, our method is at least
6 times faster than theirs at equivalent resolutions, and our
simulation contains more visual detail.

To demonstrate the ability of our method to produce
detailed results at coarse resolutions, we performed the
same simulation on a 603 grid; this took less than 2
minutes (roughly 45x faster) and the generated results
exhibit are more detailed than the results computed on
a 1013 grid using [YOH00]. We have included these
results in our supplementary video; the correspond-
ing video from Yngve et al. can be found at http:
//www.cs.berkeley.edu/b-cam/Papers/
Yngve-2000-AE/Stuff/wall_pressure.mpeg.

4.4. Parallelization
For the purpose of demonstrating that our algorithm is
amenable to parallelization on shared-memory architectures,
we have used OpenMP [ope05] to execute two essential
computational kernels in separate work threads; the results
are shown in Fig. 8. Due to dimensional splitting, the Rie-
mann solves (step 1 in Sec. 3.3.4) are completely indepen-
dent for each row in a computational sweeping plane along
the simulation grid, as illustrated in Fig. 9; the update pass

Figure 9: Computation of Riemann solutions and solution
updates done in a pass are divided among threads

(step 3 in Sec. 3.3.4) can be similarly parallelized. We have
performed benchmarks of our parallel implementation of
simulations with increasing grid size on an Intel Xeon ma-
chine with sixteen cores, each running at 3GHz. The perfor-
mance of our algorithm, here measured in simulation frames
per second, scales well with the number of threads.

It should be noted that our attempt to parallelize the code
is by no means a fully optimized implementation. A more
optimized implementation takes into account such important
concerns as data contention, cache sizes and parallel reduc-
tions. The key observation is that our approach can lead to
extremely efficient implementations on parallel architectures
with minimal effort.

5. Conclusion
We have presented a method for efficient simulations of su-
personic flows in compressible, inviscid fluids that is based
on the finite volume method. We have demonstrated the abil-
ity of our method to capture the behavior of shocks and to
handle complex, bidirectional object-shock interactions sta-
bly. Additionally, we have demonstrated that our method
scales well on modern architectures.

5.1. Limitations
Hyperbolic systems of equations (i.e. the compressible, in-
viscid Euler equations simulated here) are subject to the CFL
condition as a requirement for convergence and stability.
The unconditionally stable solvers popular for incompress-
ible fluid dynamics are subject to the CFL condition for con-
vergence, but not stability — indeed, the convention seems
to take the CFL condition as a “guideline” and use CFL num-
bers upwards of 5.

Our technique performs well at simulating truly hyper-
bolic phenomena such as compressible, inviscid fluid dy-
namics, but cannot handle nearly incompressible phenom-
ena (e.g. liquids) as efficiently as those simulations currently
used in computer graphics. This fundamental limitation is
due to the choice of equations — the actual propagation
of acoustic waves so important to compressible fluids has
a negligible effect on incompressible fluids.

5.2. Future work
There are a number of promising areas for future work.
Many natural phenomena give rise to shocks — of particular
interest to graphics are hydraulic jumps in the Saint-Venant
(or shallow water) equations.

Additionally, the inherent parallelism of this approach
provides ample opportunity for improved application to par-

c© The Eurographics Association 2008.

27

http://www.cs.berkeley.edu/b-cam/Papers/Yngve-2000-AE/Stuff/wall_pressure.mpeg
http://www.cs.berkeley.edu/b-cam/Papers/Yngve-2000-AE/Stuff/wall_pressure.mpeg
http://www.cs.berkeley.edu/b-cam/Papers/Yngve-2000-AE/Stuff/wall_pressure.mpeg

Sewall, Galoppo, Tsankov, and Lin / Visual Simulation of Shockaves

allel hardware, and we intend to investigate this method on
next-generation computing platforms.

Acknowledgement: This research is supported in part
by ARO Contracts DAAD19-02-1-0390 and W911NF-04-
1-0088, NSF Awards 0400134, 0429583, and 0636208,
DARPA/RDECOM Contract N61339-04-C-0043, Intel, and
Carolina Development.

References
[APKG07] ADAMS B., PAULY M., KEISER R., GUIBAS L. J.:

Adaptively sampled particle fluids. In ACM SIGGRAPH ’07
(New York, NY, USA, 2007), ACM, p. 48.

[BBB07] BATTY C., BERTAILS F., BRIDSON R.: A fast varia-
tional framework for accurate solid-fluid coupling. In ACM SIG-
GRAPH ’07 (2007).

[BFMF06] BRIDSON R., FEDKIW R., MULLER-FISCHER M.:
Fluid simulation: Siggraph 2006 course notes. In ACM SIG-
GRAPH ’06 Courses (New York, NY, USA, 2006), ACM Press,
pp. 1–87.

[ble] Blender 2.45. http://www.blender.org/.

[bul] Bullet Physics Library. http://www.
bulletphysics.com/.

[CFL28] COURANT R., FRIEDRICHS K., LEWY H.: Über die
partiellen differenzengleichungen der mathematischen physik.
Mathematische Annalen 100, 1 (1928), 32–74.

[CFL∗07] CHENTANEZ N., FELDMAN B. E., LABELLE F.,
O’BRIEN J. F., SHEWCHUK J. R.: Liquid simulation on lattice-
based tetrahedral meshes. In SCA ’07: Proceedings of the 2007
ACM SIGGRAPH/Eurographics symposium on Computer an-
imation (Aire-la-Ville, Switzerland, Switzerland, 2007), Euro-
graphics Association, pp. 219–228.

[CGFO06] CHENTANEZ N., GOKTEKIN T. G., FELDMAN B. E.,
O’BRIEN J. F.: Simultaneous coupling of fluids and de-
formable bodies. In SCA ’06: Proeedings of the 2006 ACM SIG-
GRAPH/Eurographics symposium on Computer animation (New
York, NY, USA, 2006), ACM Press/Addison-Wesley Publishing
Co.

[CMT04] CARLSON M., MUCHA P. J., TURK G.: Rigid fluid:
animating the interplay between rigid bodies and fluid. ACM
Trans. Graph. 23, 3 (2004), 377–384.

[ETK∗07] ELCOTT S., TONG Y., KANSO E., SCHRÖDER P.,
DESBRUN M.: Stable, circulation-preserving, simplicial fluids.
ACM Trans. Graph. 26, 1 (2007), 4.

[FF01] FOSTER N., FEDKIW R.: Practical animation of liquids.
In ACM SIGGRAPH ’01 (New York, NY, USA, 2001), ACM
Press, pp. 23–30.

[FM96] FOSTER N., METAXAS D.: Realistic animation of liq-
uids. Graph. Models Image Process. 58, 5 (1996), 471–483.

[FOA03] FELDMAN B. E., O’BRIEN J. F., ARIKAN O.: Ani-
mating suspended particle explosions. In ACM SIGGRAPH ’03
(New York, NY, USA, 2003), ACM, pp. 708–715.

[FOK05] FELDMAN B. E., O’BRIEN J. F., KLINGNER B. M.:
Animating gases with hybrid meshes. In ACM SIGGRAPH ’05
(New York, NY, USA, 2005), ACM Press, pp. 904–909.

[FSS03] FEDKIW R., SAPIRO G., SHU C.-W.: Shock capturing,
level sets and PDE based methods in computer vision and image
processing: A review on Osher’s contribution. J. Comput. Phys.,
185 (2003), 309–341.

[GHD03] GENEVAUX O., HABIBI A., DISCHLER J.-M.: Sim-
ulating fluid-solid interaction. In Proc. Graphics Interface ’03
(2003).

[GSLF05] GUENELMAN E., SELLE A., LOSASSO F., FEDKIW
R.: Coupling water and smoke to thin deformable and rigid
shells. In ACM SIGGRAPH ’05 (New York, NY, USA, 2005),
ACM Press, pp. 973–981.

[KFCO06] KLINGNER B. M., FELDMAN B. E., CHENTANEZ
N., O’BRIEN J. F.: Fluid animation with dynamic meshes. In
ACM SIGGRAPH ’06 (New York, NY, USA, 2006), ACM Press,
pp. 820–825.

[Lev02] LEVEQUE R. J.: Finite Volume Methods for Hyperbolic
Problems. Cambgridge University Press, New York, 2002.

[LGF04] LOSASSO F., GIBOU F., FEDKIW R.: Simulating water
and smoke with an octree data structure. In ACM SIGGRAPH
’04 (New York, NY, USA, 2004), ACM Press, pp. 457–462.

[LW60] LAX P., WENDROFF B.: Systems of conservation laws.
Comm. Pure Appl. Math., 13 (1960), 217–237.

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-
based fluid simulation for interactive applications. In SCA
’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics
symposium on Computer animation (Aire-la-Ville, Switzerland,
Switzerland, 2003), Eurographics Association, pp. 154–159.

[MMA99] MAZARAK O., MARTINS C., AMANATIDES J.: An-
imating exploding objects. In Proc. Graphics Interface ’99
(Wellesley, MA, USA, 1999), AK Peters, pp. 211–218.

[NF99] NEFF M., FIUME F.: A visual model for blast waves and
fracture. In Proc. Graphics Interface ’99 (Wellesley, MA, USA,
1999), AK Peters, pp. 193–202.

[ope05] OpenMP Version 2.5 Specification, May 2005.
http://www.openmp.org/drupal/mp-documents/
spec25.pdf.

[Roe81] ROE P.: Approximate Riemann solvers, parameter vec-
tors, and difference schemes. J Comput. Phys., 43 (1981), 357–
372.

[SMML07] SEWALL J., MECKLENBURG P., MITRAN S., LIN
M.: Fast fluid simulation using residual distribution schemes.
In Eurographics Workshop on Natural Phenomena 2007 (Aire-
la-Ville, Switzerland, Switzerland, 2007), Eurographics Associa-
tion, pp. 47–54.

[SRF05] SELLE A., RASMUSSEN N., FEDKIW R.: A vortex par-
ticle method for smoke, water and explosions. In ACM SIG-
GRAPH ’05 (2005), pp. 910–914.

[Sta99] STAM J.: Stable fluids. In Siggraph 1999, Computer
Graphics Proceedings (Los Angeles, 1999), Rockwood A., (Ed.),
Addison Wesley Longman, pp. 121–128.

[vL77] VAN LEER B.: Towards the ultimate conservative differ-
ence scheme iv. J. Comp. Phys., 22 (1977), 276–299.

[vra] V-Ray. http://www.chaosgroup.com/en/2/
vray.html.

[WBOL07] WENDT J., BAXTER W., OGUZ I., LIN M.: Finite-
volume flow simulations in arbitrary domains. Graphical Models
69, 1 (2007), 19–32.

[YOH00] YNGVE G. D., O’BRIEN J. F., HODGINS J. K.:
Animating explosions. In ACM SIGGRAPH ’00 (New York,
NY, USA, 2000), ACM Press/Addison-Wesley Publishing Co.,
pp. 29–36.

c© The Eurographics Association 2008.

28

http://www.blender.org/
http://www.bulletphysics.com/
http://www.bulletphysics.com/
http://www.openmp.org/drupal/mp-documents/spec25.pdf
http://www.openmp.org/drupal/mp-documents/spec25.pdf
http://www.chaosgroup.com/en/2/vray.html
http://www.chaosgroup.com/en/2/vray.html

