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Abstract
We introduce an efficient compression method for animated sequences of irregular meshes of the same connectivity.
Our approach is to transform the original input meshes with an anisotropic wavelet transform running on top of a
progressive mesh hierarchy, and progressively encode the resulting wavelet details. For temporally coherent mesh
sequences we get additional improvement by encoding the differences of the wavelet coefficients. The resulting
compression scheme is scalable, efficient, and significantly improves upon the current state of the art for the
animated mesh compression.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and
object representations

1. Introduction

Animated sequences of meshes are commonplace in charac-
ter animation, computer games, and physical simulation ap-
plications. The compact representation of this kind of data
is therefore very important for efficient storage and trans-
mission. Most often, these mesh sequences are deformations
of a single irregular mesh, that is, they share the same con-
nectivity and differ in the positioning of the vertices from
frame to frame. This separation of connectivity and geom-
etry have recently been recognized by a number of ani-
mated mesh compression approaches [Len99] [AM00] [KG]
[IR03][BSM∗03]. In this paper, we propose a novel solu-
tion to this problem that explicitly exploits the parametric
(or sampling) coherence that is often present in the animated
sequences of irregular meshes.

Our approach is very simple: we apply a wavelet trans-
form running on top of a progressive mesh hierarchy, and
progressively encode the resulting wavelet detail coefficients
stored in a local frame. When temporal coherence is present
in the input data sequence, we also employ the interframe
differencing of wavelet details. The advantage of using a
multiresolution representation is evident when the input se-
quence is a rigid-body motion; in this case the wavelet co-
efficients do not change from frame to frame and the posi-
tions of the coarsest level vertices are sufficient for exact re-
construction of the moving shape. The interesting animated
mesh sequences are not typically rigid, and good compres-

sion performance is then dependent on the stability of the
wavelet transform and its ability to decorrelate geometric in-
formation.

Our wavelet transform is a modified version of the
multiresolution transform for irregular meshes intro-
duced in [GSS99]. It belongs to the class of second-
generation wavelet transforms described by Daubechies et
al. [DGSS99]. The important feature of such a transform
is that its wavelet filter coefficients are computed based on
the geometry (or more precisely, the sampling pattern/local
parameterization) of a parametric mesh. In the context of
animated mesh processing, we can use the first frame of
the sequence as such a parametric mesh, and all the other
frames are transformed with wavelet filters computed from
this parametric frame. The parametric frame is encoded sep-
arately with a static mesh compression technique.

The basic idea behind the wavelet transform operating on
irregular meshes is to compute a wavelet detail every time a
vertex is removed within a progressive mesh hierarchy; the
wavelet detail is defined as the difference between the actual
position of the vertex being removed and its prediction from
the coarser level. The properties of such a wavelet transform
are then fully determined by the predictor’s ability to pre-
dict. One of the contributions of this paper is to introduce an
anisotropic modification of the predictor of [GSS99] that can
recover shapes with sharp creases, which can be important
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for some animated mesh sequences, especially in character
animation.

The idea of splitting the mesh information into con-
nectivity, geometry, and parameterization has been used
in static mesh compression to justify the resampling of
the original data to get rid of the parametric information
[KSS00][GGH02]. The parameterization information for ir-
regular meshes represents how the mesh vertices sample the
underlying shape. Looking at animated mesh sequences, we
observe that they typically share not only the same con-
nectivity but also similar local parameterization. Thus, it
makes sense to transmit the connectivity and the parame-
terization component once for all the meshes, and then use
it while reconstructing the geometry of all the frames. Our
wavelet transform is dependent on the parametric informa-
tion. Hence it is able to exploit the common parameterization
for decorrelating the geometry of each frame, which is very
important for further encoding.

Related work Recently, there has been a number of ap-
proaches to animated mesh compression. Lengyel [Len99]
decomposes the mesh into a number of parts that move
affinely and encodes the residual. This approach works well
for certain class of animated character models controlled by
a skeleton-like structure, but is less applicable to generic sur-
face models coming from simulation.

Alexa and Müller [AM00] represent animation by ex-
pressing the difference from the mean shape within the ba-
sis of several significant PCA basis vectors. This approach
should work extremely well for meshes generated by simu-
lation of elastic materials, however its performance may de-
teriorate for the skeletal animations without obvious modes.
One small disadvantage of PCA-based methods is the ne-
cessity of performing the PCA transformation during encod-
ing stage. The very recent work of Karni and Gotsman [KG]
improves the compression performance of the PCA based
method using linear prediction coding for exploiting tem-
poral coherence. Their method performs very well for long
sequences for relatively coarse meshes, as reported in [KG].
For finer meshes, the size of the “payload” archive of eigen-
modes becomes a problem if the number of frames in the
sequence is small.

The Geometric Video approach of Briceno et al.
[BSM∗03] resamples the original mesh sequences into a ge-
ometric image [GGH02] for every frame of the animation.
Remeshing plays an important role in the compression of
finely sampled meshes as shown in [KSS00] and [GGH02].
However, for coarser meshes with crease features, special
care should be taken to avoid reconstruction artifacts. Our
approach operates directly on the original data thus avoid-
ing the costly remeshing step and corresponding resampling
artifacts.

Ibarria and Rossignac have recently introduced a Dy-
napack method [IR03] for compression of animated mesh

sequences that exploits the interframe coherence of both
temporal and parametric nature. In particular, it uses the
parallelogram-like prediction to produce details during the
traversal of the mesh, and then performs temporal prediction
in the detail space. This is similar to our approach except
that the mesh traversal within each frame is determined by
a static mesh compression procedure, while our method in-
troduces details in a multiresolution order determined by a
progressive mesh. An algorithm similar to [IR03] was also
introduced in [YKL02].

Our contribution Our main contribution is to exploit the
parametric coherence present in animated mesh sequences
for the purpose of compression. We also introduce a novel
anisotropic wavelet transform that can handle geometric data
with sharp creases. Our compression algorithm is fully au-
tomatic, fast, and easy to implement. It gives good com-
pression results for synthetically animated skinned meshes,
meshes produced by physically based simulations, and ani-
mated mesh sequences coming from the surface motion cap-
ture applications. We evaluate our approach on the meshes
used in previous publications [BSM∗03][KG][IR03], and
report significant improvements in the compression perfor-
mance.

2. Overview of our approach

Our compression algorithm separates parametric and ge-
ometric information for parametrically coherent mesh se-
quences. We first encode a specific mesh that we call the
parametric mesh (frame) separately from the rest of the
mesh sequence, and then use the information in this para-
metric mesh to compress the remaining frames. For time-
dependent mesh sequences we typically take the mesh from
the first frame as the source of the parametric mesh (see Fig-
ure 1). Our encoder and decoder thus have the initialization
stage that processes the parametric frame (prepares a mesh
hierarchy and computes wavelet filter coefficients), and the
online stage that processes the geometric information of the
mesh sequence frame by frame. The computational costs of
these two stages differ, so that for a typical mesh considered
in this paper (around 10K vertices), the initialization stage
takes on the order of a second, while the online stage is much
faster and can run in real-time at thirty frames per second.

Formally, given a sequence of meshes with the same con-
nectivity X1,X2, . . . ,XT , we first pass the first frame X1
through a lossy static compression routine [KADS02]. It
generates the parametric mesh archive apar. Upon recon-
struction it becomes an approximate version Mpar of the
first frame. This mesh Mpar serves as the parametric region
required for the operation of the wavelet transform (Sec-
tion 3). Additionally, a progressive mesh hierarchy L is also
required for running the wavelet transform, and it is built
based on the parametric meshMpar. This concludes the ini-
tialization stage of the encoding algorithm, and from this
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Figure 1: Overview of the encoding/decoding algorithm.

point the geometry of the animated mesh can be compressed
frame by frame to obtain the individual frame archives at .
The specifics of this online stage are described in Section 4.
The resulting compressed sequence consists of the paramet-
ric archive apar and the frame archives a1,a2, . . . ,aT .

The decoder algorithm needs to receive at least the para-
metric archive apar in order to initialize itself. The initial-
ization replicates the last two steps of the encoder initializa-
tion (decompression of apar to create the parametric mesh
Mpar and its simplification to create the multiresolution hi-
erarchy L(Mpar). After this, the decompression can be run
on geometric frames. The details of the encoding of geomet-
ric frames are described in Section 4.

3. Wavelet transform

The goal of applying a wavelet transform is to decorrelate
geometric data and to produce a sequence of geometric de-
tails whose distribution is amenable to further compression.
We employ a modified version of the multiresolution mesh
representation introduced in [GSS99]. In particular, we use
a simple wavelet detail computation that takes the difference
of the actual vertex position and its predicted position from
a decimated mesh; thus, a single wavelet detail is stored for
every vertex removal, in contrast to [GSS99] which had an
average of seven details per vertex. The following section de-
scribes the anisotropic predictor used in our transform, and
the detailed description of the wavelet transform itself fol-
lows in Section 3.2.

3.1. Anisotropic predictor

We shall use the notation of [GSS99] to describe our mul-
tiresolution transform. Given a non-boundary mesh edge
e = ( j,k), we consider the four vertices j,k, l1, l2 ∈ V of
the two triangles adjacent to e (here V is the vertex set of
the mesh). The associated second difference operator repre-
sents the difference between the gradient values on the cor-

responding faces. Thus, for a function g : V → R we define

D[2]
e g := ∑

i∈ω(e)
ce,ig(i),

where ω(e) = { j,k, l1, l2}, and coefficients ce,i are computed
as in [GSS99]. These coefficients depend on the geometry
of a particular parametric mesh M used for the parameter-
ization. In [GSS99] the original mesh serves as the source
of the parameterization; in the case of a mesh sequence, we
will choose a particular single mesh as the source of param-
eterization. The isotropic prediction (relaxation) operator is
defined via the minimization of the following discrete fairing
functional

E(g) = ∑
e

(
D[2]

e g
)2

.

We modify the discrete fairing functional and make it
anisotropic in order to improve its relaxation and pre-
diction properties near sharp surface creases. Our ap-
proach is similar to recent work on anisotropic filtering for
meshes[FDCO03][JDD03]. The basic idea is to weigh the
contribution of each second difference based on the dihe-
dral angle of the corresponding edge in the parametric mesh,
so that the weight of edges with high dihedral angles is
smaller. Thus, there will be less smoothing across creases,
and more smoothing along creases. Specifically, the follow-
ing anisotropic functional is used in the derivation of our
prediction operator:

Eaniso(g) = ∑
e

we

(
D[2]

e g
)2

,

where for an edge e adjacent to two faces t1 and t2, the corre-
sponding weight is computed as we := εw + e−(nt1 ·nt2 )/2σ

2
w .

Here the normals nt are computed in the parametric mesh.
We use εw = 0.1,σw = 0.3.

The minimization of the quadratic functional Eaniso(g)
with respect to the value of g(i) at a vertex i results in the
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prediction operator

P[g](i) =
1
Ai

∑
j∈V2(i)

ai, jg( j)

where the coefficients are given as

ai, j =− ∑
{e∈E2(i)| j∈ω(e)}

wece,ice, j,

and their sum Ai = ∑ j∈V2(i) ai, j is used for nor-
malization. Here, E2(i) is the set of edges of

the triangles adjacent to a vertex (shown in green in the pic-
ture on the left), and V2(i) is the star-like neighborhood of
the vertex i defined as in [GSS99]. In the picture on the left
the blue vertices form V2(i) for the yellow vertex i. For clar-
ity, we sometimes add the parametric mesh used for comput-
ing the predictor coefficients as superscript PM[g](i).

One can evaluate the qualities of a predictor by using
it in the noisy mesh smoothing application. Figure 2 illus-
trates different smoothing results with predictors based on
second difference minimization. One can see the preserved
features in the anisotropically smoothed model. Also, us-
ing the true original model as the source of parameteriza-
tion is not possible for practical denoising application but
shows the power of the anisotropic predictor when the “true”
creases are known. For the comparison of the results of the
anisotropic and isotropic predictors within the compression
framework, see Figure 3.

3.2. Analysis and synthesis

A progressive mesh [Hop96] is given by a sequence of edge
collapses: a particular level Sn−1 is obtained from a finer
level Sn by performing a half-edge collapse that removes a
vertex vn from the mesh by collapsing it onto a neighboring
vertex. The wavelet transform operates on top of a given pro-
gressive mesh sequence, and transforms a given mesh geom-
etry into a sequence of detail coefficients and the coarse base
mesh coordinates. The main purpose of the wavelet trans-
form for our compression application is to decorrelate the
data and improve their distribution for the purpose of further
encoding. Preferably we would like to obtain a lot of coef-
ficients that are close to zero and can be ignored in low bit
reconstructions without sacrificing the surface quality.

Analysis The computation of wavelet detail coefficients
happens every time an edge is collapsed in the progressive
mesh. Consider a single edge collapse that removes a vertex
vn from the current level of progressive mesh hierarchy; the
resulting coarser level of the transformed mesh is Sn−1. The
wavelet transform also uses the parametric mesh sequence
Mn for the computation of filter coefficients, and the con-
nectivity of both the parametric mesh Mn and the currently
transformed mesh Sn is the same on all the levels of the hier-
archy. The wavelet coefficient associated with the vertex vn
is computed as the difference between the prediction from

the coarser level and the actual value in the mesh Sn ex-
pressed in a local frame F(n−1)

vn that is computed from the
coarser level mesh Sn−1:

dn = F(n−1)
vn (sn(vn)−PMn [sn](vn)), (1)

here sn(v) ∈ R3 denotes the coordinate vector of the mesh
Sn at a vertex v.

Note that this transform does not change any vertices of
the coarser mesh and only records a single detail vector per
removed vertex. Therefore, our wavelet transform has no
oversampling. Given any particular sequence of edge col-
lapses for a parametric mesh M the described computation
of wavelet details can be applied to any mesh S that has the
same connectivity as M; its result is a sequence of wavelet
detail coefficients d and some coarse base mesh Sbase.

Synthesis The synthesis of a mesh from a base mesh Sbase
and a sequence of wavelet details d is straightforward: one
only needs to reverse the computation in formula (1) and
invoke it on every edge uncollapse. We obtain the following
atomic reconstruction step:

sn(vn) = PMn [sn−1](vn)+
(

F(n−1)
vn

)−1
dn, (2)

note that with exception of the vertex vn the position of all
the remaining vertices in meshes Sn and Sn−1 are identical.
Also, the same parametric mesh Mn should be used in both
reconstruction and analysis algorithm.

We observed that a good quality normal and tangent vec-
tor computation is needed for the local frame computation
F(n−1)

vn in order to ensure a stable separation of detail infor-
mation in tangent and normal direction. We used the tangent
plane computation as described in [ZS99], it only requires
the knowledge of the positions in the one ring of the vertex
and does not need the position of the vertex being predicted.

Mathematically speaking, our primal wavelet functions
are simply the odd scaling functions. Potentially, a more
complicated subdivision step described in [GSS99] results in
smoother shapes of the wavelet and scaling functions which
can be very important for geometric modeling operations.
For compression purposes however, we found the perfor-
mance of our simple approach to be adequate. Moreover, the
simplified algorithm results in a faster reconstruction perfor-
mance and less memory overhead which can be important
for real-time applications.

Multiresolution levels Image and semi-regular mesh hier-
archies have a well defined notion of scale; the multireso-
lution bases built in these settings are typically resampled
to be normalized in L2. In a progressive mesh, there is no
such predefined scaling; however, in order to improve the
compression performance we find it necessary to rescale the
coefficients so that the fine and coarse level details carry
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(a) (b) (c) (d)

Figure 2: Comparison of different smoothing algorithms for the fandisk model: (a) noisy model; (b) isotropically smoothed; (c)
anisotropically smoothed with the noisy parametric mesh; (d) “cheating” – anisotropically smoothed with the original fandisk
as the parametric mesh.

the same penalty in terms of some error metric. Our ap-
proach to this is as follows: we employ a “batch” simpli-
fication method using memoryless quadrics when building
the hierarchy [PR00][Hop99], and thus split the wavelet co-
efficients into levels. In order to make edge size distribution
more even, we enforce an edge length constraint on edge
removals gradually relaxing it as we proceed to coarser lev-
els. We normalize wavelet details by the square root of the
area of the one-ring of triangles adjacent to a vertex in the
parametric mesh, which corresponds to approximate L2 nor-
malization of wavelet basis.

Notation The wavelet transform relies on the knowledge of
the parametric mesh Mpar and a simplification mesh hier-
archy L(Mpar) that is built from Mpar. It will be conve-
nient to denote the application of this wavelet transform to
the mesh X as follows:

d = WL(Mpar)X ,

where d is the resulting vector of details coefficients (en-
coded in local frames) appended with the positions of
the base mesh vertices. The corresponding inverse wavelet
transform will be written as:

X = W−1
L(Mpar)d,

Encoding of the parametric frame For the compression
of the parametric frame, we can use potentially any static
mesh compression algorithm. In our experiments we have
used the algorithm of [KADS02]. Our experiments showed
that the parametric frame should be encoded with at least
as much precision as the expected precision of the geometry
frames; this makes sense because poor reconstruction of the
parametric frame can have direct effect on the reconstruction
quality of all the other frames.

4. Compression of wavelet sequences

4.1. Encoding of mesh sequences

The wavelet transform of a single frame from the mesh se-
quence produces many coefficients that are close to zero. If

a given mesh sequence represents a time-dependent evolu-
tion of shape, an additional advantage can be gained by ex-
ploiting temporal coherence within such a sequence. In or-
der to preserve the possibility of random access to a time-
dependent sequence however, one can use an approach anal-
ogous to the ones used in video compression [Say00]. We
have run simple experiments that would be indicative of the
performance to be expected in various temporal encoding
scenarios. Specifically, we shall now describe two basic ap-
proaches for sequence compression (both rely on the knowl-
edge of the initial parametric mesh): I-frames compress ge-
ometry of the mesh independent of other geometry frames,
and P-frames encode the differences between wavelet details
of adjacent frames. Both methods produce a per-frame detail
stream ct whose encoding is described in the next section.
(Note that the detail stream ct of each frame is quantized
and encoded independently of other frames.)

I-frames I-frames encode the geometry of a mesh Xt in-
dependently of other frames, but relying on the paramet-
ric mesh hierarchy Lpar = L(Mpar). Specifically, the detail
stream ct is computed as follows:

ct = WLparXt .

I-frames can be useful to allow random access to the frame
sequence and also to serve as initial frames of P-frames se-
quence representing different “clips” of unrelated motion of
the same character (e.g. walking, jumping, etcetera).

P-frames P-frames encode the differences between the ad-
jacent frames of the animation. Note that in order to not get
the accumulation of error over time it is important to take
the difference between the current exact wavelet coefficients
and the previous frames’ reconstructed wavelet coefficients,
that is

ct = WLparXt − d̃t−1,

where d̃t is the reconstructed wavelet details from the pre-
vious frame. For a temporally coherent sequence, this typi-
cally results in a substantial improvement of the compression
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Original Isotropic Anisotropic

Figure 3: Left to right: original, isotropically compressed, anisotropically compressed meshes of the frame 100 of the snake
sequence. Both reconstructed meshes are I-frames compressed at 2 bits per vertex (see Section 4.1). Note that anisotropic
version reconstructs both nose holes, and results in a sharper reconstruction of the tongue, as well as the smoother curve of the
bottom jaw silhouette.

performance, however, for a sequence consisting of only P-
frames one cannot access a given frame randomly as it would
require decoding of all the preceding frames. In practice, this
can be alleviated by introducing an I-frame at regular in-
tervals within a P-frame sequence. Note that in contrast to
[BSM∗03] we take simple differences to encode P-frames
and no additional search or optimization is needed.

We have also experimented with using the parameteriza-
tion of the previous frame to compress the geometry of the
next frame; this can accommodate meshes with gradually
changing sampling patterns; however, we did not observe
significant improvements on our example data sets.

4.2. Quantization and progressive encoding of detail
stream

This section describes encoding of the detail stream within a
single time frame, all the interframe dependence is described
in the previous section.

Some sophisticated hierarchical schemes such as the zero-
tree coding exist for encoding of wavelet coefficients in reg-
ular settings [SP96][KSS00]. There are no such methods for
irregular meshes, though. Therefore we use a simpler, non-
hierarchical progressive encoding method which consists of
the two main stages: first, it initializes the stream by trans-
mitting the positions of the most significant non-zero bits
(S-bits) of all the coefficients, and then it proceeds by per-
forming a number of bitplane refinement passes. We shall
now go through these stages in more detail.

We start by quantizing the detail coefficients, that is by
remapping them into the range of integer numbers:

ci 7→ |ci| ∗ INT EGER_MAX/max
j
|c j|.

We also store the signs of all the coefficients. Next we per-
form the initialization pass of the encoder: for each coeffi-
cient we send the position of its S bit. An S bit is the most

+ 00000001 ac(1),  1
+ 00000000 ac(0)

Init P1 P2 P3 P4 P5 P6 P7
+ 10111011 ac(8),  1 0 1 1 1 0 1 1
- 00001110 ac(4),  0 1 1 0

Figure 4: Simple illustration of encoding process. Four 8-
bit coefficients are transmitted. During initialization pass the
positions of significant bits are sent to the arithmetic coder
(ac), and signs are encoded. The rest of the bits are sent
during refinement passes.

significant non-zero bit of a coefficient. Therefore, these po-
sitions are numbers in the range (0,31) and they are sent as
symbols for the adaptive arithmetic encoder. For non-zero
coefficients we also immediately send their sign bits. In the
following passes we transmit the refinement bits. Obviously,
we do not need to send any zero bits preceding the signif-
icant bit. Note, that only position of S bit is encoded with
an entropy encoder. We found that signs and refinement bits
are fairly uniformly distributed, and we send them as a raw
uncompressed stream.

+ 10111011 ac(8), 1 0 1 1 1 0 1 1
- 00001110 ac(4), 0 1 1 0ac(0)
+ 00000001 ac(1), 1ac(0) ac(0)
+ 00000000 ac(0) ac(0) ac(0)

Init P1 P2 P3 P4 P5 P6 P7Init Init

Figure 5: Illustration for the modified encoding process. The
same four 8-bit coefficients are transmitted more optimally.
Bitplane passes are grouped and significant position is send
for each group. For this example we consider 4 bits in the
first group and 2 in the rest.

The described scheme is progressive. Right after the ini-
tialization pass is received, it is possible to start reconstruc-
tion. The later bitplanes reduce the error and improve the
reconstruction quality. On the other hand, this approach is
not optimal, since we first need to send significant positions
for all the coefficients, but the significance positions of small
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coefficients are not relevant at low bit rates. To address this
problem we slightly modify our approach. We organize bit-
planes into groups and send significant positions within each
group. For example, we first process four most significant
bitplanes (28,31) Any coefficient which is not significant
in this group is considered to be zero. Therefore, for this
group the position symbols are (0,28− 31). We then pro-
cess these symbols as described above. After processing this
group the decoder will not have any unnecessary knowledge
about next bitplanes leading to more optimal rate-distortion
performance. Then we consider the next group (say two bits)
and continue the process. The optimal rate-distrotion per-
fomance is achived when each subsequent group has only
one bit, since no extra information is sent. Since a length of
per-bitplane symbol sequences for our models are relatevely
small for an adaptive arithmetic coder to stabilize we found
that sending significance symbols for subsequent bitplanes
in pairs produces slightly better total rate.

Note that there are two different notions of progressivity
and our coder possesses both of them. The first one comes
from the usage of the mesh hierarchy which allows to re-
construct coarser approximations of the model if needed.
This can directly affect the reconstruction time (running the
wavelet transform) which may be important for real-time
LOD applications. The second progressivity is the ability of
our decoder to stop at an arbitrary point in the bitstream and
use all the bits received so far to reconstruct the model. Ev-
ery extra bit that is received decreases the total error. We can
also use this functionality to vary the rate in-between frames.

5. Results

We evaluated the performance of our algorithm on the orig-
inal (irregular) animated meshes from the Geometric Video
project [BSM∗03], and on a larger animated sequence ex-
tracted from the human skin data of Sand et al. [SMP03]. We
have also run comparisons on some of the animated meshes
from the work of Ibarria and Rossignac [IR03] and Karni and
Gotsman [KG]. For a fair comparison, we distributed the size
of the compressed parametric mesh archive uniformly to all
the geometric frames, so that the reported rate is equal to the
total size of all the archives in bits divided by the number of
vertices and the number of frames in the sequence. The ta-
ble below reports the characteristics of all the meshes used in
our experiments. We included a demo version of our decoder
and example archives with the supplementary materials.

Num. Num. Param. Adjusted frame
Name of of archive size (1/2/4/8bpv)

verts frames size in Bytes

Cow 2,904 204 7,115B -/-/1417/2869
Dance 7,061 201 13,780B 813/1695/-/-
Snake 9,179 134 19,169B 1003/2150/4444/-
Jump 15,830 222 35,516B 1818/3797/7755/-
Face 539 10,001 2,200B variable rate used
Kanga 4,002 65 7,212B variable rate used

Among the three approaches we compared against, the
Geometry Videos algorithm of Briceno et al. [BSM∗03] was
the easiest to compare against, since it also operates in a
fixed rate setting, and the animated meshes considered in that
paper have large vertex counts (the smallest mesh of about
3,000 vertices), which is the class of meshes we target in our
multiresolution approach.

We generally observed approximately a factor of two im-
provement on the compression performance for the snake,
cow, and dance sequences for both the P- and I-frames cases
as compared to the results reported in [BSM∗03] as can
be seen in Figures 3 and 6. This improved performance
can be explained by the good parametric coherence of the
input animated mesh sequences that is exploited by our
parameterization-conscious wavelet transform. (Note that all
the mean-square error numbers on the vertical axis have to
be multiplied by a factor 10−4 to get the relative error with
respect to the bounding box diagonal of the first frame of
the original sequence; errors were measured with Metro tool
[CRS98]).

We have also compared the performance of our
anisotropic (AWC) versus isotropic (IWC) wavelet trans-
form. While the mean-square error performance of the two
algorithms are similar (see the top left plot in Figure 6), we
see an improved reconstruction of certain surface features
and a better handling of the sharp creases as can be seen in
Figure 3. We have also compared the mean-square error of
the normals and saw about five to ten percent improvement
in the anisotropic version.

Figure 7 shows the results of running our compression
on a larger animated model of a jumping human. The four
shaded meshes show the reconstruction results compared to
the original frame; frame 30 used for this illustration cor-
responds to the time frame in which the error peaks at all
three rates. Potentially, an adaptive rate adjustment can help
to more uniformly distribute the error over the frames. Even
in the fixed rate mode , the algorithm is able to reconstruct
a good quality mesh at the rate of four bits per vertex (per
frame).

The accompanying material contains the original and re-
constructed meshes for the 2bpv fixed-rate archives for the
snake, cow, jump, and dance animated models. The com-
pressed archives and rendered movies of the reconstructed
models are also included.

The paper of Karni and Gotsman [KG] introduces its own
metric for measuring the error of the reconstructed animated
mesh with respect to the original animated sequence. The
metric is easy to compute and it corresponds to the relative
discrete L2 norm both in time and space. For brevity, we
shall call it KG-error metric. We use this metric to evaluate
our method on the face sequence considered in [KG]. The
face sequence has 10,001 frames and only 539 vertices. The
repetitive nature of this data sequence and its coarse mesh

c© The Eurographics Association 2004.

189



190                               I. Guskov & A. Khodakovsky / Wavelet Compression of Parametrically Coherent Mesh Sequences

L2 error of snake sequence (I-frames only)
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Figure 6: Results of error measurement for three animated mesh sequences encoded with P-frames only, compared with the
corresponding data from Geometry Videos paper. For details, see the table in Section 5. Top left: I-frames of snake sequence;
top right: P-frames of snake sequence; bottom left: P-frames of cow sequence; bottom right: P-frames of dance sequence. (Note:
the error numbers on the vertical axes have to be multiplied by a factor 10−4).

size make the application of PCA-based methods very at-
tractive. On the other hand, the multiresolution nature of our
method is practically not exploited for such a coarse mesh.
The results of the comparison for the three methods are given
in Figure 8. We see that the method of Karni and Gotsman
is significatly better for this data sequence. However, this
method considers the sequence as a whole and needs to run a
PCA mode extraction. The Dynapack algorithm [IR03] and
our method does not have the advantage of such a global
view and have to encode the sequence as they go, from one
frame to the next, possibly exploiting local interframe coher-
ence. Their performance in this case is therefore worse than
that of the method of Karni and Gotsman.

We also compared the performance of our method to the
two above methods on data sets with finer mesh sizes and
shorter sequences. Figure 8 shows the comparison of Dyna-
pack and our method for the Kangaroo data set (4,002 ver-
tices and 65 frames). There is only a single rate-distortion
pair reported in [IR03], and we were not able to obtain other

Dynapack data for that dataset. In our algorithm, we em-
ployed a variable rate encoding method that uses the pro-
gressive nature of our coder and chooses the rate of every
frame based on the desired KG-error metric value. This is
necessary, since the Kangaroo data is extremely non-uniform
in time; the coder of Ibarria and Rossignac operates in the
fixed error mode that typically results in a better overall per-
formance for such temporally inhomogeneous data. The re-
ported rate is obtained by dividing the total archive size by
the number of frames and the number of vertices in the mesh.

One advantage of using a multiresolution “traversal” is
the ability to quantize the detail coefficients rather than the
coordinates themselves. We believe that quantizing the de-
tails results in less obvious artifacts in the appearance of
the shape. The error metrics used in this paper should be
augmented to adequately capture the appearance variations
across different methods; for instance, Figure 9 shows two
reconstructions that have the same L2 error but differ sig-
nificantly in appearance quality. This illustrates the staircase
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L2 error of jump seqence (P-frames only)
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Figure 7: Frame 30 of the jump sequence showing flat-shaded and specularly lit meshes: original, encoded at 1bpv, 2bpv, and
4bpv, and the error plot for the jump sequence encoded with the parameters reported in the table in Section 5. (Note: the error
numbers on the vertical axis have to be multiplied by a factor 10−4).
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Figure 8: Rate-distortion curves for face, kangaroo, and cow sequences using KG-error.

artifacts typical for the reconstructed shapes that use low bi-
trate coordinate quantization.

Figure 8 shows the comparison of our method with the
method of Karni and Gotsman on the cow sequence from
the Geometry Videos data sets above [Kar]. We see that for
this sequence our method performs better than the one from
Karni and Gotsman. This is not surprising since the number
of vertices in the mesh is much bigger than the number of
frames in the sequence and storing all the required eigen-
modes of the mesh takes the bulk of the archive in [KG].

Timings The initialization stage of our decompression al-
gorithm took 2 sec for the largest of our models. Online stage
per frame performance ranges between 0.004 sec for the cow
model and 0.03 sec for the human jump model, achieved
when all the coefficients of our wavelet filters and tangent

Figure 9: Comparison of two reconstructions of the last
frame of the Kangaroo head sequence with the same KG-
error of≈ 0.3%. Left: a P-frame of our method; right: quan-
tized at 9 bits per coordinate.

c© The Eurographics Association 2004.

191



I. Guskov & A. Khodakovsky / Wavelet Compression of Parametrically Coherent Mesh Sequences

vector masks are precomputed. All timing results were mea-
sured on 3Ghz Pentium 4 PC. We do not include time needed
for reading and writing the file in the reported timings.

6. Conclusions and future work

We have introduced a simple and efficient animated mesh
compression approach that takes advantage of the paramet-
ric coherence of mesh sequences, and significantly improves
the compression performance. Future work should include
adaptive rate coding, and compression of parametrically co-
herent mesh sequences of changing topology.
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