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Abstract
This paper presents a new method for constructing an example-based deformable human hand model from medical
images. Realistic animation of human hands requires good estimates of the joint structure and properly weighted
skeleton-driven surface deformation. For this purpose, we propose a method based on medical images of hands in
several poses. Our method consists of the following 3 steps: First, using the measured bone shapes, we estimate the
link structure (joint rotation centers) and the joint angles of each scan. Second, we construct a mutually consistent
polygonal mesh of all the scans. For this purpose, a polygonal mesh of one pose, the base mesh, is deformed
using skeletal subspace deformation, and then fitted interactively to the measured meshes from the other scans.
Finally, the hand is deformed using a weighted pose space deformation. We demonstrate results of deformable
hand models consisting of 100,000 triangle meshes derived from CT scans.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and
object representations, I.3.7 [Computer Graphics]: Animation

1. Introduction

The human hand is very important for realistic human
character animation. Human hands are skillful and expres-
sive, and are used for communication, grasping, and many
other activities requiring dexterous precision. Good graph-
ical models of the human hand are thus very useful for a
variety of applications including movies and special effects,
user interfaces, games and interactive virtual environments.
However, modeling of the hand is extremely difficult due to
the complexity of its shape, joint structure, and deformation.

For any realistic model of the human hand, quite de-
tailed geometry is required. Recently, the detailed geom-
etry of the hand can be obtained using 3D measurements
[HDD∗92, YCC99]. However, obtaining accurate skeleton-
driven deformations of these models is not easy. Several
methods have been proposed for the deformation of the
hand. In all of these methods, the location of the center of
rotation of each joint is critical to generating natural defor-
mations. Because the center of rotation is difficult to estimate
from the skin surface of the hand, it is specified interactively
in most cases, which is a time-consuming and tedious task.
When the center of the rotation is not adequate, the defor-
mation will be unnatural. While the center of rotation can be
estimated from motion capture data [OBBH00], this tech-

nique cannot be applied to the hand because of large skin
deformation.

In addition, skeleton driven deformation is essential for
realistic human hand animation. For this purpose, several
techniques have been proposed such as SSD (Skeletal Sub-
space Deformation) [MTLT88], deformation using finite
element methods [GTT89], anatomy-based methods using
bones and pseudo muscles [AHS03]. However, these tech-
niques require a lot of time for parameter tuning in order to
achieve realistic deformation.

In contrast, example-based techniques have been
proposed for realizing natural deformation of skin
[LCF00, SIC01, WP02]. With example-based approaches,
the skin surfaces of several poses are represented with
mutually consistent meshes, and subsequently interpolated
in pose space. While the deformation is therefore very
realistic if appropriate data is prepared, the animators must
provide mutually consistent meshes.

An example-based method using range scan data was pro-
posed for deformation of the upper body [ACP02]. In this
method, the centers of rotation are estimated from markers.
This cannot be applied to the hand, however, because its skin
deformation is very large. In addition, all the scans are pa-
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rameterized by using displaced subdivision surfaces. It may
therefore be difficult to construct consistent meshes with de-
tailed measured skin surfaces.

Kry, James, and Pai proposed an example-based defor-
mation method suited to commercial graphics hardware
[KJP02]. Instead of using all the displacements for key
poses, their method used precomputed principal components
of deformation influences on individual joints. In their exam-
ple results, many sample skin surfaces of the hand were gen-
erated using finite-element analyses, but the sample skin sur-
faces generated by simulation were not as detailed as those
of the actual hand.

As discussed above, two aspects are very important in re-
alistic deformation of the hand: precise estimation of the ro-
tation centers, and example-based skin deformation with de-
tailed measured surfaces. Using multiple medical images of
the hand, we can obtain precise bone shape and skin sur-
face measurements simultaneously. In addition, we can es-
timate the center of rotation for each joint if we compare
the bone shapes in several poses. We therefore present a
new method for model extraction and skeleton driven de-
formation of the hand using medical images. In this three-
step method, we first derive the centers of rotation and poses
from bone shapes, then transform the skin surfaces of all
poses into mutually consistent meshes, and finally imple-
ment skeleton-driven deformation by using weighted pose
space deformation.

The rest of this paper is organized as follows. Section 2
describes the data capture step using medical images. Sec-
tion 3 describes our technique to estimate the rotation cen-
ters of the joints by comparing the bone shapes in several
poses. Section 4 presents our techniques for producing mu-
tually consistent skin meshes for all poses. Section 5 de-
scribes the skeleton-driven deformation method using result-
ing data, and presents the results of our experiments with the
proposed techniques. Section 6 offers directions for future
research.

2. Measurement of Hand using CT

We measured a real human hand in five different poses
by using computed tomography (CT). Figure 1 shows an
example of a CT image. In our measurements, the pixel
size was 0.468 × 0.468 [mm], the slice thickness was 0.3
[mm], and the number of slices was about 750. We ob-
tained 512×512×750 voxels for each pose. Bone and skin
surfaces were generated as isosurfaces using the marching
cubes algorithm [LC87] (see Figure 2). The number of tri-
angles was about 460,000 for bone and about 800,000 for
the skin surface.

We removed unnecessary small bones interactively. While
there are eight carpal bones around the wrist, only the
biggest (capitate) was extracted because their movement is

Figure 1: Example CT image.
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Figure 3: Hand link model.

complex and difficult to handle in estimating the joint cen-
ter (Figure 3). In addition, we extracted only the radius and
ignored the ulna in the forearm for the sake of simplicity.

Note that CT may be harmful because of X-ray expo-
sure. MRI can be used instead with the proposed method be-
cause the bone shape and the skin shape can be measured si-
multaneously. We used CT in our experiment because high-
resolution images can be obtained, the measurement time is
shorter, and the bone shape can be extracted more easily than
with MRI.

3. Estimation of Joint Centers

Figure 3 shows our hand link model. It consists of 19 joints,
two with 6 degrees of freedom (DOFs) and 17 with 3 DOFs
for simplicity. Note that the CMC joint of the thumb has 6
DOFs because of its complex movement.

The center of rotation for each joint is estimated by com-
paring bone shapes in multiple poses. We estimate the cen-
ter of rotation within the reference frame of a "base pose,"
which is a relaxed natural posture (see Figure 2(a)). Figure 4
shows the process by which the rotation center is estimated.

We first align each bone segment k(1 ≤ k ≤ nlink) in pose
i(1 ≤ i ≤ npose) with that in the base pose by using the ICP
(Iterative Closest Point) algorithm [BM92]. The ICP is a
method to align two objects with rigid transformation. With
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(a) Pose 1      (b) Pose 2  (c) Pose 3   (d) Pose 4   (e) Pose  5

Figure 2: Skin shape and bone shape reconstructed from CT images.
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Figure 4: Calculation of rotation center of joint.

this alignment, we then calculate transformation matrix Mi,k
that represents the local transformation of child link k in pose
i if the parent link is transformed to the base pose. Mi,k is a
4× 4 matrix that represents rotation and translation. Rota-
tion center ck of child link k should not move with transfor-
mation Mi,k. We estimate the center of rotation where the
error function

E =
npose

∑
i=1

|Mi,kck − ck|2 (1)

takes a minimum value. We used the Davidon Fletcher Pow-
ell method [PFTV92] for the minimization. Figure 5 shows
the estimated centers of rotation. The square root of the mean
error in Equation 1 for all the joints was 0.91[mm] except
for the CMC joint of the thumb that has 6 DOFs. We also

Figure 5: Estimated rotation center of joint.

estimate the rotation angles for each joint and pose from
the transformation matrix Mi,k by solving Euler angles from
transformation matrix.
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(a) Base mesh S0 (b) Measured mesh Ti (c) Mesh Si
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Figure 6: Fitting process.

4. Skin Surface Fitting

The actual measured skin surface of the hand consists of
about 800,000 triangles, and handling all of them would be
excessively time-consuming. We therefore reduced the num-
ber of triangles to about 100,000 by using standard poly-
gon reduction techniques. The parameterization of the mea-
sured (reduced) mesh for each scan differs from those of the
others, and it would be difficult to deform them by morph-
ing. We therefore generate mutually consistent meshes for
all samples. For this purpose, we assume one skin mesh is a
"base mesh" and fit this base mesh to the other scans. In our
experiment, Pose 1 of Figure 2 was used as the base mesh.
Hereinafter, we will refer to the base mesh as S0, and to the
measured mesh of pose i as Ti. We transform base mesh S0
into measured mesh Ti as follows:

1. We make a first approximation for each pose by using
Skeletal Subspace Deformation to deform S0 into Ss

i .
2. We improve the accuracy of approximation by using

RBF-based deformation with interactively specified fea-
ture points to deform approximate mesh Ss

i into Sr
i .

3. We generate the final mesh S f
i by fitting the resulting

mesh Sr
i to measured mesh Ti .

The details of this procedure are explained in the follow-
ing subsections.

4.1. Approximation using Skeletal Subspace
Deformation

As it would be hard to transform the base mesh to the mea-
sured mesh all at once because the shapes of the measured
meshes differ largely for each pose (see Figures 6(a), 6(b)),
we make a first approximation by using SSD (Skeletal Sub-
space Deformation) [LCF00] to deform base mesh S0 into
approximate mesh Ss

i . SSD can be used because the rotation
angles and centers of rotation were determined in the first
step.

With SSD, deformed vertex position p j is computed as
the weighted sum of transformed vertex positions of related
links:

p j =
nlink

∑
k=1

w j,kLkp j, (2)

where p j is the original position of vertex j, Lk is the trans-
formation matrix of Link k, nlink is the number of links, w j,k
is the weight, and

nlink

∑
k=1

w j,k = 1. (3)

In our experiment, we specified weight w j,k interactively
using commercial software MAYA 4.5. Figure 6(c) shows
resulting mesh Ss

i obtained with SSD. Although SSD is not
anatomy based, the resulting meshes approximate measured
mesh Ti.

4.2. Interactive Deformation using Feature Points

To improve the accuracy of the mesh, we employ feature-
points-based deformation to deform approximate mesh Ss

i .
We first interactively specify feature points on both approx-
imate mesh Ss

i and measured mesh Ti. Figures 6(b) and 6(c)
show the feature points. Because the approximate mesh pro-
duced by SSD resembles the measured mesh, it is not diffi-
cult to specify the feature points. In addition, we can spec-
ify the feature points using shape details, such as wrinkles.
About 70 to 150 feature points were specified for each pose
in our experiment.

We use an interpolation method with RBF (Radial Basis
Functions) [Nie93, PSS02] for the deformation, which is an
effective method of scattered data interpolation. Let r j be the
feature point position on measured mesh Ti and let q j be the
corresponding feature point position on approximated mesh
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Ss
i . Deformed vertex position v′ is calculated by RBF as

v′ = v+
ncp

∑
j=1

c jφ(|v−q j|)(r j −q j), (4)

where ncp is the number of feature points and φ(r) is a radi-
ally symmetric basis function. We chose to use φ(r) = e−r/D

as the basis function after the experiments. D is a user-
specified constant coefficient, and we used D = 1600 [mm]
for our experiment. Coefficient c j is calculated by solving

r j −q j =
ncp

∑
i=1

ciφ(|q j −qi|)(ri −qi). (5)

With deformation using RBF, approximated mesh Ss
i is de-

formed into the more accurate mesh Sr
i . Figure 6(d) shows

the resulting deformed mesh.

4.3. Fitting

After approximated meshes Sr
i of measured mesh Ti have

been obtained, we fit mesh Sr
i to measured mesh Ti to gen-

erate final mesh S f
i . For fitting, we simply find the nearest

point on measured mesh Ti for each vertex on Sr
i , and move

it to the nearest point. Figure 6(e) shows the fitting results
for Pose 3, and Figure 7 shows the fitting results for Poses
2, 3, and 5. This simple fitting technique cannot be applied
to Pose 4 in Figure 2 because some parts of the skin surface
are missing, where the two fingers touch each other. A more
sophisticated fitting technique must be used in such cases. A
fitting technique using smoothness [ACP03] may work well
although we have not tested it.

It took about 10 minutes to specify the feature points for
each pose. RBF fitting took about 1.0 [sec] and final fit-
ting took about 9.0 [sec] for each pose with a Pentium IV
PC with a 2.2-GHz CPU. To find the nearest point quickly,
we used PQP, a Proximity Query Package developed by the
UNC Research Group on Geometry, Physically-Based Sim-
ulation, and Applications [LGLM99].

5. Skeleton-Driven Hand Deformation

5.1. Pose Space Deformation

Once we have the rotation centers for all joints, the rotation
angles of joints, and consistent skin surfaces for all poses,
skeleton-driven skin deformation is accomplished by inter-
polating skin surface in the pose space. We use the Pose
Space Deformation method [LCF00, SIC01] for this inter-
polation. Pose space deformation is a hybrid approach that
combines SSD and morphing (Figure 8). Sample surfaces
of various poses are deformed into the "base pose" with in-
verse SSD, and the resulting meshes are then morphed and
deformed with SSD.

Let vi, j be the position of vertex j of sample i and w j,k be

(a) Pose 2

(b) Pose 3

(c) Pose 5

Figure 7: Fitting results. Left is measured mesh, right is fit-
ted mesh.

the weight value of vertex j about link k. Sample surface i is
first transformed into its "base pose":

v0
i, j = (

nlink

∑
k=1

w j,kLi,k)
−1vi, j, (6)

where v0
i, j = is the position of vertex j of sample i in its

base pose and Li,k is the transformation matrix of link k of
sample i. Let si be the weight value for the interpolation of
each sample with ∑npose

i=1 si = 1 .

Then, each sample surface in the base pose is interpolated
by using a morphing method:

u0
j =

npose

∑
i=1

siv
0
i, j, (7)

where u0
j is the interpolated vertex position. Finally, the mor-

phed surface is deformed with SSD:

u j =
nlink

∑
k=1

w j,kLku0
j , (8)

where u j is the vertex position of the resulting deformed sur-
face, Lk is the transformation matrix that is calculated by
interpolating the joint angle using weight value si .
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Figure 8: Pose space deformation.

Figure 9 shows the result of deformation. In this example,
Pose 1 of Figure 2 is first transformed into Pose 5 and then
into Pose 3. That is, the mesh is linearly interpolated from
s1 = 1,s2 = s3 = s5 = 0 into s1 = s2 = s3 = 0,s5 = 1, then
interpolated into s1 = s2 = 0,s3 = 1,s5 = 0. The detailed
mesh is interpolated as shown in Figure 9.

5.2. Weighted Pose Space Deformation

In this subsection, we present a method for the deforma-
tion of a given arbitrary pose. With pose space deformation,
shape deformation is accomplished by interpolating sample
shapes, and this is done by using RBF in the pose space
[SIC01]. The possible deformations therefore depend on the
sample poses. Now let ai be a vector that consists of ndof ro-
tation angles for pose i. Then, pose a in which the shape can
be interpolated with sample shapes is constrained by

a =
npose

∑
i=1

siai. (9)

Hence, with the limited samples in our experiment, it is dif-
ficult to make a deformed shape of an arbitrary pose where,
for example, only the index finger is extended and the other
fingers are bent. For arbitrary poses, more samples are re-
quired for deformation. The hand is thought to have about 30
DOFs, so we need samples that correspond to these DOFs.

Preparing such samples is time-consuming, however, and
a great deal of computational time is needed to interpo-
late many samples. Fortunately, deformation with poses has
some independence. For example, deformation of the index
finger is not affected by rotation angles of the little finger.

Next, we present an interpolation method with limited
sample poses. It is an extension of pose space deformation,
which we will describe here in more detail before explaining
our method.

Given pose a, we need to calculate weight si(a) for each

sample. These weights are subject to the following con-
straints:

1. At an example point, the weight for that example must be
one, and all the other weights must be zero:

si(a j) = 1 (i = j)

si(a j) = 0 (i �= j). (10)

2. The weights must always add up to one:
npose

∑
i=1

si(a) = 1. (11)

3. si(a) must be continuous according to the change of a for
smooth animation.

We first calculate fi(a)(1 ≤ i ≤ npose):

fi(a j) = 1 (i = j)

fi(a j) = 0 (i �= j), (12)

where fi(a) has the following RBF form:

fi(a) =
npose

∑
j=1

ci, jφ(d(a−a j)), (13)

where d(a − a j) is the distance between pose a and pose
a j , ci, j is a coefficient that can be solved with Equation 12.
Then, si(a) can be calculated with fi(a) :

si(a) =
fi(a)

∑npose

j=1 f j(a)
. (14)

Calculated weight si(a) is used in the deformation of a
given pose. In our experiment, the distance between pose a
and pose b is defined as:

d(a,b) =

√
ndof

∑
k=1

(ak −bk)2. (15)

Note that weight si(a) for interpolation is the same for all
vertices.
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Pose 1 Pose 5 Pose 3
means measured mesh.

Figure 9: Results of shape interpolation.

Next, we will explain Weighted Pose Space Deformation
(WPSD) with limited examples. The influence of links on
deformation changes from vertex to vertex. Let u j,k be the
weight coefficient of vertex j that describes the influence
from the k-th component of vector a on vertex j. We de-
fine the distance between two poses a and b for each vertex
j with this weight:

d j(a,b) =

√
ndof

∑
k=1

u j,k(ak −bk)2. (16)

With this distance, we calculate weight si(a) for each ver-
tex. With this weight, we interpolate each vertex position in
the base pose using Equation 7. Figure 10 shows the results
for weighted pose space deformation. Natural deformation
is obtained with limited samples because of the weight coef-
ficient and the independence of deformation on joints. Fig-
ure 11 compares three methods: SSD, original pose space
deformation, and weighed pose space deformation. Unnat-
ural deformation can be seen in the little finger with SSD.
Original pose space deformation has a problem with the
ring finger because not enough samples were prepared. The
weighted pose space deformation method results in natural
deformation even with limited samples. Note that the orig-
inal pose space deformation may result in natural deforma-
tion if enough samples are prepared. In our experiment, we
used the same value for weighting that we used for weight
w j,k of the SSD and obtained good results.

We can precompute coefficient ci, j for every vertex be-
fore WPSD deformation. However, distance d j and weight
si(a) must be computed for every vertex for deformation.
This causes additional computation time. The computation
cost of WPSD is O(Npose ×Nvertex).

The example images in Figures 9 and 10 were generated
with OpenGL hardware rendering. The shape interpolation
in Figure 9 took 62 [ms] and the hardware rendering took

25 [ms]. The weighted pose space deformation in Figure 10
took 157 [ms]. Deformation can be done in near real-time (6
fps) with a Pentium IV PC with a 2.2-GHz CPU, 1 GB of
memory, and a Radeon 9500 Pro graphics board. No hard-
ware acceleration was used in our experiment, but graphics
hardware may be used for pose space deformation [KJP02].

6. Conclusion

We have developed techniques that enable skeleton driven
deformation of a detailed hand model derived from CT im-
ages. The joint centers and joint angles of each scan are esti-
mated by comparing the shapes of bones in several poses.
Mutually consistent skin surfaces are generated by fitting
a base skin surface into other skin surfaces. These joint
centers, joint angles, and consistent skin surfaces are used
in Weighted Pose Space Deformation to deform the hand
model according to a given pose. The result is a richly de-
tailed example-based posable hand model.

There are many ways of extending the techniques that we
have described. Fitting techniques that can handle missing
parts in skin (e.g., Pose 4 in Figure 2 ) need to be devel-
oped. Methods of calculating the weights for the SSD auto-
matically [MG03] instead of specifying them interactively
should also be developed. To produce consistent meshes for
all scans, we have to specify the feature points. Since the
accuracy of deformation very much depends on this, more
sophisticated methods that make correspondence between
meshes should be developed. One possibility is to use ge-
ometric feature correspondence. Finally, our posable model
can only be used to simulate deformation of a measured sub-
ject. Modeling the human hand by examples [ACP03] could
be accomplished by measuring large numbers of people’s
hands.
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Figure 10: Results of weighted pose space deformation.

(a) SSD (b) Pose space 
deformation

(c) Weighted pose 
space deformation

Figure 11: Comparison of deformation methods.
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