
Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2004)
R. Boulic, D. K. Pai (Editors)

Collision Between Deformable Objects Using Fast-Marching
on Tetrahedral Models

D.Marchal†, F. Aubert‡, C. Chaillou§

Alcove-INRIA Futurs, LIFL (UMR CNRS 8022), Université Lille I.

Abstract
This paper presents an approach to handling collision between deformable objects using tetrahedral decomposi-
tion. The tetrahedral volumetric model is often used to simulate deformable objects that handle cuts and splits.
Interaction between such objects in a complex environment is still an open problem in interactive simulation.
This paper is mainly focused on obtaining a fast computation of a reliable penalty response. The method consists
in using an approximated distance map to compute a penalty based response. We propose to compute the dis-
tances to the boundary using a modified “Closest Point” algorithm derived from Fast Marching. The presented
algorithm, inspired by the [FL01], has the advantage of computing rapidly the “Closest Point” in the volumetric
tetrahedral mesh without any use of an additional computation grid. From the resulting distance map a response
is computed using a new “segment-in-object” response that offers more reliable results than the “point-in-object”
generally used in previous works. Using this collision model, simulation at interactive rate can be considered in
an environment composed of objects that can be deformed and cut.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation, I.3.5 [Com-
puter Graphics]: Physically based modelling

1. Introduction

It is well known that real-time physically based anima-
tion needs efficient collision detection as well as an ac-
curate penalty response to it. Complex environments, such
as those needed for virtual surgical operations, require ad-
vanced physical models for many objects and robust inte-
gration methods to compute the motion interactively. The
time dedicated to the collision detection and the collision
response computation should be reduced as much as possi-
ble. Many efficient solutions exist for rigid bodies but colli-
sion between deformable objects is still a problem. All clas-
sical assumptions on the rigid shape (convexity, heavy pre-
computations) can not be made anymore, and the methods
can not be adapted or require slow update processes. In ad-
dition to deformable objects, which only involve homeomor-

† damien.marchal@lifl.fr
‡ fabrice.aubert@lifl.fr
§ christophe.chaillou@lifl.fr

phic changes, cutting handling implies topological changes
that make the collision problem more complex.

For such deformable objects, the context of this paper is
focused on a penalty based response deduced from the as-
sumption that 3D object overlaps at a given time which is
known as a static approach or 3D intersection method. This
approach has the well-known drawback that collision be-
tween two thin parts of objects can be missed. Yet it can
be tolerated in many situations by considering a coherence
between the shapes and the time-steps. We choose this con-
text because it is faster than a continuous method or than the
contact time determination.

In the context of collision detection, most solutions are
only based on primitives (spheres, triangles, tetrahedrons).
These solutions are efficient but actually do not suffice for a
reliable response (we call these pure primitive based meth-
ods “local” models). Actually, a reliable response requires
information from the whole object (i.e. the “global model”)
such as distance fields and/or volume intersection [KLM02].
We propose a compromise method that takes advantage of
primitives for the detection but without loss of knowledge

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org

D.Marchal, F.Aubert, C.Chaillou / Collision Between Deformable Objects Using Fast-Marching on Tetrahedral Models

from the object for the response computation (we call this
compromise a “semi-global” model).

This compromise can be obtained with a tetrahedral de-
composition of objects. This kind of objects are often used in
Finite Element Methods for instance, and can be considered
for mass-spring systems. Many tools exist for their handling
(the examples in this paper are obtained from the Gmesh
program [GR]). In this paper, the detection phase consists in
tetrahedron overlaps while the response is deduced from the
computation of an approximation of the penetration depth.
The required distance field must be obtained rapidly at each
time step since the distance map changes during the defor-
mation of the objects. The context of this work can be closely
related to [FL01] in which a fast marching level-set method
is used to compute, and update, the distance field of a de-
formable tetrahedral volume, and to [THM∗03] in which the
objects are represented with only one layer of tetrahedrons.

The main contribution of this paper is to propose a very
fast approximation of the distance field calculation. The gain
is obtained by removing the intermediate computation grid
required for the fast marching method. Thus, the compu-
tation of the distance field can be made at each time step.
The second important novel point of this paper is that the
response is built from a segment-in-volume approach and
not only from a point-in-volume approach (like in [FL01]
or in [THM∗03] for example). Considering only intruding
points for the response is fast but it often leads to an inco-
herent response involving visible artifacts in animation. That
is why tetrahedrons that overlap by edges have to be taken
into account for the response. Furthermore, a segment-based
response is a better convey of the entire volume intersection.

The paper is composed as follows: Section 2 presents the
previous works in the context of penalty based methods. In
Section 3 the whole method is overviewed including the col-
lision detection process we adopt. Section 4 details the ap-
proximated fast-marching algorithm to compute the distance
field it is followed in Section 5 by the computation of the re-
sponse force. Section 6 illustrates the results with complex
animations of deformable objects.

2. Background

Three cases of collision between deformable objects can be
considered: object-vs-object, object-vs-tissue and tissue-vs-
tissue. When objects have a thickness, a response to the col-
lision can be computed from an intersection measure. The
most used intersection measures are the intersecting volume
and the minimal translation distance that separates two over-
lapping objects, also called Penetration Depth (PD).

Many collision models exist, and the general approaches
are here classified in three catergories. The first one is based
on a global view of the objects, the second one considers
objects as a sum of primitive elements while the last one tries
to combine the advantages of the two previous approaches

using primitive elements and computing a global collision
response. The presented work is in this third category.

2.1. Global collision methods

We classified in this first category the collision models that
treat objects as entities and not only as a bunch of primitives.
Efficient collision detection between geometric objects can
be found in [LMP94] [Cam97]. They are based on topology
and adjacency information to rapidly compute whether two
objects intersect. As the computation is based on incremental
computation, they can be combined with a temporal coher-
ence system that initializes the new search from the previous
frame results.

Once the collision is detected, a PD can be computed with
[vdB99] or [KLM02] (for example). These algorithms only
work on convex objects. To handle non-convex objects, an
additional step is needed to break the object in convex pieces
like in [EL01]. This step would be too expensive in a real-
time context.

A little apart, methods based on the intersection volume
can be found. The intersection volume is generally consid-
ered as a better but slower measure of penetration [OH99].
It is better because the entire interpenetration zone is in-
volved and thus it can be considered more physically consis-
tant. It is slower because volume measure is computed with
"brute-force" approaches (explicit reconstruction or voxel
based approach). These methods perform very poorly except
for some recent graphics hardware accelerated solution as
in [HTG03]. These discreet models handle the deformable
objects in a straightforward manner and are well suited for
GPU based implements.

2.2. Local collision methods

We classified in this second category collision models that
treat objects as union of elementary primitives. The colli-
sion detection and the collision response are performed us-
ing a per primitive collision test without any need of “extra”
information.

In [DMC02] spheres are used and the response is com-
puted by summing the independant contributions of each
couple of spheres in collision. The response does not de-
pend on the sphere positions in the object, and overlaps of
the spheres in the object can give incoherent responses. Up-
dating a sphere approximation of a deformable volume ob-
ject can induce costly computations.

In [GRLM03] the authors present a graphics hardware ac-
celerated method to detect collision of objects composed of
surface triangles. Building a response from the surface ele-
ments only is complicated.

A local model dedicated to tetrahedrons is found in
[THM∗03]. The collision detection and response are based

c© The Eurographics Association 2004.

122

D.Marchal, F.Aubert, C.Chaillou / Collision Between Deformable Objects Using Fast-Marching on Tetrahedral Models

Figure 1: In gray (yellow), the intersecting faces. In light
gray (purple) the whole intersection that has to be detected
to have a realistic deformation.

on a point-in-tetrahedron test which means that no response
is produced when objects intersect only by edges. To reduce
the number of intersection tests the collision is restricted to
only one layer of tetrahedrons (that gives a thick surface for
the object boundaries).

Such local models seem to be suited for collision between
deformable objects because no assumption about the shape
is made. But computing a response from such a local model
is generally less simple since a robust penetrating measure is
difficult to construct.

2.3. Semi global methods

Finally we classified in this third category the collision mod-
els that combine advantages of both global and local meth-
ods. These methods generally mixe the robustness of a “real”
penetration depth computation for response with a primitive
overlap test that does not need topology assumption.

Figure 1 shows the difference between a local collision
system and a semi-global one. The gray band is the result
of a local collision. A response based on it does not pro-
duce realistic deformation behavior because the full Contact
Area (in light gray) and all intersecting mechanical points
are needed. This picture is from [SL00] where the full con-
tact area is computed by categorizing for each face whether
it is inside or outside of the other object. In the idea of cat-
egorizing which elements of the object are inside or outside
the intersection area, [BWK03] introduces a collision system
for tissues.

A semi-global approach based on tetrahedrons to handle
the collision in a static envionment can be found in [Gei00].
For each intruding point, the PD is computed by finding the
face that probably crosses during the last time-step. The lo-
calization of the face is done by navigating through the tetra-
hedral mesh following the line between current point posi-
tion and the previous point position.

Tetrahedron overlap test

Lazy Fast Marching

Collision response

Integration

Figure 2: Pipeline of collision

The work in [FL01] is also a semi-global method. Each
tetrahedron of an object stores the distance to the mesh
boundary on its four nodes. These distances are computed
with the Fast Marching method [Jam96] and are interpolated
to approximate the whole depth map of the object. An in-
tersection test is done locally between pairs of tetrahedrons
and the approximated depth map is used to compute the re-
sponse. We propose a faster approximation of this distance
field.

3. Overview of the method

The collision model is divided in three steps (Figure 2).

The first one is collision detection. The collision detection
uses an overlap test of the tetrahedrons like in [FG03]. Many
choices can be made to accelerate the primitive-primitive
test with a broad phase. With deformable objects, the detec-
tion acceleration is generally based on techniques as voxels
grids, hash-table [THM∗03] or sweep and prune [CLMP95].
These techniques can be also combined with some simple
Bounding Volume Hierarchies (BVH) like AABB [vdB97].
The key point of those acceleration methods is that they have
to be updated quickly enough during object deformations.

The broad phase is outside the topic of this paper and we
choose a straightforward method based on a voxel grid. Each
tetrahedron is rounded by a sphere and placed in the grid to
fast reject the non-overlapping tetrahedrons.

The last two steps of the collision pipeline are detailed in
the next two sections. A "Lazy Fast Marching" step is fol-
lowed by the computation of the penalty based response that
prevents further penetration. This penalty is computed with
a classical point-in-object strategy or with a more precise
segment-in-object strategy. An argument about point vs seg-
ment response in the context of rigid body stacking can be
found in [GBF03].

4. The Fast Marching method

The Fast Marching is a fast algorithm introduced by [Jam96]
to solve the Eikonal equation. Distance map computation is

c© The Eurographics Association 2004.

123

D.Marchal, F.Aubert, C.Chaillou / Collision Between Deformable Objects Using Fast-Marching on Tetrahedral Models

ALIVE NARROW BAND

DEAD SELECTED FOR UPDATE

Figure 3: A step of Fast Marching on an orthogonalized
grid. A point is extracted from the heap and its neighbors
are updated.

a such Eikonal equation and an increasing number of papers
seem to use it. We first describe the Fast Marching to com-
pute an inner distance field like in [FL01] and then our new
algorithm.

4.1. Fast Marching to compute a depth map

Let us describe the Fast Marching method as presented in
[FL01] to compute the distance between each tetrahedron
node of a volumetric object to the boundary of the object.

The native method is designed for an orthogonal grid
(Figure. 3). Each point has a distance value d and a
state (ALIVE, NARROW_BAND or DEAD). Initially the
points that are part of the boundary are marked as ALIVE
and their value is set to 0. Neighborhoods are marked
as NARROW_BAND and their value is computed from
the ALIVE points using a finite difference scheme (see
[Jam96]).

After this initialization step the algorithm iteratively ex-
tracts the next point from a min-heap. This point has its
status changed to ALIVE, meaning it has been fixed. For
each not ALIVE neighbor of this extracted point, the sta-
tus is changed to NARROW_BAND and the distance d is
updated.

The update procedure uses a finite difference scheme de-
signed to work on an orthogonal grid. To compute the dis-
tance on a volumetric mesh [FL01] proceeds in the follow-
ing way:

• all points of a 3d grid are marked as DEAD;
• object surface is rasterized in this grid and forms the initial

ALIVE points;
• the depth map is computed via Fast Marching on the 3D

grid;

Figure 4: An object (the disc) and its Fast Marching compu-
tation grid. It can be seen that some parts of the computation
grid are useless as they are outside of the mesh object.

• the tetrahedrons’ nodes read their d value from the grid
with interpolation.

The grid resolution has to be set arbitrarily and is a trade
off between speed and precision. In addition, the distance
is computed for the entire grid without taking into consid-
eration whether the point is inside or outside of the object,
resulting in unnecessary computations. This can become a
problem if the shape evolves a lot and the grid has to be
adapted in consequence. For these reasons, the use of a stan-
dard Fast Marching to compute the depth map on volumet-
ric mesh is not a fully satisfactory solution. We present a
novel approach that directly uses the existing mesh structure
to compute the distance.

4.2. Closest Feature Fast Marching

The key of Fast Marching efficiency resides in the usage of
a Dikjstra’s like graph traveling leading to a O(n logn) com-
plexity with n the number of points. Two solutions to re-
move this grid and obtain faster computation of the depth
map have been considered, keeping in mind this graph trav-
eling approach.

The straightforward solution is to use the Fast Marching
extension to unstructured triangulation presented in [RJ98]
but the Update Function is much more complex and suffers
from degeneracies. So we use a "Closest Point" principle
based on Fast Marching. This new approach shares the same
idea as [MB] or [Tsa02] where the Closest Point is propa-
gated instead of the distance.

In our approach, which we called Closest Feature Fast
Marching, each tetrahedron’s node stores its closest bound-
ary’s feature (point, line, triangle). The boundary nodes have
their distance value set to 0, are marked as ALIVE, and have
their closest feature set to themselves. The algorithm itera-
tively selects the ALIVE point with the least distance and
updates its neighbors using its f feature. The neighborhood
of a point is given by the incident edges. The update function

c© The Eurographics Association 2004.

124

D.Marchal, F.Aubert, C.Chaillou / Collision Between Deformable Objects Using Fast-Marching on Tetrahedral Models

ALIVE

DEAD

NARROW BAND

SELECTED FOR UPDATE

Figure 5: The Closest Feature Fast Marching directly com-
putes the distance using the mesh.

is:

n f = (nd > dist(nx, f))? f : n f

nd = (nd > dist(nx, f))?dist(nx, f) : nd

where n is a node at nx position and at a nd distance to the
closest feature boundary n f .

The algorithm may fail to report the closest feature and
may select a farther one. The result is an overestimation of
the distance but we do not find this problematic as the error
does not propagate and the distance field still has the cor-
rect shape (i.e. it vanished on the object boundary) for our
objective: computing a penalty response.

We have implemented two versions of the algorithm. The
first one CFFM (for Closest Feature Fast Marching) saves
the closest feature (point, edge, face) while the second one
CPFM (for Closest Point Fast Marching) only uses the dis-
tance to the nodes of the boundary. The CPFM has a larger
error but it improves the computation speed.

4.3. Results

The presented algorithm were implemented for the 2 and 3D
cases. Computation time are shown in Figure 6. It can be
seen that increasing the number of nodes has a linear influ-
ence on computation time. Other exemples of distance field
computed on 3D mesh with up to 300 000 tetrahedrons are
showed in Figure 7.

In addition we compare the CFFM class algorithm with
our implements of a grid based Fast Marching and measure
the computation time, the maximal error (maximal differ-
ence between exact value and computed value) and median
error (sum of all error over the number of node). This test
framework uses 2D triangle meshes dumped from a tissue
simulation where objects are deformed and cut in various
separated parts of non-convex shapes.

(ms)

(# nodes)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 5000 10000 15000 20000 25000 30000 35000 40000
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 5000 10000 15000 20000 25000 30000 35000 40000
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 5000 10000 15000 20000 25000 30000 35000 40000

Horse
Pawn

Figure 6: Computation time (in ms) to approximate distance
field with CPFM on object of increasing size.

Figure 7: The 3D distance field of large objects (horse,
pawn, imprison) compose of 300000 tetrahedrons is com-
puted with CPFM in 0.1s.

Each test was made with mesh of different resolution from
200 to 4000 tetrahedrons node, they permit to conclude that:

• When the same number of tetrahedron nodes is equiva-
lent to the number of grid cells, grid based approaches are
faster than CPFM.

• Closest Point approaches have a much lower median error
than numeric methods.

The advantage of the presented method is its hability to
compute good distance approximation that directly depends
on mesh resolution. This has a special interrest as low reso-
lution meshes (≈ 1000 nodes) as the ones used in realtime
simulators. On such situtation the CFFM/CPFM algorithms
are both faster than the other tested approaches and benefit
from a reduced error.

It additionnaly makes the cutting unproblematic. If the
mesh is cutted in multiple part, it makes no difference for
the presented algorithm while a grid based approach would
need a refitting strategy and a connectivity tracking to handle
the differents separated parts.

4.4. Partial update of distance field

In previous examples, the distance field is computed for the
whole object leading to a big number of unnecessary compu-
tation if used for collision response. We implement a partial

c© The Eurographics Association 2004.

125

D.Marchal, F.Aubert, C.Chaillou / Collision Between Deformable Objects Using Fast-Marching on Tetrahedral Models

Figure 8: A disk is deformed and cut. Left side is computed
using the CPFM algorithm while the right side is computed
using the Fast Marching on a 100x100 grid. The mesh and
the computed distance field are drawn at the top with color
scale. On the bottom line we represent mesh with the com-
putation error, clearer values means more error.

Algorithm Time (ms) max error median error

EXACT 9.930
FM 20x20 0.288 0.326 0.085
FM 100x100 9.728 0.149 0.011
CFFM 0.630 0.02 8.10−5

CPFM 0.196 0.12 0.008

Figure 9: Results of the differents algorithms for the disc
object of 486 nodes.

update of the distance field using the fact that collisions gen-
erally append in the vicinity of the object surface. This is
done by marking the colliding tetrahedrons during detection
and stop the CFFM loop when all theses colliding tetrahe-
drons have their distance computed. This decreases the com-
putation time and makes the CPFM for collision a really in-
expensive computation even on very big meshes. This makes
the system fast in the common collision situation and robust
to more rare deep collision.

5. The Collision Response

The detection, described in Section 3, returns pairs of over-
lapping tetrahedrons. From these overlapping tetrahedrons
we implement two strategies to compute the penalty re-
sponse forces using the previously computed depth-map.

The first strategy computes response force for the Points
in Objects situation as in [HFL00] or [THM∗03]. Only gen-
erating force on the intruding points leads to unpleasant arti-
facts as some colliding situations do not yield response force
and thus penetration will not be stopped. To prevent those ar-
tifacts we define a response based on a Segments in Object

Algorithm Time (ms) max error median error

EXACT 28.0
FM 20x20 0.600 0.34 0.098
FM 100x100 12.0 0.081 0.016
CFFM 5.0 0.002 3.10−6

CPFM 2.3 0.06 0.001

Figure 10: Results of the differents algorithms for a rectan-
gular object of 1000 nodes.

force computation. In the following we present these two
strategies.

5.1. Point in Object response

When a point p penetrates an object, the approximation of
the penetrating distance d value is possible as a linear com-
bination of tetrahedron nodes x1..4 and distance values d1..4.
Let u = u1..3 be the barycentric coordinates of p. These
barycentric coordinates define the position of the point p in
a frame whose origin coincides with x4 and whose axis co-
incides with the edges of t adjacent to x4. The coordinates in
this new frame are computed as:

u = G−1[p− x4]

with the following 3 by 3 matrix:

G = [p− x1, p− x2, p− x3]

To be in a tetrahedron a point has to fill up the following
equations: u1 ≥ 0,u2 ≥ 0,u3 ≥ 0 and u1 +u2 +u3 ≤ 1

Linear interpolation of d1..4 values is made in the follow-
ing way:

d̃ = u1d1 +u2d2 +u3d3 +(1−u1 −u2 −u3)d4

To compute the force direction we use the gradient of the
distance field. This gives an intuitive direction for the point
to exit the object. In addition, as a linear interpolation is used
inside the tetrahedron, the resulting gradient only depends on
the nodes of the tetrahedron and not on the intruding point
p.

This direction is computed from the d̃ formula as:

∇d =

∂d̃
∂x
∂d̃
∂y
∂d̃
∂z

= G−1

u1 −u4
u2 −u4
u3 −u4

With these formulas we can compute, for each node pene-
trating an object composed of tetrahedrons, the approximate
distance to the boundary. From this distance and its gradient
a penalty is applied to the intruding point.

c© The Eurographics Association 2004.

126

D.Marchal, F.Aubert, C.Chaillou / Collision Between Deformable Objects Using Fast-Marching on Tetrahedral Models

This point-in-object computation may miss some colli-
sion cases as on Figure 11 where the tetrahedrons collide
by edges. This leads to unpleasant artifacts on low resolu-
tion mesh that leads us to introduce the segment-in-object
approach.

x1
x2

a

b

n3

n0

n2

n1

Figure 11: Two tetrahedrons overlap, the segment [ab] in-
tersects the other tetrahedron on points x1 and x2. In such
situation a point based approach would not generate any re-
sponse.

5.2. Segment in Object response

The response force received by a segment intersecting a
tetrahedron is computed with the following method.

For a line l intersecting a tetrahedron t, the intersection
is defined by two line parameters λ1 and λ2. As the previ-
ously defined Point in Object response is linear for a given
tetrahedron, the Segment in object response can be computed
on the two intersection points and then integrated along the
segment to take into account its length. Given a segment in
parametric form:

x = a+λ(b−a)

the two end points are projected in the tetrahedron frame:

A = G−1(a− t4) and B = G−1(b− t4)

this gives the following segment equation in the tetrahedron
frame:

u = A+λ(B−A)

an intersection between this line and the tetrahedron is
equivalent to test if for some λ included in [0,1] the cor-
responding u fills up the following equations: u1 ≥ 0,u2 ≥
0,u3 ≥ 0,u1 +u2 +u3 ≤ 1.

These tests give us the two points (x1, x2) corresponding
to the parameters (λ1, λ2) that delimit the intersection. It
is then easy to approximate the distances (ḋ1,ḋ2) using the
Point in Tetrahedron formula.

Finally the distance is integrated over the segment. This
integration is direct as it is equivalent to computing the area
of a trapeze.

Figure 12: Multiple collision points: a torus collides with a
sphere. The computed responses forces are shown.

ḋ =
Z

l∩t
d =

1
2
(ḋ1 + ḋ2)||x1x2||

On the intersection points (x1,x2) two penalty forces
(−→f1 ,−→f2) are computed from this ḋ penetration measure.
These penalty forces have to be transfered to the objects me-
chanical points. The force transfer is a little bit tricky as we
use the parameters λ1 and λ2 to weigh the penalty force re-
ceived on each mechanical point. In our example the seg-
ment extremities a and b would receives the following force:

a f = λ1 ∗
−→f1 +λ2 ∗

−→f2

b f = (1−λ1)∗
−→f1 +(1−λ2)∗

−→f2

6. Results

The collision model is implemented in an existing simula-
tion framework that includes a deformable objects model
with a tetrahedron based mass-spring system. Collision be-
tween tetrahedral objects is handled with our collision sys-
tem while collision between a tetrahedral object and a “trian-
gle” based one is handled by using the point-in-tetrahedron
and the segment-in-tetrahedron response when triangles in-
tersect tetrahedrons (Figure 14).

6.1. Performance analysis

We compared the point-in-object and segment-in-object ap-
proaches. In our context the segment based response gives
a better response with less sensible artifacts and a reason-
able computation time increases (Figure 16). The segment-
in-object is, as expected, slightly more time consuming (Fig-
ure 13) but it has also the interesting property to reflects pen-
etration depth as well as size of contact area. In our simula-
tion we select on or the other response with respect to the
mesh density.

The lazy CPFM also greatly improve performances and

c© The Eurographics Association 2004.

127

D.Marchal, F.Aubert, C.Chaillou / Collision Between Deformable Objects Using Fast-Marching on Tetrahedral Models

Figure 13: A torus (7000 tetrahedrons) breaks on a cube.
This scene was simulated in 2 minutes, the all collision pro-
cess took 28 seconds with point in object response and 36
seconds when we use the segment in object response.

Figure 14: Interaction between a non-tetrahedral object and
a tetrahedral one. A deformable sphere falls on a tissue that
breaks under the weight.

makes the CPFM a really cheap computation compared to
the rest of the collision pipe-line.

We also measured the collision time with respect to the
number of colliding tetrahedrons and found it was linearly
dependent.

6.2. Additional note

We noticed that tetrahedron with their four nodes on the
boundary are problematic for both simulation and collision
response. This problem was addressed in [MBTF03] where a
meshing strategy has been purposed. In our simulator, those
tetrahedrons are detected and handled by a simple subdivi-
sion. This increases the number of tetrahedrons and can be-
come a problem when large breaks occur, generating a lot of
invalid tetrahedrons (like explosions).

7. Conclusion

In this paper we have presented an interactive collision
model for volumetric tetrahedral objects. Its novative points
are a new Closest Feature Fast Marching algorithm to com-
pute distance on a volumetric mesh, and a segment-in-object
based response that reduces the visual artifacts.

Figure 15: Complex environment: elispoïds composed of
100 tetrahedrons are falling on a cube. They break on the
cube’s edge.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 0 500 1000 1500 2000 2500 3000

Point response
Segment response

(ms)

(# collisions)

Figure 16: Comparison between the total time spend (in ms)
with respect to the number of colliding points. Highest curve
stands for segment response.

Comparing the presented Closest Feature Fast Marching
with previous approaches shows it performs quite well in
speed as in precision while the response based on the inter-
secting segment increases simulation realism. These results
show that tetrahedron based collision systems are efficient
enough to be used in real-time simulation. To continue this
work, better collision detection and response has to be inves-
tigated as a lot of response computation are redudency. Voxel
grid can be really inefficient for detection while the neigh-
borhood relationship between tetrahedrons could be used to
accelerate it. Remove those redundency would make the col-
lision and the response a much more cheap operation.

8. Acknowledgements

This work has been carried out within the framework of the
INRIA Alcove project and is supported by the IRCICA (In-
stitut de Recherche sur les Composants logiciels et matériels
pour l’Information et la Communication Avancée).

c© The Eurographics Association 2004.

128

D.Marchal, F.Aubert, C.Chaillou / Collision Between Deformable Objects Using Fast-Marching on Tetrahedral Models

References

[BWK03] BARAFF D., WITKIN A., KASS M.: Untan-
gling cloth. Proceedings of ACM SIGGRAPH
(2003).

[Cam97] CAMERON S.: Enhancing gjk: computing mini-
mum and penetration distances between convex
polyhedra, 1997.

[CLMP95] COHEN J., LIN M., MANOCHA D., PONAMGI

M.: I-collide: An interactive and exact colli-
sion detection system for large-scale environ-
ments. In Proc. ACM Interactive 3D Graphics
Conf (1995), pp. 189–196.

[DMC02] DAVANNE J., MESEURE P., CHAILLOU C.:
Stable haptic interaction in a dynamic virtual
environment. In Proceeding of IROS (2002).

[EL01] EHMANN S. A., LIN M. C.: Accurate and fast
proximity queries between polyhedra using sur-
face decomposition. In Proc. of Eurographics
(2001).

[FG03] F. GANOVELLI F. PONCHIO C. R.: Fast
tetrahedron-tetrahedron overlap algorithm.
ACM Journal of Graphics Tools 7-2 (2003).

[FL01] FISHER S., LIN M.: Fast penetration depth es-
timation for elastic bodies using deformed dis-
tance fields. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS)
(2001).

[GBF03] GUENDELMAN E., BRIDSON R., FEDKIW R.:
Nonconvex rigid bodies with stacking. In SIG-
GRAPH (2003), pp. 871–878.

[Gei00] GEIGER B.: Real-time collision detection and
response for complex environments. In Proc.
CGI (2000).

[GR] GEUZAINE C., REMACLE J.-F.: Gmesh.
http://www.geuze.org/gmesh.

[GRLM03] GOVINDARAJU N. K., REDON S., LIN M. C.,
MANOCHA D.: Cullide: Interactive collision
detection between complex models in large en-
vironments using graphics hardware. In ACM
SIGGRAPH/Eurographics Graphics Hardware
Proceedings (2003).

[HFL00] HIROTA G., FISHER S., LIN M.: Simulation
of Non-penetrating Elastic Bodies Using Dis-
tance Fields. Tech. Rep. TR00-018, University
Of North Carolina, 23 2000.

[HTG03] HEIDELBERGER B., TESCHNER M., GROSS

M.: Real-time volumetric intersections of de-
forming objects,. VMV Proceeding (2003),
461–468.

[Jam96] JAMES A S.: A fast marching level set method
for monotonically advancing fronts. In Pro-
ceedings of the National Academy of Sciences
(1996), vol. 93,4, pp. 1591–1595.

[KLM02] KIM Y. J., LIN M. C., MANOCHA D.: Deep:
Dual-space expansion for estimating penetra-
tion depth between convex polytopes. In IEEE
International Conference on Robotics and Au-
tomation (2002).

[LMP94] LIN M., MANOCHA D., PONAMGI M.: Fast
algorithms for penetration and contact determi-
nation between non-convex polyhedral models,
1994.

[MB] MAUCH S., BREEN D.: A fast march-
ing method of computing closest points.
http://www.cco.caltech.edu/ sean/closestpoint/closept.html.

[MBTF03] MOLINO N., BRIDSON R., TERAN J., FED-
KIW R.: A crystalline, red green strategy for
meshing highly deformable objects with tetra-
hedra. In 12th Int. Meshing Roundtable (2003),
pp. 103–114.

[OH99] O’BRIEN J. F., HODGINS J. K.: Graphical
modeling and animation of brittle fracture. In
The proceedings of ACM SIGGRAPH (1999),
pp. 137–146.

[RJ98] RON K., JAMES A S.: Fast marching methods
on triangulated domains. In Proceedings of the
National Academy of Sciences (1998), vol. 95.

[SL00] SUNDARAJ K., LAUGIER C.: Fast contact lo-
calisation of moving deformable polyhedras. In
IEEE Int. Conf. on Automation, Robotics, Con-
trol and Vision (2000).

[THM∗03] TESCHNER M., HEIDELBERGER B.,
MUELLER M., POMERANETS D., GROSS

M.: Optimized spatial hashing for collision de-
tection of deformable objects. VMV Proceeding
(2003).

[Tsa02] TSAI Y. R.: Rapid and accurate computation
of the distance function using grids. Journal
of Computational Physics 178, 1 (may 2002),
175–195.

[vdB97] VAN DEN BERGEN G.: Efficient collision de-
tection of complex deformable models using
aabb trees. Journal of Graphics Tools (1997).

[vdB99] VAN DEN BERGEN G.: A fast and robust GJK
implementation for collision detection of con-
vex objects. Journal of Graphics Tools: JGT 4,
2 (1999), 7–25.

c© The Eurographics Association 2004.

129

