
EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2008)
C. Alvarado and M.- P. Cani (Editors)

A Sketch-Based Method to Control Deformation in a Skeletal
Implicit Surface Modeler

Masamichi Sugihara 1, Erwin de Groot2, Brian Wyvill1 and Ryan Schmidt3

1University of Victoria, Canada
2University of Calgary, Canada 3 University of Toronto, Canada

Abstract
Skeletal implicit surfaces offer many advantages for sketch-based modeling systems, such as blending, CSG, and
a procedural object hierarchy. Free-form deformation (FFD) is also extremely useful in this context, however
existing FFD approaches do not support implicit surface representations, and FFD lattice manipulation is time-
consuming compared to sketch-based techniques. In this paper, we describe an FFD technique suitable for implicit
surface representations. To enhance real-time feedback, we split the problem into an approximate formulation used
during interactive deformation, and a more robust variational technique which preserves desirable scalar field
properties. As an interface to manipulate the deformation, we introduce a sketch-based volumetric peeling inter-
face. The designer’s task is to draw a curve on the surface, and pull or push the surface to the desirable position
via the curve. Subsequently, the deformation is automatically defined. Results show that a desirable deformation
can be easily achieved while preserving implicit properties.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling H.5.2 [Information Interfaces and Presentation]: User Interfaces

1. Introduction

Spatial deformation is a useful technique for modeling and
animation. Conceptually, spatial deformation tools embed
the object to be deformed in some simplified volumetric
space. Deformations applied to the volume are then trans-
ferred to the embedded object. For example, Free-form de-
formation [SP86] embeds objects in 3D lattices; deforma-
tions are then specified by manipulating the lattice points.
A key advantage of volumetric methods like FFD is that the
deformation is independent of the geometry being deformed,
so they can be applied to any surface representation based on
point-sampling. Artists find these techniques very intuitive,
and spatial deformation is widely utilized in commercial 3D
modeling packages.

Skeletal implicit surface representations [Blo97] have
many advantages for 3D modeling, such as simple formu-
lations for shape blending and CSG, and continuity guaran-
tees. Some spatial deformations, such as Barr warps [Bar84],
can be used with implicit representations, but more advanced
FFD-like methods are difficult to apply. A key problem is
that the warp must be invertible to apply to a functional im-

plicit representation [WGG99]. Second, as the deformation
is applied to the entire scalar field, it must largely preserve
properties like normalization [Sch06] to ensure that further
application of blending and CSG operations produce sensi-
ble results.

Another issue with spatial deformations based on lattices
is that the designer has to manipulate many control points
to construct a deformation. Recently, [NISA07] described
a deformation tool in which strokes sketched on a surface
can be pushed or pulled in 3D space, similar to the Wires
system [SF98]. However, these techniques are based on de-
formation of mesh surfaces, and do not easily extend to the
functional implicit domain.

In this work we propose a new sketch-based tool for speci-
fying interactive deformation of functional implicit surfaces.
We demonstrate our method using the BlobTree [WGG99],
but it is applicable to any other volumetric representation.
Similar to [NISA07], the interface is based on drawing
curves on the model surface, and then interactively manip-
ulating them. A volumetric peeling technique is used to de-
termine the deformation radius, inspired by curve peeling

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org


algorithms [NISA07]. The volumetric deformation is spec-
ified by deforming an automatically-generated lattice, how-
ever the designer does not directly interact with the lattice
- the warp is specified indirectly via the sketched curve. To
preserve desirable properties of the underlying scalar field,
the lattice points are used as constraints in the construction
of a smooth variational warp, which makes the result usable
for further interaction (Figure 1). However, this warp is com-
putationally expensive to compute, so a fast approximation
used during interactive manipulation is also described. Our
contributions can be summarized as follows:

• We propose a new method for applying free form defor-
mation (FFD) to skeletal implicit surfaces.

• We propose a sketch-based interface to manipulate a de-
formation that is designed to provide interactive feedback
for implicit surfaces although it is not limited to this mod-
eling paradigm.

Figure 1: Blending and CSG operations can be performed
interactively after variational warping.

2. Related Work

2.1. Free-Form Deformation

Free-form deformation was introduced by Sederberg and
Parry [SP86]. They described a tool consisting of a 3D grid
of control points (the lattice). The points within this grid
are displaced using a tri-variate interpolation with Bernstein
polynomials. This assures a smooth deformation field, but
requires manipulation of a large amount of control points.

Modifications to the original FFD method were proposed,
such as the extended free-form deformation EFFD [Coq90]
where the lattice can be made cylindrical. MacCracken and
Joy [MJ96] used Catmull-Clark subdivision meshes for lat-
tices of arbitrary topology.

Crespin [Cre99] uses an implicit free-form deformation
tool (IFFD) to define the deformation space and the amount
of deformation. Each deformation applied to the original
model is weighted by the field values of an implicit sur-
face. The big advantage of this method is that a combination
of traditional FFD tools can be used to obtain more flexi-
ble deformations. Although an implicit surface is used as a

deformation field, IFFD can only be applied to point based
surfaces like polygon meshes.

Ono et al. [OCNF02] implements a system which auto-
matically generates deformation fields suitable for a model.
It is not a trivial task to define appropriate deformation
fields, so the system makes FFD more accessible to design-
ers. Since the deformation field is defined hierarchically, it
is easy to apply both global and local deformations.

Unfortunately none of the methods discussed provide an
inverse mapping, or a means to calculate one, so none of
them can be applied to implicit surfaces efficiently. Using
root finding or some other recursive algorithm to find inverse
values is too time consuming to be used in an interactive
system and therefore not a suitable solution.

2.2. Deformation with Implicit Surfaces

Jim Kleck, in his masters thesis [Kle89], mentions the pos-
sibility of “space warping” for skeletal implicit surfaces by
simply applying the function:

fA(p) = g(w(dA(p))) (1)

In this equation, dA(p) represents the distance between a
point p and a skeleton A. g : R→ R is a field function, and
fA(p) is the field value in p. The function w is often referred
to as a space warp. Earlier work such as Kleck’s, defined the
function w without allowing much in the way of user control.

Barr introduced the notion of global and local deforma-
tions using the operations twist, taper and bend [Bar84]. The
Barr operations were applied to implicit surfaces by Pasko et
al. for functionally defined models [PASS95, PASS01] and
for skeletal implicit surfaces see [WvO97]. Cani (formerly
Gascuel) [Gas93] defined a warp that represents the defor-
mation of implicit objects under collision and extents this
idea in [OC97] and [CD97]. Other specific functional warps
applied to skeletal implicit surfaces were defined for anima-
tion as described in [Blo97]. Such methods include moving
a skeletal implicit model through a warped space, or apply-
ing a time dependent warp function to the space in which the
model exists.

Schmitt et al. [SPS03] proposed a deformation method for
F-rep models [PASS95, PASS01]. A more flexible deforma-
tion is possible than the methods described above by defin-
ing another F-rep object as a deformation field. By applying
this principle in a sketch based system, we are able to design
a more intuitive interface, in which it is easy for the designer
to define an appropriate deformation field to achieve the de-
sirable deformation.

The above methods work well for implicit models but re-
quire a definition of the deformation. In our work we in-
vestigate a more controllable and user friendly deformation
technique using a sketch-based approach.

c© The Eurographics Association 2008.

M. Sugihara et al. / A Sketch-Based Method to Control Deformation in a Skeletal Implicit Surface Modeler66



2.3. Sketch-Based Modeling

Sketch-based modeling has become a common technique for
free-form modeling, and various kinds of sketch-based mod-
eling systems have been presented.

Igarashi et al. [IMT99] introduced the sketch-based mod-
eling system called Teddy. A triangle mesh is used as an
underlying shape representation. The system supports defor-
mation operation as well as extrusion, cutting and smooth-
ing operations. The designer draws two strokes and then the
system warps the model from one stroke to the other using a
deformation operation.

ShapeShop [SWSJ05] is a sketch-based modeling system
in the style of Teddy, and uses hierarchical implicit mod-
els (BlobTree [WGG99]) as an underlying shape representa-
tion. BlobTree allows the designer to create complex mod-
els with blending and CSG operations. This process can
be done interactively using a hierarchical spatial caching
scheme [SWG05]. However, ShapeShop does not support a
deformation operation.

FiberMesh [NISA07] is a 3D modeling system that uses
3D curves. In FiberMesh the designer can refine a model
with 3D curves which the designer sketches. FiberMesh uses
a peeling interface [IMH05] to manipulate deformations,
and our approach is similar. The peeling effect is applied
to the control curves and the 3D model deforms accordingly.
Our approach applies the peeling effect directly to the model
instead of a control curve. Moreover, we use a space warp-
ing deformation method which allows us to deform any kind
of model representation, including implicit surfaces.

3. Deformation Interface

This section provides an overview of the interactive
deformation process. Our tool is implemented within
the ShapeShop sketch-based modeling system [SWSJ05].
ShapeShop is based on the BlobTree hierarchical im-
plicit volume representation [WGG99]. Similar to Teddy, in
ShapeShop the designer constructs a model by drawing 2D
contours, which are inflated into 3D parts. These parts cor-
respond to volumetric implicit primitives, which are com-
bined in a dynamic hierarchy using composition operators
such as blending and CSG. Hence, the representation is a
tree, with primitives at the leaves, and interior nodes specify-
ing compositions. Our deformation tool is also implemented
as a composition operator, and hence its influence is local-
ized according to the position of the deformation node in the
BlobTree.

To begin a deformation, the designer draws a 2D stroke
over top of the model. The system dynamically interprets
this stroke as a request for a deformation action, and adds an
appropriate icon to the suggestion list. Upon initiating the
deformation, the vertices of the stroke are projected onto the
current implicit surface, via ray-surface intersection. This

produces a 3D poly-line that approximates a curve embed-
ded in the surface. To deform the surface, the designer ma-
nipulates the embedded curve using 3D transformation tools.
Similar to Wires [SF98], translating the curve pulls the sur-
face along with it.

Conceptually, the curve is treated as a constraint in the
underlying deformation. The designer is free to add more
curves to the deformation, which are simply treated as ad-
ditional constraints. Note that, without any special handling,
deformation curves could easily conflict with each other. To
avoid this, curves are dynamically updated to ensure that
they are embedded in the currently-visible surface. When
one of the curves is manipulated, the warp is re-computed
using this new curve and all the previous curves. We then
project all other curves onto the new surface (Figure 2).

Figure 2: The designer can pull the model from several po-
sitions with multiple curves.

3.1. Volumetric Peeling Technique

A standard interface problem with local volumetric deforma-
tion techniques is specifying the region of influence (ROI).
In our system, as the designer manipulates constraint curves,
vertices of an underlying volumetric lattice are modified
(See Section 4 for details). As with other systems, we pro-
vide an interactive parameter for controlling the ROI of the
curve on the lattice. However, the designer often has to re-
peatedly alternate between moving the curve and modifying
the radius parameter to achieve the desired effect, which can
be time-consuming.

An alternative to manual ROI specification is a dynamic
peeling interface, as proposed by [IMH05]. In that system,
the designer interactively deforms 2D curves by directly
pulling on them. The further the designer pulls the curve
from an initial point, the larger the region of influence along
the curve (here determined by arc-length). [NISA07] in-
cludes a similar interface for 3D curve manipulation. We uti-
lize a similar interface, but instead of peeling an ROI on the
curve, we peel the volumetric ROI of the deformation speci-
fied by the curve.

When the designer first creates a deformation, the ROI
starts out small. As the designer pulls the curve a small dis-
tance from the surface, a correspondingly small region is de-
formed. As the displacement of the curve grows, so does the

c© The Eurographics Association 2008.

M. Sugihara et al. / A Sketch-Based Method to Control Deformation in a Skeletal Implicit Surface Modeler 67



deformation ROI. When the designer pulls the curve suffi-
ciently far away, the whole surface is deformed (Figure 3).
The deformation region is indicated by changing color, from
green to yellow. Hence, the effect for the designer is simi-
lar to an elastic deformation of a very flexible surface - ini-
tially only a local deformation is specified, but eventually the
whole surface begins to move.

Volumetric peeling allows the designer to efficiently vary
deformation ROI without having to manipulate parameters.
The ROI growth rate is tuned to be compatible with the lim-
itations of the deformation algorithm, and we have found
it to be quite effective in practice. Even when a different
ROI is desired, volumetric peeling generally gives a better
“ballpark” estimate than a fixed ROI. Since designers will
inevitably demand ROI control, we provide a slider which
modulates the ROI growth rate, which loosely corresponds
to the elastic stiffness or rigidity of the material (Figure 4).

Figure 3: A peeling interface. Depending on how far the de-
signer pulls the curve, the deformation region is determined.

Figure 4: The rigidity of the surface can be also manipulated
by changing the growth rate.

4. Deformation Algorithm

Our algorithm consists of three parts: voxelization, interac-
tive deformation, and variational warping. Voxelization in-
volves approximating the model with a grid of cubic voxels
and associating them with the user-drawn curve. The de-
signer’s actions displace the vertices of this grid, and we
infer our deformation from these displacements. Interactive
deformation defines a new approximate implicit field based
on the voxel grid, visually approximating the effect of the de-
formation. Variational warping computes a spatial deforma-
tion field based on the displacements, warping the implicit
model.

Ideally, we would compute the deformation field in one
pass and avoid our approximate deformation, however vari-
ational warping is too slow for interactive use. Therefore, we
exploit the speed of the approximation and then either let the
designer explicitly compute the variational warp, or take ad-
vantage of idle moments to do so, similar to the approach
proposed in [BPWG07].

4.1. Voxelization

The designer draws a curve on the surface of the model to
define the region of the deformation (Figure 5). A set of vox-
els are then created in the region surrounding the user-drawn
curve. We call this the deformation grid. In ShapeShop, the
implicit model is visualized using a polygon mesh extracted
from a similar uniform voxelization [WMW86]. Hence, the
fidelity of the surface visualization is limited by the voxel
resolution. The deformation grid is also created in the same
manner. However, the deformation grid is independent of
polygonization, so the designer can use arbitrary grid res-
olution without affecting polygonization. This grid resolu-
tion limits the spatial frequency of the deformation, but as a
smooth warp field is computed, the spatial frequency of the
underlying implicit surface is not affected.

Figure 5: The surface of the model is automatically vox-
elized right after sketching.

Next, we embed the user-drawn 3D curve in the voxel
grid. For each curve vertex, we find the nearest grid ver-
tex - the set of all such grid vertices are the handle vertices
(Figure 7). When the designer translates the curve, the same
translation is applied to the handle vertices. This translation
is then propagated to the each surrounding grid vertex, with a
smoothly decreasing spatial influence based on the distance
to the handle.

To define the smoothly decreasing weight on the inter-
active translation, we must compute the distance from each
grid vertex to the handle. To reduce computational cost, we
use a discrete propagation scheme to approximate these dis-
tances. The goal is to compute an approximate distance d
for each vertex v with index (i, j,k). We initialize the handle
distances to d = 0, and then sequentially propagate distances
outward from each handle vertex using Dijkstra’s algorithm
on the graph of vertex neighbours, where the neighbours of v
are the vertices vn with indices {(i+ p, j+q,k+r) : p,q,r ∈
[−1,1]}. The distance at v is approximated by

d = dn + svoxel
√
|i− in|+ | j− jn|+ |k− kn| (2)

where dn is the distance stored in a neighbour vertex
(in, jn,kn), and svoxel represents the size of a voxel. The

c© The Eurographics Association 2008.

M. Sugihara et al. / A Sketch-Based Method to Control Deformation in a Skeletal Implicit Surface Modeler68



set of possible distance deltas are constant and can be pre-
computed (Figure 6).

Figure 6: An example of distance approximation. The dis-
tance from the handle vertex is calculated according to the
distance from the neighbour vertex dn.

After this process, each vertex stores the approximate dis-
tance from the handle vertices (Figure 7). Note that if the
designer has drawn multiple curves, we do this computation
independently for each curve. Each vertex stores the separate
shortest-distance for every curve in the deformation.

Figure 7: Once the curve has been drawn, the handle ver-
tices are found. Each vertex stores the approximate shortest
distance to the handle, found using Dijkstra’s algorithm.

4.2. Interactive Deformation Approximation

During interactive manipulation, we take the curve transla-
tion as input and attempt to approximate the appearance of
the deformed surface in real-time. The goal is to give inter-
active feedback to the designer. No time need be spent to
preserve the field for subsequent use as that will be done in
a separate pass.

When the system receives the translation T from the de-
signer, the amount of translation of a vertex v is calculated
as:

Tv =

{
g( d

r‖T‖ ) ·T ‖T‖ 6= 0
0 ‖T‖= 0

(3)

g(x) =
{

(1− x2)3 x≤ 1
0 x > 1

(4)

where d is the distance at v, r > 0 is the voxel rigidity param-
eter, and g(x) is the Wyvill function [Blo97] which smoothly
decays from 1 to 0. Translation is applied to v if d is less
than r‖T‖. Therefore, the more the curve is translated, the
more the vertices are translated (Figure 8). At handle ver-
tices, d = 0 and the full translation is applied.

Figure 8: When the handle vertex (hv) is translated with T1,
the vertices in the red circle are influenced. The same thing
happens with T2.

If multiple curves are drawn by the designer, v has n dis-
tances di from n curves. We compute the translation Tci for
each curve, and combine them to find Tv:

Tv =
n

∑
i=1

g(
di

r‖Tci‖
) ·Tci (5)

We can now compute a displacement field D which can
be applied to any point inside the voxel grid by interpolating
the translations Tvi at each vertex vi. The deformed position
q if a point p in A is defined as (Figure 10a):

q = p+D(p) (6)

The difficulty with implicit surfaces is that they are not de-
fined as a set of points, but by an arbitrary scalar function
f (p), and we generally cannot compute the deformed scalar
field D( f (p)). However, an implicit surface is visualized by
evaluating f at a large number of sample points. At a point
q in the deformed field, the field value is then f (D−1(q)).
Hence, we construct an inverse deformation field D̃ which
approximates D−1 (Figure 10b).

D̃ is constructed by interpolating the inverse translations
of vertices −Tvi using the Wyvill function (Equation 4).
We suppose that every vertex is an implicit point primitive
bounded by R. We are currently using two times the size of a
voxel as R. When q is given, we efficiently find the set of ver-
tices which influence q using a uniform spatial subdivision
search structure.

c© The Eurographics Association 2008.

M. Sugihara et al. / A Sketch-Based Method to Control Deformation in a Skeletal Implicit Surface Modeler 69



Figure 9: An example deformation procedure with the duck shown in Figure 5. The top row shows the results of the visualized
implicit model. The bottom row shows the implicit field images which were sampled from a slice along a plane. The original
shape of the duck is shown in (a). By pushing the bill of the duck, the duck is squashed interactively in interactive deformation
(b). However, the implicit field outside of the deformation field is lost. Once the model has been deformed, the implicit field of
the duck is re-calculated with variational warping (c). A decent implicit field can be preserved with variational warping and
the field is cached for further modeling. The deformed voxels are also shown in (d).

Figure 10: Deformation for point based surface representa-
tions can be achieved with (a). However, inverse deformation
is required to deform an implicit surface (b).

Figure 11: q is influenced by vi. The amount of the influence
is calculated with Wyvill function. The amount is used as the
weight for the interpolation.

If a vertex v influences q, the field value at q is calculated
as the weight using the Wyvill function: g(‖q−v‖

R ) (Figure
11). The inverse translation −Tv is weighted by the field
value and then summed. Finally, the final result is divided
by the sum of the field values, sum. We must also handle the
case where q is outside D̃ (Figure 12), there D̃(q) cannot be
calculated as sum = 0, so fA′(q) returns 0. Hence, The field
value at q is defined as:

fA′(q) =
{

fA(q+ D̃(q)) sum 6= 0
0 sum = 0

(7)

D̃(q) =−∑
m
i=1 g(‖q−vi‖

R ) ·Tvi

sum
(8)

sum =
m

∑
i=1

g(
‖q− vi‖

R
) (9)

Here again g(x) is used as a smooth blending function. Since
fA′(q) is 0 outside the voxel grid, the field is not smooth
(Figure 9b), however as the iso-surface lies inside the vox-
els, this is acceptable. This technique produces a real-time
interactive approximation to the final deformation, which we
describe in the next section.

4.3. Variational Warping

When the designer is satisfied with the deformed model,
variational warping described in [BK05] is applied to the
model. Since variational warping has to solve a large ma-
trix, the computational cost is high. However, it guarantees
to globally interpolate all constraints (vertices of voxels)

c© The Eurographics Association 2008.

M. Sugihara et al. / A Sketch-Based Method to Control Deformation in a Skeletal Implicit Surface Modeler70



Figure 12: The field value of q1 is calculated with Wyvill
function. However, the field value of q2 cannot be calculated
because no vertex influences q2. In this case, the system sim-
ply returns 0 as the field value of q2.

with C2 continuity. We do not put constraints outside the iso-
surface, so we cannot preserve a complicated implicit field.
But the result is suitable to apply further blending and CSG
operations (Figure 9c).

As in the previous section, our variational warp is essen-
tially an inverse deformation D̃. Therefore, the field value at
q can be calculated as follows:

fA′(q) = fA(q+ D̃(q)) (10)

D̃(q) =
m

∑
i=1

wiϕ(‖q− vi‖)+P(q) (11)

where ϕ(r) = r3, and P(q) = c1qx + c2qy + c3qz + c4. The
weights wi ∈ R3 and coefficients c1, c2, c3, and c4 ∈ R3 can
be calculated by solving a linear system by evaluating equa-
tion 11 at each known solution D̃(vi) =−Tvi .

5. Results

The body of the dragon shown in Figure 13 was deformed
with our deformation technique. The body was created at
first and then additional parts such as the head and the legs
were added to the body with blending operation. It is diffi-
cult to deform an implicit model as the designer wants with
existing deformation techniques for implicit surfaces. Even
after deformation, smooth blending can be applied because
of variational warping and hierarchical spatial caching.

Our system is also useful to edit a model (Figure 14). The
octopus was created with standard ShapeShop operations.
The face of the octopus was deformed by pulling the curve
drawn on the mouth. Since the ROI of the octopus is auto-
matically specified, various kinds of face shapes can be in-
tuitively achieved just by pulling the mouth. It is difficult to
deform like Figure 14 with an interface peeling an ROI on
the curve [NISA07]. By directly recording the deformation
sequence, animation can be created easily.

6. Limitations

Existing FFD methods generally do not deal with self-
collision. Similarly, our system does not handle self-
collision. To enable interactive manipulation, we chose to

Figure 13: The dragon was deformed with our deformation
technique (top). The body of the dragon was initially mod-
eled on a plane (left). The body was deformed by pushing the
middle of the body to the right and pushing the tail to the left
(right).

Figure 14: The octopus model was initially sketched, and
then the mouth of the octopus was pulled. The picture shows
the results by pulling the mouth to the each direction.

split the deformation procedure. Interactive deformation
uses a different interpolation technique than the final vari-
ational warp, so the resulting shapes are slightly different.

Our volumetric peeling interface is achieved by approxi-
mating the shortest distance from the curve to voxel vertices.
If surfaces are not connected with each other but connected
by voxels, deformation behaves as if the surfaces were con-
nected. This can be avoided by using voxels of higher reso-
lution, but computational cost increases.

c© The Eurographics Association 2008.

M. Sugihara et al. / A Sketch-Based Method to Control Deformation in a Skeletal Implicit Surface Modeler 71



7. Conclusion and Future Work

While skeletal implicit surface representations have many
3D modeling advantages, applying FFD to implicit surface
representations is difficult. Achieving a desirable deforma-
tion with lattice-based FFD can also be time-consuming. The
system we have described addresses those two problems.
Using a variational warp, FFD deformation for implicit sur-
face representations can be achieved while preserving im-
plicit properties, allowing smooth blending to be applied af-
ter deformation. Our volumetric peeling interface also al-
lows the designer to intuitively deform a model without re-
quiring manual parameter manipulation.

Our current system provides just one sketch-based oper-
ation for deformation(drawing a curve on the surface and
pulling or pushing it). Future work can explore more de-
formation operations like twist and taper. Our current vol-
umetric peeling interface is not limited to implicit surface
representations, it can be applied to any point-sampled rep-
resentation. Future experimentation could explore this and
then be incorporated into the volumetric peeling interface.

References

[Bar84] BARR A. H.: Global and local deformations of
solid primitives. In ACM Computer Graphics SIGGRAPH
’84 (1984), pp. 21–30.

[BK05] BOTSCH M., KOBBELT L.: Real-time shape edit-
ing using radial basis functions. Comput. Graph. Forum
24, 3 (2005), 611–621.

[Blo97] BLOOMENTHAL J.: Introduction to Implicit Sur-
faces. Morgan Kaufmann, ISBN 1-55860-233-X, 1997.

[BPWG07] BOTSCH M., PAULY M., WICKE M., GROSS

M.: Adaptive space deformations based on rigid cells.
Computer Graphics Forum 26, 3 (2007), 339–347.

[CD97] CANI M.-P., DESBRUN M.: Animation of de-
formable models using implicit surfaces. IEEE Trans. Vis.
Comput. Graph. (TVCG) 3, 1 (1997).

[Coq90] COQUILLART S.: Extended free-form deforma-
tion: a sculpturing tool for 3d geometric modeling. In
Proc. SIGGRAPH ’90 (1990), pp. 187–196.

[Cre99] CRESPIN B.: Implicit free-form deformations. In
Proc. Implicit Surfaces ’99 (1999), pp. 17–23.

[Gas93] GASCUEL M.-P.: An implicit formulation for
precise contact modeling between flexible solids. In Proc.
SIGGRAPH ’93 (1993), pp. 313–320.

[IMH05] IGARASHI T., MOSCOVICH T., HUGHES J. F.:
As-rigid-as-possible shape manipulation. ACM Trans.
Graph. 24, 3 (2005), 1134–1141.

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.:
Teddy: a sketching interface for 3d freeform design. In
Proc. SIGGRAPH ’99 (1999), pp. 409–416.

[Kle89] KLECK J.: Modeling Using Implicit Surfaces.
Master’s thesis, University of California, Santa Cruz, June
1989.

[MJ96] MACCRACKEN R., JOY K. I.: Free-form defor-
mations with lattices of arbitrary topology. In Proc. SIG-
GRAPH ’96 (1996), pp. 181–188.

[NISA07] NEALEN A., IGARASHI T., SORKINE O.,
ALEXA M.: Fibermesh: designing freeform surfaces with
3d curves. ACM Trans. Graph. 26, 3 (2007).

[OC97] OPALACH A., CANI M.-P.: Local deformation
for animation of implicit surfaces. In Spring Conference
on Computer Graphics (SCCG) (1997).

[OCNF02] ONO Y., CHEN B.-Y., NISHITA T., FENG J.:
Free-form deformation with automatically generated mul-
tiresolution lattices. In CW (2002), pp. 472–479.

[PASS95] PASKO A., ADZHIEV V., SOURIN A.,
SAVCHENKO V.: Function representation in geometric
modeling: concepts, implementation and applications.
The Visual Computer 11, 8 (1995), 429–446.

[PASS01] PASKO A., ADZHIEV V., SCHMITT B.,
SCHLICK C.: Constructive hypervolume modeling.
Graphical models 63, 6 (2001), 413–442.

[Sch06] SCHMIDT R.: Interactive Modeling with Implicit
Surfaces. Master’s thesis, University of Calgary, 2006.

[SF98] SINGH K., FIUME E. L.: Wires: A geometric de-
formation technique. In Proc. SIGGRAPH 98 (1998),
pp. 405–414.

[SP86] SEDERBERG T., PARRY S.: Free Form Deforma-
tion of Solid Geometric Models. Proc. SIGGRAPH 86
(1986), 151–160.

[SPS03] SCHMITT B., PASKO A., SCHLICK C.: Shape-
driven deformations of functionally defined heteroge-
neous volumetric objects. In Proc. GRAPHITE 2003
(2003), pp. 127–134.

[SWG05] SCHMIDT R., WYVILL B., GALIN E.: Interac-
tive implicit modeling with hierarchical spatial caching.
In SMI (2005), pp. 104–113.

[SWSJ05] SCHMIDT R., WYVILL B., SOUSA M., JORGE

J.: Shapeshop: Sketch-based solid modeling with blob-
trees. In Proc. SBIM 2005 (2005), pp. 53–62.

[WGG99] WYVILL B., GUY A., GALIN E.: Extending
the CSG tree. warping, blending and boolean operations
in an implicit surface modeling system. Computer Graph-
ics Forum 18, 2 (1999), 149–158.

[WMW86] WYVILL G., MCPHEETERS C., WYVILL B.:
Data structure for soft objects. The Visual Computer 2, 4
(1986), 227–234.

[WvO97] WYVILL B., VAN OVERVELD K.: Warping as
a modelling tool for csg/implicit models. In Shape Mod-
elling Conference, University of Aizu, Japan (1997).

c© The Eurographics Association 2008.

M. Sugihara et al. / A Sketch-Based Method to Control Deformation in a Skeletal Implicit Surface Modeler72


