
EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2008)

C. Alvarado and M.- P. Cani (Editors)

MathBrush: A Case Study for Pen-based Interactive

Mathematics

George Labahn, Edward Lank, Mirette Marzouk, Andrea Bunt, Scott MacLean, and David Tausky

David R. Cheriton School of Computer Science

University of Waterloo, Waterloo, ON, Canada, N2L 3G1

<glabahn, lank, msmarzouk, abunt, smaclean, datausky>@uwaterloo.ca

Abstract

Current generations of computer algebra systems require users to transform two dimensional math expressions

into one dimensional strings, to master complex sets of commands, and to analyze lengthy output strings for rel-

evant information. MathBrush is a system, designed based on research in education pedagogy, that provides a

pen-based interface to many of the features of computer algebra systems. We describe relevant work in educa-

tion pedagogy as a motivation for MathBrush’s design. We highlight aspects of MathBrush that are unique from

other contemporary pen-math systems. Finally, we present the results of a thinkaloud evaluation of the Math-

Brush system. Together, these observations validate aspects of the current design of MathBrush, suggest areas for

refinement, and inform the design of future pen-math systems.

Categories and Subject Descriptors (according to ACM CCS): G.4 [Mathematical Software]: User interfaces

1. Introduction

Tablet computers, electronic whiteboards, and other pen-

input computer interfaces present opportunities to alter the

way that people use computers in education and work envi-

ronments. One domain where such a transformation is pos-

sible is in mathematics. In contexts as diverse as high-school

classrooms, engineering firms, and university research labs,

individuals perform complex mathematical problem-solving

tasks, frequently using pen and paper. When pen and paper

fails to support their problem-solving tasks, these individ-

uals can turn to computer algebra systems (CAS) to solve

computationally those problems that are either too tedious or

too complex to solve by hand. There exists, however, a mis-

match between mathematical work done on pen and paper

and mathematical work performed in a CAS. Specifically,

the need to transcribe mathematical expressions, an inher-

ently two-dimensional arrangement of symbols on a page,

into a one-dimensional sequential form injects awkwardness

into the interface [Rut02].

This paper describes the design rationale of our pen-math

system, MathBrush. The goal of MathBrush is to support

mathematical tasks, common to both researchers and stu-

dents, which are currently done on computer using a CAS.

As a result, we seek both to design an effective system for

pen-based access to CAS and to study recognition technol-

ogy and interface designs that most effectively support pen-

math. MathBrush includes a pen-based interface to draw

freehand math expressions in a similar fashion as is cur-

rently done on pen and paper. Recognition algorithms sup-

port the transformation of hand-drawn math into MathML

[CIPe01], a mark-up language that represents the underly-

ing hand-drawn math expression. MathBrush also includes

a number of features that support the tuning of the interface

to specific users (e.g. trainable recognizers), and the study of

math recognition algorithms (e.g. a component-based archi-

tecture and an interface for regression and acceptance test-

ing). Finally, to allow mathematical tasks common to both

researchers and students, MathBrush supports the input and

output of large expressions, and process logging to capture

and archive problem-solving rationale.

MathBrush is unique from existing pen-math systems

[vDO, LZ04, XTh] in a number of ways. First, MathBrush

is focused around the existence of back-end CAS. As a re-

sult, the entry and recognition front-end of MathBrush in-

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org


G. Labahn, E. Lank, M. Marzouk, A. Bunt, S. MacLean and D. Tausky / MathBrush

cludes little mathematical knowledge: specifically, we im-

plemented no mathematical algorithms. Instead, all mathe-

matical manipulations are performed via menu systems that

expose the underlying functionalities of CAS. As well, un-

like previous systems that support a single operation on an

input, such as numerical evaluation or solving for an in-

dividual variable [vDO], MathBrush includes features that

permit repeated manipulation of mathematical expressions

using natural gestures and context-sensitive menus. The in-

clusion of a full-featured CAS and the ability to repeatedly

manipulate mathematical expressions are justified based on

an extensive review of relevant pedagogical research into

the use of computers in mathematical education, particu-

larly at the high-school level. Researchers in this area have

repeatedly noted that both advanced CAS features (e.g. ex-

pansion, substitution, simplification, factoring, derivatives,

etc.) and repeated manipulation of expressions (e.g. expand

an expression, then simplify it, and then factor it) are nec-

essary for even high-school level algebraic and pre-calculus

instruction [Tay95, PS01, Art02, Rut02, PHG04, LPE02].

In this paper, we describe the rationale for the design of

the MathBrush system, using education pedagogy as a moti-

vation. We highlight various properties necessary for realis-

tic pen-math systems, and describe how MathBrush supports

these features. We also describe the unique features of Math-

Brush. Finally, we evaluate our design using thinkalouds,

and present both the strengths of MathBrush and areas where

additional work is needed. Together, the data in the paper

provide guidance for on-going work in the design of pen-

math systems.

This paper is organized as follows. First, we survey exist-

ing systems for pen-math, including systems that support the

entry of equations for display and systems that support inter-

active math. We also examine research on the use of comput-

ers in mathematics education. Next, we describe the design

of MathBrush. Finally, we describe the preliminary results

of an on-going usability study on the MathBrush system.

2. Related Work

2.1. Pen-Math Systems

Current pen-math systems for use on devices such as Tablet

PCs can be characterized based on two distinct primary

goals. A set of systems exist that seek to simplify the process

of creating typeset math expressions on computers. Other

systems, including our MathBrush system, seek to recognize

math expressions for the purposes of performing mathemat-

ical operations through a pen-based interface.

2.1.1. Typesetting Math

Many computer programs, including LATEX, MS Word, and

Internet Explorer, support the display of typeset mathemat-

ical expressions. To create typeset expressions, a user typ-

ically transforms the desired two-dimensional expression

Figure 1: MathBrush User Interface, showing both in-

put and the rendering of a long output string. The out-

put display heuristics try to keep fractions, parenthe-

ses, etc. together, and prohibit horizontal scrolling. For

example, for fractions, as line-breaking becomes neces-

sary, the system may transform rendering of a fraction

from numerator
denominator to 1

denominator ∗ (brokenNumerator), or to

(brokenNumerator)/(brokenDenominator) depending on

the length of numerator and/or denominator.

into a one-dimensional text string. Both characters and com-

mands are combined, either through some interface as in

Microsoft’s Equation Editor or within the text string as in

LATEX, to produce an expression that contains the characters

arranged appropriately as specified by the commands.

A set of research systems exist that support the cre-

ation of these typeset equations using pen-computers [CY99,

SFUK03,Smi99]. These systems were motivated by two fac-

tors. First, there is an informal understanding that, because

math is taught and typically expressed on pen and paper us-

ing its two-dimensional notation, expressions can be more

accurately input and more easily expressed by people to

a computer for typesetting if they can use the same nota-

tion [Smi99]. Second research has been done comparing the

speed of diagram entry for math and other diagram notations

using text, a mouse and command palette, and a pen [AK93],

and the pen-based interface was found to be approximately

twice as fast.

2.1.2. Pen-Based Math Manipulation

Computer-based mathematical manipulation is normally

performed using CAS such as Maple, Mathematica, NuCalc,

or Microsoft Math. Each of these systems support the ma-

nipulation of equations of varying complexity. Maple and

Mathematica are “full-featured” CAS, providing sophisti-

cated mathematical reasoning tools. Microsoft Math does

c© The Eurographics Association 2008.

144



G. Labahn, E. Lank, M. Marzouk, A. Bunt, S. MacLean and D. Tausky / MathBrush

not support repeated manipulation of equations; instead, the

system’s focus is on tutoring users in common mathematical

tasks. Finally, NuCalc is an example of an advanced graph-

ing calculator that supports graphing equations and solving

equations numerically, graphically, or symbolically.

Some recent research has explored the possibility of us-

ing pen-based computers to allow users to develop an un-

derstanding of mathematical expressions. The MathPad2

system [LZ04] is an application for creating mathematical

sketches. Users create hand-written mathematical expres-

sions using familiar math notation and draw free-form dia-

grams. They then create associations between the equations

and diagrams. The diagrams are animated, and the mathe-

matical equations specify the behaviour of the animation.

While animating diagrams allows users to see a physi-

cal interpretation of abstract mathematical concepts, math-

ematical manipulations such as evaluating, approximating,

expanding, and factoring, represent another area where

pen-math systems could aid problem solving. MathJour-

nal [XTh] appears to be the first commercial system for

doing mathematics on Tablet PC. MathJournal recognizes

and interprets diagrammatic and graphical representations of

some engineering and mathematical problems, but has lim-

ited mathematical capabilities. Microsoft Math also allows

users to enter equations using a soft input panel (sip), sim-

ilar to the sip used for text entry in tablet computers. More

recently, the MathReco [vDO] system demonstrated support

for evaluating and solving mathematical expressions. The

system included a rule-based recognizer for mathematical

expressions, and typical editing features. It also allows an

input expression to be graphed, a single variable within an

equation to be evaluated, or a definite integral to be approx-

imated. These operations were accomplished using either

a built-in math engine or Mathematica, a CAS. However,

once the math engine has evaluated or approximated the

output, no further manipulation of the output is supported.

One open question raised by systems such as MathJournal

and MathReco is how much mathematical problem-solving

power must be incorporated into a pen-math system.

2.2. Computers in Math Education

The goal of the MathBrush system was the design of a

full-featured pen-math problem-solving system. We envis-

age such a system as being useful in education, in engi-

neering, and in research to support a subset of the math-

ematical problem-solving tasks encountered by individuals

in these domains. While each of these domains has unique

problem-solving approaches and uses math of differing lev-

els of sophistication, we might assume that high-school math

instruction requires lower levels of mathematical sophistica-

tion than does engineering or mathematical research. In this

section, we present an overview of research on the use of

computers in math education, including their benefits, the

features needed, and the drawbacks of current technology.

Research on the use of four function, scientific and graph-

ing calculators argues that there are few drawbacks to in-

troducing CAS into educational settings [Tay95]. As well,

the widespread adoption of CAS by mathematicians and en-

gineers argues persuasively for the value of these systems

to the process of mathematical analysis despite the need to

invest time to master the complexity inherent in both in-

put and manipulation during interactive math problem solv-

ing [Art02]. In particular, researchers have noted that the

use of increasingly sophisticated calculators has particularly

benefitted the strongest students, and that the drawbacks for

academically weaker students are limited [Tay95].

In their study of 16-year-old students, Leinbach et al.

[LPE02] identify the role of a CAS as assuming some of the

mechanical processes involved in solving mathematical ex-

pressions so that students can spend more time studying con-

jecture, comparison, and new problem areas. These tasks,

which are considered both higher level and desireable in de-

veloping advanced mathematical understanding by educa-

tion researchers [LPE02], require both basic evaluation and

advanced CAS features such as expansion, factoring, substi-

tution, and derivatives. Echoing this result, Pierce and Stacy

note that the use of a CAS in education and in early research

promotes the use of multiple representations, discussion of

meaning, and other factors that are considered positive in

developing a mathematical understanding of real-world con-

nections to the computations being performed [PS01]. Given

this research in education, we can claim that both advanced

CAS features and the ability to repeatedly manipulate CAS

output are necessary to support high-school math educa-

tion at, in the case of these studies, the math curriculum for

grades ten to twelve.

Given the need for advanced CAS features and repeated

manipulations, one might be tempted to claim that a CAS is

all that is needed to support mathematics education. How-

ever, the interactive features of a CAS are not perfectly

suited to the education and research tasks for which a CAS

might be used, and significant barriers exist to their adop-

tion in education settings. Pierce et al. [PHG04] identified

the need for technical assistance to support students and re-

searchers as they master the use of menus, the location of

commands, and the syntax translation necessary for pro-

viding input and interacting with CAS. As well, Ruthven

et al. [Rut02] noted the difficulty in translating expressions

into linear form, a difficulty more often faced by students

who struggle with mathematical concepts. Even with pretty-

printed verification, there also exists a need to translate the

formatted math output between forms that are mathemati-

cally equivalent but semiotically distinct, and then to under-

stand what to do with the output given a multitude of CAS

features. As a result, having some simplified form of pen-

based entry and access to relevant commands would allow

verifying correctness of input for computer algebra systems

and speed the adoption of these systems by students and re-

searchers [PHG04].

c© The Eurographics Association 2008.

145



G. Labahn, E. Lank, M. Marzouk, A. Bunt, S. MacLean and D. Tausky / MathBrush

3. Designing MathBrush

The purpose of the MathBrush system was both to design an

effective system for pen-based access to CAS and to study

recognition technology and interface designs that most ef-

fectively support pen-math. In this section, we describe the

challenges in building a pen-based system that interacts with

the features available in CAS and the decisions we made

to satisfy these design challenges. While MathBrush shares

many features with existing pen-math systems, MathBrush

is the only pen-math system that provides tight integration

with a back-end third-party CAS and allows multiple and

repeated operations using this back-end CAS. As a result,

many of these design decisions are unique to MathBrush.

3.1. Expression Entry and the Display of Output

A computer-based mathematical reasoning system exists pri-

marily to allow users to manipulate an expression or set of

expressions that defy easy mechanical solving, not to sup-

plant paper for trivial expressions. As a result, CAS are used

to provide support for the entry, interaction, and display of

results from expressions that may be large and complex. A

pen-math system must support long input, easily achievable

through a scrolling canvas. A pen-math system must also

support the output of expressions that may be both large and

complex. We support this using simple heuristics. Figure 1

shows output of a large expression and describes aspects of

the heuristics.

3.2. Accessibility of Interactive Features in CAS

As noted by Leinbach [LPE02], even simple optimization

problems and high-school level math can require access to

advanced CAS features such as expansion, factoring, sub-

stitution, and derivatives. While preserving the pen-based

nature of interaction, there exists a need to support access

to many different commands. However, mastering the large

command set is a significant barrier to adoption of CAS, in

both professional [Art02] and educational settings [PHG04].

To limit the number of commands displayed, MathBrush

incorporates a context sensitive pop-up menu. The menu is

populated by operations based on a cursory analysis of the

mathematical expression and the manipulations most likely

to be performed. For example, the context menu for matri-

ces, Figure 2, includes operations such as inverse, determi-

nant, and rank, whereas the context menu for polynomial ex-

pressions, Figure 3, includes operations such as factor, dif-

ferentiate, simplify and short form. With the high number of

operations available from the CAS, displaying only the op-

erations that are most likely based on analysis of the expres-

sion is particularly helpful for less experienced users. More

advanced users can extend the context menu to include ad-

ditional operations as needed.

Figure 2: Context Menu for a Matrix Expression

Figure 3: Context Menu for a Polynomial Expression

3.3. Interactive Editing in Place of Math Expressions

In CAS, it is common to develop a partial solution, to manip-

ulate some portion of that solution, and then to reintegrate

the manipulated subexpression into the pre-existing partial

solution. This is necessary even at the high-school level,

where a student may wish to substitute a specific instance

of a subexpression with a new variable, or to simplify only a

subset of the terms in an expression. With CAS, users iden-

tify the position of the subexpression(s) they wish to access,

then use specific CAS commands to index into the equation

to access the subexpression(s). They then issue additional

commands to operate separately on the subexpression(s). If

the original expression is complex or long, this operation is

tedious and error-prone [Rut02]. To allow the user to do such

manipulation and editing in MathBrush, we have designed

an editing-in-place mechanism that allows interaction with

CAS output. Users can circle subexpressions using the pen

and use the context menu to display the selected part of the

expression in a floating MathBrush window. Subexpression

editing is shown in Figure 4.

c© The Eurographics Association 2008.

146



G. Labahn, E. Lank, M. Marzouk, A. Bunt, S. MacLean and D. Tausky / MathBrush

Figure 4: Output Manipulation in MathBrush

3.4. Plotting

Creating a graphical representation of an equation (i.e. plot-

ting) is a common feature of many pen-math systems. Math-

Brush also includes a plotting control that supports two and

three dimensional plots, and the pen can be used to rotate

these plots to examine them from different angles, a feature

particularly useful in 3 dimensional plots. MathBrush aug-

ments this control with support for pen-based input to con-

trol the range of plotted values on multiple axis. Users can

modify the range of any axis by writing a new value near the

rendered range value of the axis being modified. Using 2D

proximity, we map the range onto the appropriate axis. This

functionality is shown in Figure 5.

Figure 5: Plotting in MathBrush. The user is adjusting the

x-axis limits from [-5, 5] to [-3, 3], by drawing the new limits

on the plot control.

3.5. Additional Features

There are a series of additional features in MathBrush that

were not tested during our thinkaloud study, including the

ability to interactively swap CAS and logging. While CAS

normally behave identically given the same input, for some

inputs different CAS give results that appear quite different

(are semiotically distinct), but are mathematically identical.

MathBrush deals with this issue by viewing all CAS as plug-

gable components. A user can select a new CAS to check

for alternate answers to their problems. Such a selection can

occur anytime during a session. Logging allows users to re-

visit their past actions. This is useful for mathematical re-

flection [PS01] and when editing features make it difficult to

track exactly how past equations were modified to create a

result.

4. Evaluation

4.1. Goal

We were interested in several aspects of our system. First,

we wanted to determine how accurately users enter input.

Second, we wanted to explore the ability to interpret and

correct recognition errors. Finally, in designing our sys-

tem, we made use of context menus and a subexpression-

manipulation panel to enable users to perform an exten-

sive set of mathematical manipulations, including expan-

sion, substitution, simplification, factoring, graphing, and

evaluating. While our decisions seemed reasonable during

development, initial evaluation can serve to validate these

decisions and suggest areas needing refinement.

4.2. Method

We evaluated our system using thinkalouds and a semi-

structured interview. Participants were given a five minute

introduction to the system. The basic functionality was

demonstrated, including the process for drawing equations,

validating the recognition results, rendering the recognized

results, and performing mathematical operations on the

equations. We were careful to show participants how to work

with recognition errors in the system, and were honest about

the fact that recognition is occasionally brittle.

Participants then entered and manipulated several math-

ematical equations using a tablet computer (Acer 14.1”

screen). These included two algebraic expansions and sim-

plifications, the manipulation of a subexpression within one

of the algebraic expansions, the entry of a set of matrices

and operations on the matrices, and plotting of a two dimen-

sional trigonometric equation. During these tasks, partici-

pants were encouraged to verbalize their thought process.

We provided no initial assistance to participants in accom-

plishing any of their tasks, and intervened only when partic-

ipants seemed to have exhausted all avenues of exploration

to accomplish their task and were becoming frustrated.

Finally, after participants had completed the tasks with

the system, a process that took approximately 20 minutes,

we conducted a semi-structured interview asking about their

current mathematical tasks, and the match between system

functionality and their mathematical tasks.

c© The Eurographics Association 2008.

147



G. Labahn, E. Lank, M. Marzouk, A. Bunt, S. MacLean and D. Tausky / MathBrush

4.3. Participants

Participants for our study were drawn from the undergradu-

ate Faculty of Mathematics at our institution, which includes

students studying math, computer science, and various sub-

disciplines within these fields. The students were undergrad-

uates, and had all taken multiple courses in calculus and

linear algebra. As is typical in thinkaloud style descriptive

evaluations, we focus on a relatively small sample subject

population, and explore users’ attitudes in depth [Lew82].

Specifically, we worked with five participants, the number

suggested by Nielsen in his writings on early usability eval-

uation [Nie00, NL93].

5. Observations

We focus our observations around two themes. First, we look

at inputting mathematical expressions and validating recog-

nition results. We then present observations of interactions

with the mathematical equations to solve specific problems

we gave our participants.

5.1. Equation Entry and Recognition

In MathBrush, equation entry is a three step process. Users

first draw the mathematical equation. They then interact with

the equation in an input validation panel (IVP) to correct

any character recognition errors (see Figure 6). Finally, they

render the equation to validate structural analysis.

When drawing equations, we observed several notable in-

teractions. First, equation entry was generally not a problem.

In all but four instances, participants were able to enter equa-

tions successfully. The exceptions were a result of ideosyn-

cracies in individual character recognition, a software pro-

gramming bug that caused plotting to fail, and spacing is-

sues associated with segmentation of terms in a matrix. One

suggestion for correcting character recognition ideosyncra-

cies was to allow use of a soft keyboard to manually enter

the correct character.

Some minor issues did appear. One challenge that all users

had was the propensity to leave extraneous ink, specifically

small dots, when drawing ink equations and then invoking

the input validation panel. This extraneous ink could result

in errors in parsing that were difficult to understand. We are

in the process of refining our parser to include the ability to

omit this extraneous ink. As well, two editing features were

not used: scratch out and translation. While scratch-out is

commonly supported, our participants all used the eraser end

of the electronic stylus rather than the scratch-out gesture.

As well, the process of circling and moving terms around

(i.e., translation), either to allow modification or to correct

structural analysis was not used. Participants would, instead,

simply choose to erase and then redraw a portion of the equa-

tion. These observations, however, were minor, as they did

not interfere with participants’ overall ability to interact with

the system successfully.

Figure 6: During recognition, the math equation is depicted

in the user’s handwriting, as unstructured characters in the

IVP, and as pretty-printed output after rendering.

Participants were also able to correct recognition results

and render the equation in the final form. However, correct-

ing recognition presented some difficulties. First, the use of a

separate input validation panel to correct character recogni-

tion followed by a rendering step to present structural anal-

ysis caused some confusion. This confusion resulted from a

lack of understanding of the steps involved in recognition.

Once character recognition was corrected, participants did

not perceive the second recognition step, structural analysis,

and did not understand why errors would occur once char-

acter recognition was completed. We are in the process of

refining our recognition process to combine character recog-

nition and structural analysis into a single recognition step.

At a more detailed interface level, the use of multiple repre-

sentations of the same equation – in ink, as recognized char-

acters in the input validation panel, and as a mathematical

expression after rendering (see Figure 6) – created a situ-

ation where users were unsure where to go to correct re-

sults. We saw several instances of users trying to correct

the rendered expression rather than returning to their ink,

or trying to scribble out and redraw in the input validation

panel. Clearly, the separation of input, character correction,

and rendering into three separate linear steps was not as in-

tuitive as having a single, authoritative representation of the

equation would have been.

The second area of difficulty in correcting recognition

results involved transparency of errors. Often, particularly

when structure was misrecognized, it was difficult for par-

ticipants to perceive exactly why this was the case. This

perception, however, is important, as it speeds the correc-

tion process. Participants would frequently make extensive

corrections to an equation when only one erase and redraw

might have corrected the results. This challenge with pen

recognition systems is well known (see, e.g. [BLRZ02]), but

how best to reveal the internal recognition processes is still

an area for further research.

While extraneous ink, input validation, and the trans-

parency of errors were all difficulties observed in our sys-

tem, the system did allow all participants to successfully

complete entry, recognition, and interaction for almost all

of their equations during a thinkaloud style evaluation. The

exceptions – idiosyncracies in character recognition, diffi-

c© The Eurographics Association 2008.

148



G. Labahn, E. Lank, M. Marzouk, A. Bunt, S. MacLean and D. Tausky / MathBrush

culty with spacing, and a software bug – are being addressed

through on-going research in recognition and error presenta-

tion and software bug fixes.

5.2. Mathematical Interactions

Mathematical interactions were a significant strength of our

system. Context menus were a rapid, convenient way to

make a large number of mathematical operations available

to participants. Once the equation was recognized correctly,

participants had few problems carrying out complex expan-

sions, simplifications, plots, and matrix manipulations. One

participant, an occasional user of a CAS, indicated that one

of the strengths of this approach was the benefit of “not hav-

ing to look up in Maple or Mathematica manuals how to do

these” operations (P2).

Simlar to the difficulties with multiple representations ob-

served during equation entry, there were occasional prob-

lems with multiple representations during interaction. For

example, when users were asked to change their expressions,

e.g. to change an exponent “4” to an exponent “42”, they

would frequently try to draw the “2” on the rendered ex-

pression rather than on their ink expression. We continue to

work toward one authoritative representation of the equation

which allows both input validation and mathematical inter-

action.

Unlike other pen-math systems, MathBrush allows users

to interact with subexpressions, to transform these subex-

pressions, and to substitute the transformed subexpression

back into the original equation. Participant P2 also noted the

benefits of this, as working with subexpressions is “hard in

Computer Algebra Systems” (P2). While the subexpression

manipulation was more fluid than is typical in a CAS, which

requires visual indexing of terms, it was still somewhat awk-

ward for users. The use of a separate editing panel seemed

unnecessarily tedious for users, though it did allow users to

validate their subexpressions. Since this feature was posi-

tively received, we continue to explore designs that allow for

both ease of selection and ease of subsequent manipulations.

Three participants commented favourably on our plot

functionality. The one aspect of plots that did not seem in-

tuitive was adjusting limits on the plot. Since editing a plot

interactively with ink is not a commonly available feature, it

was not immediately obvious to participants that such oper-

ations were possible.

6. Discussion

In this section, we will examine overall issues associated

with the design of a pen-math system. We first focus on users

adapting to the system to improve recognition. Next we dis-

cuss the user community for a pen-math system.

6.1. Users Adapting Their Behaviour

One interesting aspect of use of our system observed dur-

ing our study was how readily users modified their writing

to adjust to the tolerances of recognition. These adaptations

included slowing down their timing, taking additional care

with symbol spacing, and altering the way that they drew

certain characters. With only 20 minutes of independent use,

we noted a significant change in the way subjects drew equa-

tions.

The implications of adaptation are not immediately obvi-

ous. For example, while one participant noted that the “need

to draw neatly” was something that slowed down use of the

system (P3), particularly for input, any computer system to

interpret math notation will have overhead associated with

its use. While careful engineering and advances in hardware

and software may speed this process, pen and paper are still

both readily available and low in overhead. The question

of whether the additional overhead associated with draw-

ing neatly to enable recognition transforms MathBrush from

acceptable to unacceptable overhead remains open, but this

seems unlikely.

The strength associated with a CAS is that the required

time to expand and simplify a high degree polynomial, for

example:

(x2 + yz
3)42

− (x3
− y

2
z

6)13
(1)

is identical to the time taken to expand and simplify a

smaller, more manageable polynomial, such as:

(x2 + yz
3)2

− x
2

(2)

While the second polynomial is easily expandable by hand,

the first polynomial is not in any reasonable time. The over-

head of writing neatly and correcting recognition errors is

clearly worth the time savings associated with expanding the

polynomial using a CAS.

Pen-math systems occupy a space somewhere between

pen and paper and CAS on the spectrum of ease of use ver-

sus computational power. Paper is a fluid, portable, conve-

nient medium for writing information. Paper, however, pro-

vides no computational support for performing operations

beyond those an individual can reasonably perform. CAS,

on the other hand, have extensive computational support for

complex mathematical operations, yet these systems require

users to transform two dimensional math expressions into

one dimensional strings prior to manipulation and to mas-

ter a set of commands and/or menus to access the necessary

operations.

A still open research question is where on this spectrum

pen-math systems should be positioned. Should a pen-math

system be an enhanced calculator that supports limited math-

ematical operations [XTh, vDO], or should it support the

complex operations contained in a CAS? To answer this

question, we revisit the issue of who the typical user of a

pen-math system is.

c© The Eurographics Association 2008.

149



G. Labahn, E. Lank, M. Marzouk, A. Bunt, S. MacLean and D. Tausky / MathBrush

6.2. User Community

In our system, we began our work by considering a pen-math

system as an interface to a CAS. This resulted in the use of

context menus to invoke a large set of mathematical oper-

ations, and the requirement that we limit the mathematical

knowledge in MathBrush’s front end.

The incorporation of a full-featured CAS into MathBrush

is based on research in the use of computers in mathematics

education. The premise of commercial systems such as Mi-

crosoft Math and MathJournal seems to be that there exists

a difference between the math done by a CAS and the math

required for high school or early university instruction. How-

ever, when Leinbach et al. studied use of CAS in high school

mathematics classrooms, they noted that math instruction re-

quired access to many of the advanced CAS features, includ-

ing expansion, factoring, substitution, subexpression manip-

ulation, derivatives, etc. [LPE02]. Manipulation for compari-

son, conjecture, and the exploration of alternatives have also

been pointed to as a benefit of CAS [LPE02], as the CAS

assumes some of the mechanical processes involved in ma-

nipulating the same equation in multiple ways.

As noted earlier, the drawback of the use of CAS in class-

room instruction is the need for extensive technical assis-

tance to support students as they master use of menus, the

location of commands, and the translation of syntax to pro-

vide input and interact with CAS [PHG04, Rut02]. In our

study, participants familiar with CAS noted the use of con-

text sensitive menus (which present operations based on an

analysis of the identity of the equation being manipulated)

as a benefit of our system. Users of MathBrush could ex-

amine the context menu to locate manipulations suitable for

a given equation type. As well, the system preserves the

two-dimensional representation while still allowing access

to many of the necessary features of a CAS.

7. Conclusion

This paper describes the MathBrush system. We present

background from education pedagogy that motivates our de-

sign decisions, and results from a thinkaloud study that val-

idates our design and suggests areas for improvement. To-

gether, these results provide guidance for the design of future

pen-math systems.

Acknowledgements

This research was supported by Microsoft Canada, the Nat-

ural Science and Engineering Research Council of Canada

(NSERC), and the Ontario Ministry of Research and Inno-

vation.

References

[AK93] APTE A., KIMURA T.: A comparison study of the pen

and the mouse in editing graphic diagrams. In Proceedings of the

IEEE Symposium on Visual Languages (1993), pp. 352–357.

[Art02] ARTIGUE M.: Learning mathematics in a cas environ-

ment. International Journal of Computers for Mathematical

Learning 7 (2002), 245–274.

[BLRZ02] BLOSTEIN D., LANK D., ROSE A., ZANIBBI R.:

User interfaces for on-line diagram recognition. In Graphics

Recognition: Algorithms and Applications, LNCS 2390 (2002),

Blostein D., Kwon Y., (Eds.), Springer, pp. 92 – 103.

[CIPe01] CARLISLE D., ION P., POPPELIER N., (EDITORS)

R. M.: Mathematical markup language (mathml) version

2.0. W3C Recommendation, http://www.w3.org/TR/2001/

REC-MATHML2-20010221,.

[CY99] CHAN K., YEUNG D.: Recognizing on-line handwrit-

ten alphanumeric characters through flexible structural matching.

Pattern Recognition 32 (1999), 1099–1114.

[Lew82] LEWIS C.: Using the thinking-aloud method in cognitive

interface design. Tech. rep., IBM T.J. Watson Research Center,

Yorktown Heights, NY., 1982.

[LPE02] LEINBACH C., POUNTNEY D., ETCHELLS T.: Appro-

priate use of a cas in the teaching and learning of mathematics.

International Journal of Mathematical Education in Science and

Technology 33, 1 (2002), 1–14.

[LZ04] LAVIOLA J., ZELEZNIK R.: Mathpad2: a system for the

creation and exploration of mathematical sketches. ACM Trans-

actions on Graphics (Proc. SIGGRAPH 2004) 23, 3 (2004), 432–

440.

[Nie00] NIELSEN J.: Why you only need to test with 5 users.

In Jakob Nielsen’s Alertbox (2000). http://www.useit.com/

alertbox/20000319.html.

[NL93] NIELSEN J., LANDAUER T. K.: A mathematical model

of the finding of usability problems. In Proceedings of the IN-

TERACT ’93 and CHI ’93 conference on Human factors in com-

puting systems (1993), pp. 206–213.

[PHG04] PIERCE R., HERBERT S., GIRI J.: Cas: Student en-

gagement requires unambiguous examples. Mathematical Edu-

cation for the Third Millenium (2004), 462–469.

[PS01] PIERCE R., STACEY K.: Observations on students’ re-

sponses to learning in a cas environment. Mathematical Educa-

tion Research Journal 3, 1 (2001), 28–46.

[Rut02] RUTHVEN K.: Instrumenting mathematical activity. In-

ternational Journal of Computers for Mathematical Learning 7

(2002), 275–291.

[SFUK03] SUZUKI M., FUKUDA F. T. R., UCHIDA S., KANA-

HORI T.: Infty- an integrated ocr system for mathematical doc-

uments. In ACM Symposium on Document Engineering (2003),

pp. 95–104.

[Smi99] SMITHIES S.: Freehand Formula Entry System. Master’s

thesis, University of Otago, Dunedin, New Zealand, 1999.

[Tay95] TAYLOR M.: Calculators and computer algebra systems.

Mathematical Gazette 79, 4 (March 1995), 6.

[vDO] VAN DAM A., OTHERS: Mathreco: Interpreting and

correcting handwritten mathematics. http://graphics.cs.

brown.edu/research/pcc/mathreco.html.

[XTh] XTHINK: Mathjournal. http://www.xthink.com/

MathJournal.html.

c© The Eurographics Association 2008.

150

http://www.w3.org/TR/2001/REC-MATHML2-20010221
http://www.useit.com/alertbox/20000319.html
http://graphics.cs.brown.edu/research/pcc/mathreco.html
http://www.xthink.com/MathJournal.html

