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Abstract
In this paper we present a method for creating novel animations from a library of existing two-dimensional cartoon
data. Drawing inspiration from the idea of video textures, sequences of similar-looking cartoon data are combined
into a user-directed sequence. Starting with a small amount of cartoon data, we employ a method of nonlinear
dimensionality reduction to discover a lower-dimensional structure of the data. The user selects a start and end
frame and the system traverses this lower-dimensional manifold to re-sequence the data into a new animation.
The system can automatically detect when a new sequence has visual discontinuities and may require additional
source material.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation

1. Introduction

The process of traditional cel animation has seen a number
of enhancements in recent years, but these have focused on
such tasks as texture mapping the cels [CJTF98], creating
shadows [PFWF00], or retargeting the motion of one char-
acter onto another character [BLCD02]. However, cel ani-
mation remains a very tedious and time-consuming task, re-
quiring twenty-four hand drawn frames per second of ani-
mation. For a typical animated TV series, artists bring life to
familiar cartoon characters for every episode, yet no method
exists that would allow them to reuse their drawings for fu-
ture episodes.

Software packages such as Toon Boom Technologies,
[FBC∗95], can create simple inbetweens based on vector an-
imation. Although an animator could reuse the original mod-
els of the characters, the basic animation still has to be cre-
ated, and these animations tend to lack the expressiveness of
familiar styles, such as the distinctive style of animations by
Chuck Jones. The same issues arise when creating 3D mod-
els for cartoon characters and ’toon-rendering them. ’Toon-
rendering is a technique that can render 3D scenes in styles
that have the look of a traditionally animated film; it is often
called ’toon shading. Adding a great deal of deformation,
like squash and stretch or incorporating other principles of
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animation [Bla94] to a 3D model of a character is often chal-
lenging, requiring the skills of a talented artist. Even when
’toon-rendering a 3D character, one cannot expect it to look
like the traditionally hand drawn Wile E. Coyote getting flat-
tened or stretched in a visually extreme manner.

This work presents a method for creating novel anima-
tions from a library of existing cartoon data. Drawing inspi-
ration from the idea of video textures [SSSE00], sequences
of similar-looking cartoon data are combined into a user-
directed sequence. Our goal is re-sequencing cartoon data
to create new motion from the original data that retains the
same characteristics and exposes similar or new behaviors.

The number of new behaviors that can be re-sequenced
is restricted by the amount of data in our library for each
character. Starting with a small amount of cartoon data, we
use an unsupervised learning method for nonlinear dimen-
sionality reduction to discover a lower-dimensional structure
of the data. The user selects a desired start and end frame
and the system traverses this lower-dimensional manifold to
re-sequence the data into a new animation. Our method is
model-free, i.e., no a priori knowledge of the drawing or
character is required. The user does not need the ability to
animate, or know what an acceptable inbetween is, since
the data is already provided. The system can detect when
a transition is abrupt, allowing the user to inspect the new
animation and determine if any additional source material is
needed. Minimal user input is required to generate new an-
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imations, and the system requires much less data than the
video textures method for re-sequencing.

2. Previous Work

2.1. Animation-Based Methods

The issue of generating inbetweens for cartoon animation
has been studied. Reeves [Ree81] presented a method for
creating inbetweens by using moving-point constraints. A
moving-point is a curve in space and time that provides a
constraint on the path and speed of a specific point on the
keyframe for a character. These moving-points are manually
specified, and allow for multiple paths and speeds of inter-
polation. While this method provides control in creating a
new animated sequence by generating the inbetweens “auto-
matically,” a great deal of manual effort is involved.

Sederberg and Greenwood [SG92] studied how to
smoothly blend between a pair of 2-dimensional polygo-
nal shapes. By modelling a pair of contours as thin wires,
[SG92] minimize equations of work for deforming thin
wires to achieve smooth shape transformation between the
two contours. They address the problem of vertex correspon-
dences by specifying a small number of initial corresponding
point pairs on the input contours. While their results show
nice shape blending, the shapes must be polygonal, there-
fore using existing animations would require polygonalizing
every image. Their results also depend on the initial manual
placement of the corresponding vertex pairs.

Bregler et al. [BLCD02] reused cartoon motion data by
capturing the motion of one character and retargeting it onto
a new cartoon character. This approach does not generate a
new cartoon motion. Their system requires a great deal of
expert user intervention to train the system and a talented
artist to draw all the key-shapes. Each of the key-shapes must
be manually specified for the source and target character,
and parameterized by hand to find the affine deformations
that the source key-shapes undergo before applying them to
the target key-shapes. Their work provides a method for re-
using the overall motion of the cartoon data, but it does not
look at the structure of the data itself and therefore cannot
re-sequence the data to expose meaningful new behaviors.

We are motivated by the work of Schödl et al. [SSSE00]
on video textures to retain the original images in motion se-
quences but play them back in non-repetitive streams of ar-
bitrary length. Video textures is most similar to our goal of
re-sequencing cartoon images, specifically the “video-based
animation” section of their work, although it is not user-
directable. They use the L2 distance to compute the differ-
ences between frames for building the video structure. We
want to compare the differences between frames in a simi-
lar fashion to analyze the data for re-sequencing. [SSSE00]
assume a large data set with incremental changes between
frames. Their methods do not extend well to cartoon data,

which is inherently sparse and contains exaggerated defor-
mations between frames. In their follow-up work [SE01],
they use user-directed video sprites for creating new char-
acter animations. However, the examples shown require a
vast amount of video data: 30 minutes of video footage for
a hamster yielding 15,000 sprite frames. In our work, the
largest cartoon data set we use has 2,000 frames, yet we still
achieve good results with sparser data of 560 frames.

Recently, other researchers have found inspiration from
video textures and have applied it to motion capture data.
Sidenbladh et al. [SBS02] employ a probabilistic search
method to find the next pose in a motion stream and obtain
it from a motion database. Arikan and Forsyth [AF02] con-
struct a hierarchy of graphs connecting a motion database
and use randomized search to extract motion satisfying spec-
ified constraints. Kovar et al. [KGP02] use a similar idea to
construct a directed graph of motion that can be traversed
to generate different styles of motion. Lee et al. [LCR∗02]
model motion as a first-order Markov process and also con-
struct a graph of motion. They demonstrate three interfaces
for controlling the traversal of their graph. In our work, once
the structure of the data is learned, the manifold that repre-
sents the data can be traversed to re-sequence the data.

2.2. Dimensionality Reduction

Dimensionality reduction for image data sets consisting of a
large number of images has been used to represent a mean
image, or subset of images, that are representative of the
entire data set. A commonly used dimensionality reduction
method is Principle Component Analysis (PCA) [Jol86], a
linear embedding technique that will generate a mean im-
age and eigenvectors that span the principle shape varia-
tions in the image space. However, this technique does not
retain the spatio-temporal structure in the data that we are
seeking. We assume our data have some underlying spatial
surface (manifold) for which we wish to discover an em-
bedding into a lower-dimensional space. Multidimensional
scaling (MDS)[KW78] is another approach that finds an em-
bedding that preserves the pairwise distances, equivalent to
PCA when those distances are Euclidean. However, many
data sets contain essential nonlinear structures that are invis-
ible to PCA and MDS.

Two techniques for manifold-based nonlinear dimension-
ality reduction are Isomap [TdSL00] and Locally Linear
Embedding (LLE) [RS00]. Both methods use local neigh-
borhoods of nearby data to find a low-dimensional manifold
embedded in a high-dimensional space. However, neither
of these methods account for temporal structure in cartoon
data. A modified version of Isomap, called Spatio-Temporal
Isomap (ST-Isomap) [JM03], can account for the temporal
dependencies between sequentially adjacent frames. We bor-
row the idea of extending Isomap using temporal neighbor-
hoods from [JM03], and use ST-Isomap for dimensionality
reduction of cartoon data to maintain the temporal structure
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in the embedding. [JM03] focuses on synthesizing humanoid
motions from a motion database by automatically learning
motion vocabularies. Starting with manually segmented mo-
tion capture data, ST-Isomap is applied to the motion seg-
ments in two passes, along with clustering techniques for
each of the resulting sets of embeddings. Motion primitives
and behaviors are then extracted and used for motion syn-
thesis. This type of analysis and synthesis also requires more
data than is typically available for cartoon synthesis. Thus,
we adapt the methods of [JM03] to use images as input, and
use only one pass of ST-Isomap for creating the embedding
used for re-sequencing.

3. Technical Approach

Since we are not generating new frames, the types of new
motions that can be re-sequenced are restricted by the
amount of data in our library for each character. Our method
is model-free, requiring no a priori knowledge of the cartoon
character. First, the cartoon data is pre-processed. Next, non-
linear dimensionality reduction is used to learn the structure
of the data. Finally, by selecting a start and end frame from
the original data set, the data is re-sequenced to create a new
motion.

3.1. Pre-Processing Cartoon Data

Our input data comes from 2D animated video or ’toon-
rendered motion capture. The video is pre-processed to re-
move the background and register the character relative to a
fixed location throughout the sequence. There are a number
of video-based tracking techniques that can be used for back-
ground subtraction, although currently we manually segment
the images. Since our representation of the data is model-
free, we do not need to identify any specific region of the
character, i.e., limbs or joints, so it does not matter that
the characters may undergo deformation. The registration is
done using the centroid of the character in each frame and
repositioning it to the center of the image, facilitating the
computation of a distance matrix later.

We examine four cartoon sequences with different char-
acters, a gremlin, Daffy Duck, the Grinch, and Michigan J.
Frog. For the gremlin data set, there are 2,000 images of size
320 by 240 that are cropped and scaled to 150 by 180. The
gremlin data set is created from three clips of motion capture
of free-style dancing performed by the same subject, which
is played through a gremlin model and ’toon-rendered on
a constant white background. There are 560 images in the
Daffy data set, with images of size 720 by 480, cropped and
scaled to 310 by 238. There are 295 images in the Grinch
data set and 146 images in the Frog data set, both sets with
images of size 640 by 480. For these sequences, the char-
acters are segmented and placed on a constant blue back-
ground. Figure 1 shows examples of the frames from the
original data along with the corresponding segmented im-
ages. Our focus in this work is primarily with the gremlin

Figure 1: The top row shows a frame from the gremlin data
set before and after processing. The second row shows an
original and cleaned up frame from the Daffy Duck data.
An example frame from the Grinch data in the third row, and
Michigan J. Frog in the last row. Daffy and M.J. Frog ™&
©Warner Bros. Entertainment Inc. (s04)., Grinch ©Turner
Entertainment Co.

and Daffy Duck data sets because of their larger size. We
later discuss the issues with the smaller data sets.

3.2. Dimensionality Reduction

Nonlinear dimensionality reduction finds an embedding of
the data into a lower-dimensional space. We use a modi-
fied Isomap, ST-Isomap, to perform the manifold-based non-
linear dimensionality reduction. Like standard Isomap, ST-
Isomap preserves the intrinsic geometry of the data as cap-
tured in the geodesic manifold distances between all pairs of
data points. It also retains the notion of temporal coherence,
which is critical to the resulting output for cartoon data. ST-
Isomap uses an algorithm similar to Isomap, as follows:

1. Compute the local neighborhoods based on the distances
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DX (i, j) between all-pairs of points i, j in the input space
X based on a chosen distance metric.

2. Adjust DX (i, j) to account for temporal neighbors.
3. Estimate the geodesic distances into a full distance matrix

D(i, j) by computing all-pairs shortest paths from DX ,
which contains the pairwise distances.

4. Apply MDS to construct a d-dimensional embedding of
the data.

The difference between Isomap and ST-Isomap is in step 2,
where the temporal dependencies are accounted for.

One issue with Isomap is determining the size of the spa-
tial neighborhoods. If the data is sufficiently dense, Isomap
can form a single connected component, which is impor-
tant in representing the data as a single manifold structure.
The connected components of a graph represent the distinct
pieces of the graph. Two data points (nodes in the graph) are
in the same connected component if and only if there exists
some path between them.

Our experimental results found that varying the size of the
neighborhood (step 1) will ensure that a single connected
component is formed regardless of the sparseness of the
data. However, depending on the distance metric used and
the sparseness of the data, the spatial neighborhoods need to
be increased to a point such that no meaningful structure will
be found. This issue arises with Isomap since its main objec-
tive is in preserving the global structure and preserving the
geodesic distances of the manifold. ST-Isomap, by includ-
ing adjacent temporal neighbors, remedies this deficiency,
allowing a smaller spatial neighborhood size while forming
a single connected component. Having all of the data points
in the same embedding is desirable for re-sequencing. Us-
ing from one to three temporal neighbors and a small spatial
neighborhood results in a meaningful structure that is usable
for re-sequencing.

3.3. Distance Metrics

The key to creating a good lower-dimensional embedding
of our data is the distance metric used to create the input
to Isomap. When computing the local neighborhoods for
D(i, j), we examined three different distance metrics: the L2
distance, the cross-correlation between pairs of images, and
an approximation to the Hausdorff distance [DHR93]. As
mentioned previously, video textures uses the L2 distance for
computing the similarity between video frames. Although
this works well for densely sampled video, it is insufficient
for dealing with sparse cartoon data.

3.3.1. L2 Distance

The first distance metric is the L2 distance between all-pairs
of images. Given two input images Ii and I j:

dL2(Ii, I j) =
√
‖Ii‖2 +‖I j‖2 −2∗ (Ii · I j)

Only the luminance of the images is used for the L2 distance.
The distance matrix DL2(i, j) is created such that

DL2(i, j) = dL2(Ii, I j)

This metric is simple and works well for large data sets with
incremental changes between frames, but is unable to handle
cartoon data, which is inherently sparse and contains exag-
gerated deformations between frames.

3.3.2. Cross-Correlation Distance

The second distance metric is based on the cross-correlation
between a pair of images. This metric also uses only the lu-
minance of the images. Given two input images Ii and I j:

ci, j =
∑m ∑n(Iimn − Īi)(I jmn − Ī j)√

(∑m ∑n(Iimn − Īi)2)(∑m ∑n(I jmn − Ī j)2)

where Īi and Ī j are the mean values of Ii and I j respectively.
This equation gives us a scalar value ci, j for the correla-
tion coefficient between image Ii and image I j in the range
[−1.0,1.0]. However, we want the correlation-based dis-
tance metric to be 0.0 for highly correlated images and 1.0
for anti-correlated images. Therefore the correlation-based
distance matrix between images Ii and I j is Dcorr(i, j) =
(1.0− ci, j)/2.0.

3.3.3. Hausdorff Distance

The third distance metric is an approximation to the Haus-
dorff distance. This metric uses an edge map and a distance
map of each image. The edge map E is computed using a
standard Canny edge detector [Can86]. The distance map X
is the distance transform calculated from E, and represents
the pixel distance to the nearest edge in E for each pixel in
X . Then, the Hausdorff distance between a pair of images Ii
and I j is:

DHaus(i, j) =
∑(x,y)∈Ei≡1 Xj(x,y)

∑(x,y)∈Ei≡1 Ei(x,y)

where Ei is the edge map of image Ii, Xj is the distance map
of image I j, and (x,y) denote the corresponding pixel coor-
dinates for each image. Figure 2 shows an example of the
edge map and distance map for a given frame.

Figure 2: An edge map in the center, and distance map on
the right, for a frame from the Daffy Duck data set. ™&
©Warner Bros. Entertainment Inc. (s04).

Figure 3 shows an example of the L2, correlation-based
distance and the Hausdorff distance matrices for the Daffy
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L2 Correlation-Based Hausdorff

Figure 3: L2, Correlation-based and Hausdorff distance
matrices for the Daffy data set.

data set. A value of zero corresponds to similar images,
while a value of one corresponds to dissimilar images. Note
that the diagonal is zero as expected, and the banding in-
dicates structure in the data. We found that the Hausdorff
distance metric works best for all data sets.

3.4. Embedding

Once the distance matrix for a data set is computed, we ap-
ply ST-Isomap to obtain the lower-dimensional embedding
of the cartoon data. The dimensionality of the embedding
space must be determined. Choosing a dimensionality too
low or too high results in incoherent re-sequencing.

Estimating the true dimensionality of the data using ST-
Isomap is different than with PCA. In PCA, picking the di-
mensionality of a reduced data set can be done automatically
such that the proportion of variance (shape variations) re-
tained by mapping down to n-dimensions can be found as the
normalized sum of the n-largest eigenvalues. This residual
variance is typically chosen to be greater than 80% (usually
90%), while the remaining variance is assumed to be noise.
PCA seeks to maximize the principal shape variations in the
data, while minimizing the error associated with reconstruct-
ing the data from the lower-dimensional representation. The
intrinsic dimensionality of the data estimates the lower di-
mensional subspace where the high dimensional data actu-
ally “lives”.

In ST-Isomap, the residual variance is computed using the
intrinsic manifold differences, which take into account pos-
sible nonlinear folding or twisting. We pre-select the num-
ber of dimensions in which to embed the data, from one to
10 dimensions. The true dimensionality of the data can be
estimated from the decrease in residual variance error as the
dimensionality of the embedding space is increased. We se-
lect the “knee” of the curve, or the point at which the resid-
ual variance does not significantly decrease with added di-
mensions. Figure 4 shows the residual variances and the 2-
dimensional projections of the neighborhood graphs for all
the data sets. The neighborhood graphs represent the man-
ifold structure of the data, but only 2-dimensional embed-
ding spaces are shown in the figure. Notice that the gremlin
and the Daffy data sets are reduced to about five dimensions

(Figure 4(i,k,m,o)), as indicated by the variance plots. The
Grinch data can be reduced down to a three dimensional
manifold (Figure 4(a,c)). The Frog data set is very sparse,
and can at best be reduced to a five dimensional manifold.

The differences in the variances and neighborhood graphs
for the data sets in the figure are also influenced by vary-
ing the spatial neighborhood size for creating the original
Isomap and the ST-Isomap embeddings. More spatial neigh-
bors are included in the original Isomap to ensure that a sin-
gle connected component is embedded for all data sets ex-
cept the gremlin, which is sufficiently dense. The Daffy data
set requires 20 spatial neighbors using original Isomap. For
the Grinch data, 74 spatial neighbors are needed to generate
a single connected component using original Isomap. Sim-
ilarly, the Frog data requires 10 spatial neighbors to gener-
ate a single connected component using original Isomap. All
data sets required seven spatial neighbors to generate the sin-
gle connected component using ST-Isomap, while the tem-
poral neighbors varied from one to three.

3.5. Re-sequencing New Animations

To generate a new animation, the user selects a start frame
and an end frame, and the system traverses the Isomap em-
bedding space to find the shortest cost path through the man-
ifold. This path gives the indices of the images used for the
resulting animation, which is created by re-sequencing the
original, unregistered images. Dijkstra’s algorithm [Sed02]
is used to find the shortest cost path through the mani-
fold. The dimensionality of the embedding space used for
re-sequencing, i.e., for traversing the neighborhood graph,
varies for each data set. The Daffy data set and the Frog data
set use a 5-dimensional embedding space, the gremlin data
set uses a 4-dimensional embedding space, and the Grinch
data set uses a 3-dimensional embedding space.

3.5.1. Post-Processing

To ensure the smoothest looking re-sequenced animations,
we add a small amount of automatic post-processing. Only
the start and end keyframes for each re-sequenced segment
are specified, but currently there are no restrictions on the
number of inbetweens that the path should have. As such,
the shortest cost path may not visit all temporally adjacent
frames in the embedding space. To improve the re-sequenced
animation, we process the frames specified from the path
using the following automatic techniques. First, any miss-
ing sequentially adjacent frames within eight frames are in-
serted, helping to smooth some of the choppiness associ-
ated with skipping the missing frames. Sequentially adja-
cent frames are those that are adjacent in the original se-
quence. For example, if the re-sequenced path selected is [20
24 60 70] before inserting the sequentially adjacent frames,
the resulting path becomes [20 21 22 23 24 60 70]. Using up
to eight sequentially adjacent frames does not significantly
change the overall re-sequenced path since the temporally
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(c) Grinch ST-Isomap with
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ance plot
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(d) Grinch ST-Isomap with
three temporal neighbors, 2D
graph
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(e) Frog original Isomap, vari-
ance plot
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(f) Frog original Isomap, 2D
graph
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(g) Frog ST-Isomap with three
temporal neighbors, variance
plot
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(h) Frog ST-Isomap with
three temporal neighbors, 2D
graph
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(i) Gremlin original Isomap,
variance plot
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(j) Gremlin original Isomap,
2D graph
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(k) Gremlin ST-Isomap with
two temporal neighbors, vari-
ance plot
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(l) Gremlin ST-Isomap with
two temporal neighbors, 2D
graph
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(m) Daffy original Isomap,
variance plot
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(n) Daffy original Isomap, 2D
graph

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
es

id
ua

l v
ar

ia
nc

e

Isomap dimensionality

(o) Daffy ST-Isomap with two
temporal neighbors, variance
plot
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(p) Daffy ST-Isomap with two
temporal neighbors, 2D graph

Figure 4: Results showing the residual variance and 2-dimensional projection of the neighborhood graph generated with
original Isomap and ST-Isomap using the Hausdorff distance matrix on the Grinch, Michigan J. Frog, the gremlin, and Daffy
Duck. The number of temporal neighbors used is indicated in the figure.
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adjacent frames are usually near each other in the embed-
ding space.

After adding these frames, we further improve the
smoothness of the re-sequenced animations by matching the
velocity of the centroid of each character from frame to
frame in the new path. The new sequence was found based
on the distance metric using registered images, described
in Section 3.1. The registered images thus no longer pos-
sess any offset of the character within the frame. In post-
processing, the original, unregistered images are used. For
each original image in the data set, the character’s centroid
is calculated and stored. Then a velocity vector is computed
based on each frame’s previous and next temporal neighbor
in the original (unregistered) sequence. When given a path
for re-sequencing, the position and velocity of the centroid
for the character in every frame are known. The position of
the character is adjusted from one frame to the next in the
new sequence based on the projected position indicated by
the first frame’s velocity vector from the original sequence.
This adjustment is done whenever the path jumps from one
single frame or subsequence in the path to another. Subse-
quences in the path are handled such that the first frame
in the subsequence has its character repositioned based on
the previous frame’s projected position, while the remaining
frames in that subsequence are adjusted to the first frame’s
new position.

Finally, if the character translates along the z-axis then
the figure often changes in size within the frame. The final
re-sequenced frames are adjusted using a scale factor based
on the average pixel volume in the sequence. The scale fac-

tor s is defined as s =
√

Vola
Vols

where Vola is the average pixel

volume in the entire path, and Vols is the average pixel vol-
ume of a subsequence (or just the pixel volume of a single
frame). Then s is applied to each frame of the subsequence
(or single frame) in the path.

3.5.2. Threshold Detection

In re-sequencing cartoon data, the transitions from the short-
est cost path may result in a visual discontinuity. A small cost
would indicate a good transition, while a large cost would in-
dicate a bad transition. The system can automatically iden-
tify when the cost of a transition is too large. A threshold is
determined for each data set, and notifies the user of abrupt
transitions in the re-sequenced animation. The threshold is
currently determined manually for each data set by exam-
ining the embedding structure and its associated costs. This
notification allows the user to decide if additional source ma-
terial or inbetweens are needed to produce a more visually
compelling sequence.

4. Results

A demonstration of re-sequencing cartoon data with ST-
Isomap can be seen in the accompanying video. The Haus-
dorff distance metric works best for all of our cartoon data.

We found that for the gremlin data set and the Daffy data set,
using two or three temporal neighbors yielded the best re-
sults. The gremlin data set is well populated with only a few
large jumps at the transitions between motion capture clips,
but the Hausdorff distance metric is an improvement over the
L2 distance. For the Daffy data set, there are also a few large
jumps in the original data resulting from the camera cuts for
those scenes. The Hausdorff distance metric is significantly
better than the L2, and reasonable paths are found through
the embedding space.

We are able to re-sequence the gremlin data into a short
motion clip that retains the same characteristics of the orig-
inal dance motion, but shows a new dance behavior. This
result was achieved by selecting six keyframes (sets of start
and end frames) and applying ST-Isomap with two temporal
neighbors, and post processed as described in Section 3.5.1.
The result is a sequence with a total of 57 frames.

We also re-sequence the Daffy data into two short mo-
tion clips, each retaining the original characteristics of the
gesturing motion, but showing a new gesturing behavior.
The clips were created by selecting six and seven keyframes
and applying ST-Isomap with two temporal neighbors. The
first clip was minimally post-processed, only the missing
temporally adjacent frames were inserted, and resulted in
a sequence with a total of 59 frames. The second clip was
post-processed by including any missing temporally adja-
cent frames and velocity-matching the centroids, resulting
in a sequence with a total of 98 frames. Both clips show new
gesturing behaviors.

Daffy 246 → 235 0.413511 good

Daffy 326 → 77 6.173898 bad

Daffy 99 → 243 3.010666 accept

Daffy 235 → 236 0.094055 good

Daffy 98 → 99 7.270829 bad

Table 1: Examples of the distance values between pairs of
frames using the Hausdorff distance metric on the Daffy
data set. Adjacent frames in the original data set may not
always have a low distance value, as shown in the table. The
transition from frame 98 to 99 is an abrupt transition ac-
cording to the distance metric.

After generating several re-sequenced animations for a
particular data set, we inspect the cost values associated with
the transitions and determine a threshold value for abrupt
transitions. Once the threshold is determined, the system
can use threshold detection to indicate to the user when a
large transition cost has occurred. Our findings indicate that
a threshold value of DHaus < 2.2 represents a good transi-
tion while DHaus > 3.9 represents an abrupt transition for
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frame 246 frame 235

frame 326 frame 77

frame 99 frame 243

frame 235 frame 236

frame 98 frame 99

Figure 5: An example of good, bad, and acceptable transi-
tions for the Daffy data set from a path generated using ST-
Isomap with two temporal neighbors. The pairs of frames
shown correspond with the values shown in Table 1. ™&
©Warner Bros. Entertainment Inc. (s04).

the Daffy data set. Table 1 shows some of the distance val-
ues associated with the transitions for a re-sequenced an-
imation, while Figure 5 shows the frames referred to in
the table. The transition from frame 99 to 243 has a value
2.2 ≤ DHaus ≤ 3.9, representing a region that should be in-
spected by the animator before accepting or rejecting. In this
case it is accepted.

To test the system’s ability to detect a large transition,
an example is generated with three images from the Daffy
data set removed. ST-Isomap is applied using two temporal
neighbors and seven spatial neighbors. In the path generated
from the data set with missing frames, the transition cost
exceeded the pre-set threshold and resulted in a sequence
with visual discontinuities. Inserting inbetween frames at
the point of highest transition cost generates an improved
sequence. Figure 6 shows the two paths without any post-
processing. The sequence generated from the data set with
missing images differs from the other sequence only in the
transition from the first frame 326 to the second frame 77,
which is where the inbetweens were added.

The Michigan J. Frog data set illustrates the challenges in
re-sequencing cartoon data. This data set has 146 frames, of
which only 73 are unique. Although ST-Isomap can reduce
the data to approximately five dimensions, traversing the
resulting embedding space for re-sequencing yields jumpy
motion. A transition threshold can still be found even though
the data set is so sparse. A threshold value Dcorr ≤ 0.58 rep-
resents a good transition. Figure 7 shows examples of good
and bad transitions for the Frog, and the corresponding tran-
sition costs, for a path generated using ST-Isomap with three
temporal neighbors.

5. Conclusion and Future Work

We are able to re-sequence cartoon data to new animations
that retain the characteristics of the original motion. Our
method is model-free, i.e., no a priori knowledge of the
drawing or cartoon character is required. The keys to the
method are the identification of a suitable metric to charac-
terize the differences in cartoon images and the use of a non-
linear dimensionality reduction and embedding technique,
ST-Isomap. The system can characterize when a novel re-
sequencing requires additional source material to produce a
visually compelling animation.

We foresee that this system will be useful as an aid to
artists charged with generating inbetweens in cel animation.
If a sufficient body of prior animation is available, the inbe-
tween artist could use the system to match keyframes in a
new animation and generate inbetweens from existing data.
Only if the keyframes were sufficiently novel or the transi-
tion cost too high would the inbetween artist be required to
generate new art.

We would like to address the issue of synthesizing new
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frame 326 frame 325 frame 324 frame 77 frame 51 frame 98

frame 326 frame 77 frame 51 frame 98

Figure 6: A filmstrip of two paths without any post-processing. The bottom row shows the path generated from the Daffy data
set with three frames removed. The top row shows the same path with inbetweens inserted at the point of highest transition cost,
in this case between frames 326 and 77. ™& ©Warner Bros. Entertainment Inc. (s04).

frame 22 frame 27 frame 12 frame 109

Figure 7: An example of good and bad transitions for the Frog data set. The first pair of images demonstrates a good transition
from frame 22 to 27 with a cost of 0.198132. The second pair of images demonstrates a bad transition from frame 12 to 109
with a cost of 0.609729. ™& ©Warner Bros. Entertainment Inc. (s04).

data, i.e., generating transitions with blending or interpolat-
ing. Currently, the system will only determine that an abrupt
transition has been made, but it cannot automatically gener-
ate the necessary inbetweens. Using optical flow for gener-
ating the inbetween frames may work if the two frames are
not significantly dissimilar. Another technique to investigate
is smoothing the transitions by adding motion blur [BE01].

Other error metrics more specific to cartoon images, such
as perception-based image metrics, may reveal how the hu-
man visual system accepts certain types of transitions in
an animated character, while other transitions are obviously
bad. Even though some of the data is sparse, it was originally
drawn that way, and when playing back the animation, some
of the frames that are considered abrupt transitions by our
system may actually be visually acceptable by the viewer.
User studies may provide some insight into this behavior.

Another improvement would be to explore other meth-
ods of traversing the Isomap embedding space. The short-
est cost only represents the similarity between two frames.
Some cartoon motions that are very expressive and exag-
gerated may call for a quick transition between dissimilar
frames. In this case, the lowest cost would not be appro-
priate. Post-processing the re-sequenced animations helps
produce smoother results, but the results may still be too

discontinuous. We would like to investigate how adding a
component of velocity (similar to the post-processing) to the
distance metric may change the embedding space, and thus
change the resulting re-sequencing. One possible way of in-
corporating the “velocity” into the distance metric would be
to calculate the optic flow of the edge map of each image
and use it to estimate a velocity term.

Finally, the sparseness of the data is an issue because of
the slow acquisition of clean and segmented images of car-
toon characters. To acquire a larger amount of data more
quickly, we are looking into automatic methods of back-
ground segmentation. One method we have begun using is
a level set method that looks at the character as regions of
specific color values.
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